BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Radjendirane V, Joseph P, Lee YH, Kimura S, Klein-Szanto AJ, Gonzalez FJ, Jaiswal AK. Disruption of the DT diaphorase (NQO1) gene in mice leads to increased menadione toxicity. J Biol Chem. 1998;273:7382-7389. [PMID: 9516435 DOI: 10.1074/jbc.273.13.7382] [Cited by in Crossref: 192] [Cited by in F6Publishing: 179] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Jaiswal AK. Regulation of antioxidant response element-dependent induction of detoxifying enzyme synthesis. Methods Enzymol 2004;378:221-38. [PMID: 15038972 DOI: 10.1016/S0076-6879(04)78018-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
2 Siegel D, Reigan P, Ross D. One- and Two-Electron-Mediated Reduction of Quinones: Enzymology and Toxicological Implications. In: Elfarra A, editor. Advances in Bioactivation Research. New York: Springer; 2008. pp. 1-29. [DOI: 10.1007/978-0-387-77300-1_7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
3 Medina-carmona E, Betancor-fernández I, Santos J, Mesa-torres N, Grottelli S, Batlle C, Naganathan AN, Oppici E, Cellini B, Ventura S, Salido E, Pey AL. Insight into the specificity and severity of pathogenic mechanisms associated with missense mutations through experimental and structural perturbation analyses. Human Molecular Genetics 2019;28:1-15. [DOI: 10.1093/hmg/ddy323] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
4 Dong Y, Chin SF, Blanco E, Bey EA, Kabbani W, Xie XJ, Bornmann WG, Boothman DA, Gao J. Intratumoral delivery of beta-lapachone via polymer implants for prostate cancer therapy. Clin Cancer Res 2009;15:131-9. [PMID: 19118040 DOI: 10.1158/1078-0432.CCR-08-1691] [Cited by in Crossref: 51] [Cited by in F6Publishing: 21] [Article Influence: 3.9] [Reference Citation Analysis]
5 Sollner S, Nebauer R, Ehammer H, Prem A, Deller S, Palfey BA, Daum G, Macheroux P. Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification. FEBS J 2007;274:1328-39. [PMID: 17298444 DOI: 10.1111/j.1742-4658.2007.05682.x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 2.7] [Reference Citation Analysis]
6 Xu J, Jaiswal AK. NAD(P)H:quinone oxidoreductase 1 (NQO1) competes with 20S proteasome for binding with C/EBPα leading to its stabilization and protection against radiation-induced myeloproliferative disease. J Biol Chem 2012;287:41608-18. [PMID: 23086932 DOI: 10.1074/jbc.M112.387738] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
7 Stiborová M, Frei E, Arlt VM, Schmeiser HH. Knockout and humanized mice as suitable tools to identify enzymes metabolizing the human carcinogen aristolochic acid. Xenobiotica 2014;44:135-45. [PMID: 24152141 DOI: 10.3109/00498254.2013.848310] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
8 Chiou T, Wang Y, Tzeng W. DT-diaphorase protects against menadione-induced oxidative stress. Toxicology 1999;139:103-10. [DOI: 10.1016/s0300-483x(99)00109-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
9 Zhou GD, Randerath K, Donnelly KC, Jaiswal AK. Effects of NQO1 deficiency on levels of cyclopurines and other oxidative DNA lesions in liver and kidney of young mice. Int J Cancer 2004;112:877-83. [PMID: 15386390 DOI: 10.1002/ijc.20375] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
10 Yanling H, Yuhong Z, Wenwu H, Lei X, Mingwu C. NQO1 C609T polymorphism and esophageal cancer risk: a HuGE review and meta-analysis. BMC Med Genet 2013;14:31. [PMID: 23497461 DOI: 10.1186/1471-2350-14-31] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
11 Dunstan MS, Barnes J, Humphries M, Whitehead RC, Bryce RA, Leys D, Stratford IJ, Nolan KA. Novel Inhibitors of NRH:Quinone Oxidoreductase 2 (NQO2): Crystal Structures, Biochemical Activity, and Intracellular Effects of Imidazoacridin-6-ones. J Med Chem 2011;54:6597-611. [DOI: 10.1021/jm200416e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
12 den Braver-Sewradj SP, den Braver MW, Toorneman RM, van Leeuwen S, Zhang Y, Dekker SJ, Vermeulen NPE, Commandeur JNM, Vos JC. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations. Chem Res Toxicol 2018;31:116-26. [PMID: 29281794 DOI: 10.1021/acs.chemrestox.7b00289] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
13 Ip SP, Yiu HY, Ko KM. Schisandrin B protects against menadione-induced hepatotoxicity by enhancing DT-diaphorase activity. Mol Cell Biochem. 2000;208:151-155. [PMID: 10939639 DOI: 10.1023/a:1007029625406] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
14 El-Halawany AM, Abdallah HM, Hamed AR, Khalil HE, Almohammadi AM. Phenolics from Barleria cristata var. Alba as carcinogenesis blockers against menadione cytotoxicity through induction and protection of quinone reductase. BMC Complement Altern Med 2018;18:163. [PMID: 29788962 DOI: 10.1186/s12906-018-2214-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Mai Z, Lei M, Yu B, Du H, Liu J. The effects of cigarette smoke extract on ovulation, oocyte morphology and ovarian gene expression in mice. PLoS One 2014;9:e95945. [PMID: 24776817 DOI: 10.1371/journal.pone.0095945] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
16 Zhao XD, Zhou YT, Lu XJ. Sulforaphane enhances the activity of the Nrf2-ARE pathway and attenuates inflammation in OxyHb-induced rat vascular smooth muscle cells. Inflamm Res 2013;62:857-63. [PMID: 23756573 DOI: 10.1007/s00011-013-0641-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
17 Shen J, Barrios RJ, Jaiswal AK. Inactivation of the quinone oxidoreductases NQO1 and NQO2 strongly elevates the incidence and multiplicity of chemically induced skin tumors. Cancer Res 2010;70:1006-14. [PMID: 20103645 DOI: 10.1158/0008-5472.CAN-09-2938] [Cited by in Crossref: 41] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
18 Wang W, Wang W, Zhang G, Wu Y, Xie T, Kan M, Fang H, Wang H. Activation of Nrf2-ARE signal pathway in hippocampus of amygdala kindling rats. Neuroscience Letters 2013;543:58-63. [DOI: 10.1016/j.neulet.2013.03.038] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
19 Dinkova-kostova AT, Talalay P. Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen11This paper is dedicated with admiration to the memory of Professor Lars Ernster, whose name will be identified forever with DT diaphorase. Free Radical Biology and Medicine 2000;29:231-40. [DOI: 10.1016/s0891-5849(00)00300-2] [Cited by in Crossref: 181] [Cited by in F6Publishing: 51] [Article Influence: 8.2] [Reference Citation Analysis]
20 Buranrat B, Prawan A, Kukongviriyapan U, Kongpetch S, Kukongviriyapan V. Dicoumarol enhances gemcitabine-induced cytotoxicity in high NQO1-expressing cholangiocarcinoma cells. World J Gastroenterol 2010; 16(19): 2362-2370 [PMID: 20480521 DOI: 10.3748/wjg.v16.i19.2362] [Cited by in CrossRef: 35] [Cited by in F6Publishing: 33] [Article Influence: 2.9] [Reference Citation Analysis]
21 Stiborová M, Levová K, Bárta F, Šulc M, Frei E, Arlt VM, Schmeiser HH. The influence of dicoumarol on the bioactivation of the carcinogen aristolochic acid I in rats. Mutagenesis 2014;29:189-200. [PMID: 24598128 DOI: 10.1093/mutage/geu004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
22 Yang Y, Wang H, Li L, Li X, Wang Q, Ding H, Wang X, Ye Z, Wu L, Zhang X, Zhou M, Pan H. Sinomenine Provides Neuroprotection in Model of Traumatic Brain Injury via the Nrf2-ARE Pathway. Front Neurosci 2016;10:580. [PMID: 28066165 DOI: 10.3389/fnins.2016.00580] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
23 Booth DM, Mukherjee R, Sutton R, Criddle DN. Calcium and reactive oxygen species in acute pancreatitis: friend or foe? Antioxid Redox Signal. 2011;15:2683-2698. [PMID: 21861696 DOI: 10.1089/ars.2011.3983] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
24 Aleksunes LM, Goedken M, Manautou JE. Up-regulation of NAD(P)H quinone oxidoreductase 1 during human liver injury. World J Gastroenterol 2006; 12(12): 1937-1940 [PMID: 16610002 DOI: 10.3748/wjg.v12.i12.1937] [Cited by in CrossRef: 46] [Cited by in F6Publishing: 47] [Article Influence: 2.9] [Reference Citation Analysis]
25 Gonzalez FJ. The use of gene knockout mice to unravel the mechanisms of toxicity and chemical carcinogenesis. Toxicology Letters 2001;120:199-208. [DOI: 10.1016/s0378-4274(01)00296-x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
26 Antoine M, Marcheteau E, Delagrange P, Ferry G, Boutin JA. Characterization of cofactors, substrates and inhibitor binding to flavoenzyme quinone reductase 2 by automated supramolecular nano-electrospray ionization mass spectrometry. International Journal of Mass Spectrometry 2012;312:87-96. [DOI: 10.1016/j.ijms.2011.07.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
27 Oh ET, Kim JW, Kim JM, Kim SJ, Lee JS, Hong SS, Goodwin J, Ruthenborg RJ, Jung MG, Lee HJ, Lee CH, Park ES, Kim C, Park HJ. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun 2016;7:13593. [PMID: 27966538 DOI: 10.1038/ncomms13593] [Cited by in Crossref: 69] [Cited by in F6Publishing: 68] [Article Influence: 11.5] [Reference Citation Analysis]
28 Yang Y, Zhang Y, Wu Q, Cui X, Lin Z, Liu S, Chen L. Clinical implications of high NQO1 expression in breast cancers. J Exp Clin Cancer Res. 2014;33:14. [PMID: 24499631 DOI: 10.1186/1756-9966-33-14] [Cited by in Crossref: 87] [Cited by in F6Publishing: 86] [Article Influence: 10.9] [Reference Citation Analysis]
29 Kubata BK, Kabututu Z, Nozaki T, Munday CJ, Fukuzumi S, Ohkubo K, Lazarus M, Maruyama T, Martin SK, Duszenko M, Urade Y. A key role for old yellow enzyme in the metabolism of drugs by Trypanosoma cruzi. J Exp Med 2002;196:1241-51. [PMID: 12417633 DOI: 10.1084/jem.20020885] [Cited by in Crossref: 94] [Cited by in F6Publishing: 96] [Article Influence: 4.9] [Reference Citation Analysis]
30 Sankaranarayanan K, Jaiswal AK. Nrf3 negatively regulates antioxidant-response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. J Biol Chem 2004;279:50810-7. [PMID: 15385560 DOI: 10.1074/jbc.M404984200] [Cited by in F6Publishing: 40] [Reference Citation Analysis]
31 Iskander K, Jaiswal AK. Quinone oxidoreductases in protection against myelogenous hyperplasia and benzene toxicity. Chemico-Biological Interactions 2005;153-154:147-57. [DOI: 10.1016/j.cbi.2005.03.019] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 2.2] [Reference Citation Analysis]
32 Gonzalez FJ, Kimura S. Study of P450 function using gene knockout and transgenic mice. Archives of Biochemistry and Biophysics 2003;409:153-8. [DOI: 10.1016/s0003-9861(02)00364-8] [Cited by in Crossref: 74] [Cited by in F6Publishing: 17] [Article Influence: 3.9] [Reference Citation Analysis]
33 Shukla H, Gaje G, Koucheki A, Lee HY, Sun X, Trush MA, Zhu H, Li YR, Jia Z. NADPH-quinone oxidoreductase-1 mediates Benzo-[a]-pyrene-1,6-quinone-induced cytotoxicity and reactive oxygen species production in human EA.hy926 endothelial cells. Toxicol Appl Pharmacol 2020;404:115180. [PMID: 32739527 DOI: 10.1016/j.taap.2020.115180] [Reference Citation Analysis]
34 Xiao H, Parkin K. Isolation and identification of phase II enzyme-inducing agents from nonpolar extracts of green onion (Allium spp.). J Agric Food Chem 2006;54:8417-24. [PMID: 17061815 DOI: 10.1021/jf061582s] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
35 Pink JJ, Planchon SM, Tagliarino C, Varnes ME, Siegel D, Boothman DA. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J Biol Chem 2000;275:5416-24. [PMID: 10681517 DOI: 10.1074/jbc.275.8.5416] [Cited by in Crossref: 264] [Cited by in F6Publishing: 251] [Article Influence: 12.0] [Reference Citation Analysis]
36 Munday R. Activation and Detoxification of Naphthoquinones by NAD(P)H: Quinone Oxidoreductase. Quinones and Quinone Enzymes, Part B. Elsevier; 2004. pp. 364-80. [DOI: 10.1016/s0076-6879(04)82020-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
37 Fahey JW, Talalay P. Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol. 1999;37:973-979. [PMID: 10541453 DOI: 10.1016/s0278-6915(99)00082-4] [Cited by in Crossref: 318] [Cited by in F6Publishing: 105] [Article Influence: 13.8] [Reference Citation Analysis]
38 Flatt PM, Polyak K, Tang LJ, Scatena CD, Westfall MD, Rubinstein LA, Yu J, Kinzler KW, Vogelstein B, Hill DE, Pietenpol JA. p53-dependent expression of PIG3 during proliferation, genotoxic stress, and reversible growth arrest. Cancer Letters 2000;156:63-72. [DOI: 10.1016/s0304-3835(00)00441-9] [Cited by in Crossref: 58] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
39 Long DJ 2nd, Iskander K, Gaikwad A, Arin M, Roop DR, Knox R, Barrios R, Jaiswal AK. Disruption of dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity. J Biol Chem 2002;277:46131-9. [PMID: 12351651 DOI: 10.1074/jbc.M208675200] [Cited by in Crossref: 82] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
40 Liang H, Liu N, Wang R, Zhang Y, Chen J, Dai Z, Yang Y, Wu G, Wu Z. N-Acetyl Serotonin Alleviates Oxidative Damage by Activating Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Porcine Enterocytes. Antioxidants (Basel) 2020;9:E303. [PMID: 32272634 DOI: 10.3390/antiox9040303] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
41 de Haan LH, Pot GK, Aarts JM, Rietjens IM, Alink GM. In vivo relevance of two critical levels for NAD(P)H:quinone oxidoreductase (NQO1)-mediated cellular protection against electrophile toxicity found in vitro. Toxicology in Vitro 2006;20:594-600. [DOI: 10.1016/j.tiv.2005.10.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
42 Patrick BA, Jaiswal AK. Stress-induced NQO1 controls stability of C/EBPα against 20S proteasomal degradation to regulate p63 expression with implications in protection against chemical-induced skin cancer. Oncogene 2012;31:4362-71. [PMID: 22249251 DOI: 10.1038/onc.2011.600] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
43 Tocmo R, Parkin K. S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2. Free Radic Biol Med 2019;143:164-75. [PMID: 31349040 DOI: 10.1016/j.freeradbiomed.2019.07.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
44 Nioi P, Hayes JD. Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2004;555:149-71. [DOI: 10.1016/j.mrfmmm.2004.05.023] [Cited by in Crossref: 257] [Cited by in F6Publishing: 245] [Article Influence: 14.3] [Reference Citation Analysis]
45 Rasool KG, Khan MA, Aldawood AS, Tufail M, Mukhtar M, Takeda M. Identification of Proteins Modulated in the Date Palm Stem Infested with Red Palm Weevil (Rhynchophorus ferrugineus Oliv.) Using Two Dimensional Differential Gel Electrophoresis and Mass Spectrometry. Int J Mol Sci 2015;16:19326-46. [PMID: 26287180 DOI: 10.3390/ijms160819326] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
46 Jaiswal AK. Characterization and partial purification of microsomal NAD(P)H:quinone oxidoreductases. Arch Biochem Biophys 2000;375:62-8. [PMID: 10683249 DOI: 10.1006/abbi.1999.1650] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 1.0] [Reference Citation Analysis]
47 Dhakshinamoorthy S, Jain AK, Bloom DA, Jaiswal AK. Bach1 Competes with Nrf2 Leading to Negative Regulation of the Antioxidant Response Element (ARE)-mediated NAD(P)H:Quinone Oxidoreductase 1 Gene Expression and Induction in Response to Antioxidants. Journal of Biological Chemistry 2005;280:16891-900. [DOI: 10.1074/jbc.m500166200] [Cited by in Crossref: 258] [Cited by in F6Publishing: 148] [Article Influence: 15.2] [Reference Citation Analysis]
48 Long DJ, Jaiswal AK. NRH:quinone oxidoreductase2 (NQO2). Chemico-Biological Interactions 2000;129:99-112. [DOI: 10.1016/s0009-2797(00)00200-3] [Cited by in Crossref: 77] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
49 Pandareesh MD, Shrivash MK, Naveen Kumar HN, Misra K, Srinivas Bharath MM. Curcumin Monoglucoside Shows Improved Bioavailability and Mitigates Rotenone Induced Neurotoxicity in Cell and Drosophila Models of Parkinson's Disease. Neurochem Res 2016;41:3113-28. [PMID: 27535828 DOI: 10.1007/s11064-016-2034-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
50 Miyajima T, Melangath G, Zhu S, Deshpande N, Vasanth S, Mondal B, Kumar V, Chen Y, Price MO, Price FW Jr, Rogan EG, Zahid M, Jurkunas UV. Loss of NQO1 generates genotoxic estrogen-DNA adducts in Fuchs Endothelial Corneal Dystrophy. Free Radic Biol Med 2020;147:69-79. [PMID: 31857234 DOI: 10.1016/j.freeradbiomed.2019.12.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
51 Ravasz D, Kacso G, Fodor V, Horvath K, Adam-Vizi V, Chinopoulos C. Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD+ supports substrate-level phosphorylation during respiratory inhibition. Biochim Biophys Acta Bioenerg 2018;1859:909-24. [PMID: 29746824 DOI: 10.1016/j.bbabio.2018.05.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
52 Fusco R, Salinaro AT, Siracusa R, D'Amico R, Impellizzeri D, Scuto M, Ontario ML, Crea R, Cordaro M, Cuzzocrea S, Di Paola R, Calabrese V. Hidrox® Counteracts Cyclophosphamide-Induced Male Infertility through NRF2 Pathways in a Mouse Model. Antioxidants (Basel) 2021;10:778. [PMID: 34068924 DOI: 10.3390/antiox10050778] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Okumura N, Ito T, Degawa T, Moriyama M, Moriyama H. Royal Jelly Protects against Epidermal Stress through Upregulation of the NQO1 Expression. Int J Mol Sci 2021;22:12973. [PMID: 34884772 DOI: 10.3390/ijms222312973] [Reference Citation Analysis]
54 Li L, Du JK, Zou LY, Wu T, Lee YW, Kim YH. Decursin Isolated from Angelica gigas Nakai Rescues PC12 Cells from Amyloid β-Protein-Induced Neurotoxicity through Nrf2-Mediated Upregulation of Heme Oxygenase-1: Potential Roles of MAPK. Evid Based Complement Alternat Med 2013;2013:467245. [PMID: 23762139 DOI: 10.1155/2013/467245] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 1.2] [Reference Citation Analysis]
55 Gonzalez FJ. The study of xenobiotic-metabolizing enzymes and their role in toxicity in vivo using targeted gene disruption. Toxicology Letters 1998;102-103:161-6. [DOI: 10.1016/s0378-4274(98)00302-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
56 Talalay P, Dinkova-Kostova AT. Role of nicotinamide quinone oxidoreductase 1 (NQO1) in protection against toxicity of electrophiles and reactive oxygen intermediates. Methods Enzymol 2004;382:355-64. [PMID: 15047111 DOI: 10.1016/S0076-6879(04)82019-6] [Cited by in Crossref: 61] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
57 Reeve JL, Stenson-Cox C, O'Doherty A, Pörn-Ares I, Ares M, O'Brien T, Samali A. OxLDL-induced gene expression patterns in CASMC are mimicked in apoE-/- mice aortas. Biochem Biophys Res Commun 2007;356:681-6. [PMID: 17374365 DOI: 10.1016/j.bbrc.2007.03.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
58 Smith MT. Benzene, NQO1, and genetic susceptibility to cancer. Proc Natl Acad Sci U S A. 1999;96:7624-7626. [PMID: 10393869 DOI: 10.1073/pnas.96.14.7624] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 2.9] [Reference Citation Analysis]
59 Flader C, Liu J, Borch RF. Development of Novel Quinone Phosphorodiamidate Prodrugs Targeted to DT-Diaphorase. J Med Chem 2000;43:3157-67. [DOI: 10.1021/jm000179o] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 2.6] [Reference Citation Analysis]
60 Jiang ZN, Ahmed SMU, Wang QC, Shi HF, Tang XW. Quinone oxidoreductase 1 is overexpressed in gastric cancer and associated with outcome of adjuvant chemotherapy and survival. World J Gastroenterol 2021; 27(22): 3085-3096 [PMID: 34168410 DOI: 10.3748/wjg.v27.i22.3085] [Reference Citation Analysis]
61 Zhao XD, Zhou YT, Zhang X, Wang XL, Qi W, Zhuang Z, Su XF, Shi JX. Expression of NF-E2-related factor 2 (Nrf2) in the basilar artery after experimental subarachnoid hemorrhage in rabbits: a preliminary study. Brain Res 2010;1358:221-7. [PMID: 20727861 DOI: 10.1016/j.brainres.2010.08.035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
62 Di Francesco A, Di Germanio C, Panda AC, Huynh P, Peaden R, Navas-Enamorado I, Bastian P, Lehrmann E, Diaz-Ruiz A, Ross D, Siegel D, Martindale JL, Bernier M, Gorospe M, Abdelmohsen K, de Cabo R. Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation. Free Radic Biol Med 2016;99:225-33. [PMID: 27515817 DOI: 10.1016/j.freeradbiomed.2016.08.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
63 Liang Y, Zheng B, Li J, Shi J, Chu L, Han X, Chu X, Zhang X, Zhang J. Crocin ameliorates arsenic trioxide‑induced cardiotoxicity via Keap1-Nrf2/HO-1 pathway: Reducing oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 2020;131:110713. [PMID: 32920515 DOI: 10.1016/j.biopha.2020.110713] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
64 Xiao H, Parkin KL. Isolation and identification of potential cancer chemopreventive agents from methanolic extracts of green onion (Allium cepa). Phytochemistry 2007;68:1059-67. [DOI: 10.1016/j.phytochem.2007.01.021] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
65 Iskander K, Li J, Han S, Zheng B, Jaiswal AK. NQO1 and NQO2 Regulation of Humoral Immunity and Autoimmunity. Journal of Biological Chemistry 2006;281:30917-24. [DOI: 10.1074/jbc.m605809200] [Cited by in Crossref: 53] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
66 Ross D, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol 2004;382:115-44. [PMID: 15047100 DOI: 10.1016/S0076-6879(04)82008-1] [Cited by in Crossref: 176] [Cited by in F6Publishing: 90] [Article Influence: 9.8] [Reference Citation Analysis]
67 Gray JP, Karandrea S, Burgos DZ, Jaiswal AA, Heart EA. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells. Toxicol Lett 2016;262:1-11. [PMID: 27558805 DOI: 10.1016/j.toxlet.2016.08.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
68 Vella F, Ferry G, Delagrange P, Boutin JA. NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem Pharmacol 2005;71:1-12. [PMID: 16253210 DOI: 10.1016/j.bcp.2005.09.019] [Cited by in Crossref: 100] [Cited by in F6Publishing: 96] [Article Influence: 5.9] [Reference Citation Analysis]
69 Patrick BA, Gong X, Jaiswal AK. Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to 20S proteasomal degradation of p63 resulting in thinning of epithelium and chemical-induced skin cancer. Oncogene 2011;30:1098-107. [PMID: 21042282 DOI: 10.1038/onc.2010.491] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
70 Chen B, Bai Y, Sun M, Ni X, Yang Y, Yang Y, Zheng S, Xu F, Dai S. Glutathione S-transferases T1 null genotype is associated with susceptibility to aristolochic acid nephropathy. Int Urol Nephrol 2012;44:301-7. [PMID: 22116675 DOI: 10.1007/s11255-011-0082-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
71 Swain A, Turton J, Scudamore C, Maguire D, Pereira I, Freitas S, Smyth R, Munday M, Stamp C, Gandhi M, Sondh S, Ashall H, Francis I, Woodfine J, Bowles J, York M. Nephrotoxicity of hexachloro-1:3-butadiene in the male Hanover Wistar rat; correlation of minimal histopathological changes with biomarkers of renal injury: Renal injury biomarkers in hexachloro-1:3-butadiene-induced toxicity. J Appl Toxicol 2012;32:417-28. [DOI: 10.1002/jat.1727] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
72 Wang W, Jaiswal AK. Sp3 repression of polymorphic human NRH:quinone oxidoreductase 2 gene promoter. Free Radic Biol Med 2004;37:1231-43. [PMID: 15451063 DOI: 10.1016/j.freeradbiomed.2004.06.042] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 1.5] [Reference Citation Analysis]
73 Takahashi T, Mine Y, Okamoto T. Intracellular reduction of coenzyme Q homologues with a short isoprenoid side chain induces apoptosis of HeLa cells. J Biochem 2018;163:329-39. [PMID: 29319808 DOI: 10.1093/jb/mvy002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Gutierrez PL. The role of NAD(P)H oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: a review. Free Radical Biology and Medicine 2000;29:263-75. [DOI: 10.1016/s0891-5849(00)00314-2] [Cited by in Crossref: 72] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
75 Phillips RM, Naylor MA, Jaffar M, Doughty SW, Everett SA, Breen AG, Choudry GA, Stratford IJ. Bioreductive Activation of a Series of Indolequinones by Human DT-Diaphorase:  Structure−Activity Relationships. J Med Chem 1999;42:4071-80. [DOI: 10.1021/jm991063z] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 2.0] [Reference Citation Analysis]
76 Kim IK, Yim HS, Kim MK, Kim DW, Kim YM, Cha SS, Kang SO. Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli. J Mol Biol 2008;379:372-84. [PMID: 18455185 DOI: 10.1016/j.jmb.2008.04.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
77 Patrick BA, Das A, Jaiswal AK. NAD(P)H:quinone oxidoreductase 1 protects bladder epithelium against painful bladder syndrome in mice. Free Radic Biol Med 2012;53:1886-93. [PMID: 22985937 DOI: 10.1016/j.freeradbiomed.2012.08.584] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
78 Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact. 2000;129:77-97. [PMID: 11154736 DOI: 10.1016/s0009-2797(00)00199-x] [Cited by in Crossref: 416] [Cited by in F6Publishing: 149] [Article Influence: 19.8] [Reference Citation Analysis]
79 Nolan KA, Dunstan MS, Caraher MC, Scott KA, Leys D, Stratford IJ. In silico screening reveals structurally diverse, nanomolar inhibitors of NQO2 that are functionally active in cells and can modulate NF-κB signaling. Mol Cancer Ther 2012;11:194-203. [PMID: 22090421 DOI: 10.1158/1535-7163.MCT-11-0543] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
80 Iskander K, Barrios RJ, Jaiswal AK. Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to radiation-induced myeloproliferative disease. Cancer Res 2008;68:7915-22. [PMID: 18829548 DOI: 10.1158/0008-5472.CAN-08-0766] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
81 Jaiswal AK. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 2000;29:254-62. [PMID: 11035254 DOI: 10.1016/s0891-5849(00)00306-3] [Cited by in Crossref: 316] [Cited by in F6Publishing: 115] [Article Influence: 15.0] [Reference Citation Analysis]
82 Hong Y, Lee H, Tran Q, Bayarmunkh C, Boldbaatar D, Kwon SH, Park J, Park J. Beneficial effects of Diplectria barbata (Wall. Ex C. B. Clarke) Franken et Roos extract on aging and antioxidants in vitro and in vivo. Toxicol Res 2021;37:71-83. [PMID: 33489859 DOI: 10.1007/s43188-020-00064-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res. 2005;569:101-110. [PMID: 15603755 DOI: 10.1016/j.mrfmmm.2004.04.021] [Cited by in Crossref: 371] [Cited by in F6Publishing: 331] [Article Influence: 21.8] [Reference Citation Analysis]
84 Ahn KS, Sethi G, Jain AK, Jaiswal AK, Aggarwal BB. Genetic deletion of NAD(P)H:quinone oxidoreductase 1 abrogates activation of nuclear factor-kappaB, IkappaBalpha kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis. J Biol Chem 2006;281:19798-808. [PMID: 16682409 DOI: 10.1074/jbc.M601162200] [Cited by in Crossref: 89] [Cited by in F6Publishing: 44] [Article Influence: 5.6] [Reference Citation Analysis]
85 Danson S, Ward T, Butler J, Ranson M. DT-diaphorase: a target for new anticancer drugs. Cancer Treatment Reviews 2004;30:437-49. [DOI: 10.1016/j.ctrv.2004.01.002] [Cited by in Crossref: 133] [Cited by in F6Publishing: 119] [Article Influence: 7.4] [Reference Citation Analysis]
86 Bolufer P, Collado M, Barragan E, Calasanz MJ, Colomer D, Tormo M, González M, Brunet S, Batlle M, Cervera J, Sanz MA. Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol 2007;136:590-6. [PMID: 17367411 DOI: 10.1111/j.1365-2141.2006.06469.x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
87 Blanco E, Bey EA, Khemtong C, Yang SG, Setti-Guthi J, Chen H, Kessinger CW, Carnevale KA, Bornmann WG, Boothman DA, Gao J. Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res 2010;70:3896-904. [PMID: 20460521 DOI: 10.1158/0008-5472.CAN-09-3995] [Cited by in Crossref: 90] [Cited by in F6Publishing: 44] [Article Influence: 7.5] [Reference Citation Analysis]
88 Sobinoff AP, Pye V, Nixon B, Roman SD, Mclaughlin EA. Adding Insult to Injury: Effects of Xenobiotic-Induced Preantral Ovotoxicity on Ovarian Development and Oocyte Fusibility. Toxicological Sciences 2010;118:653-66. [DOI: 10.1093/toxsci/kfq272] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 3.3] [Reference Citation Analysis]
89 Floreani M, Napoli E, Palatini P. Role of antioxidant defences in the species-specific response of isolated atria to menadione. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2002;132:143-51. [DOI: 10.1016/s1532-0456(02)00060-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
90 Joseph P, Long DJ, Klein-szanto AJ, Jaiswal AK. Role of NAD(P)H:quinone oxidoreductase 1 (DT diaphorase) in protection against quinone toxicity. Biochemical Pharmacology 2000;60:207-14. [DOI: 10.1016/s0006-2952(00)00321-x] [Cited by in Crossref: 72] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
91 Eom S, Zhang YW, Kim S, Choe K, Lee KY, Park J, Hong Y, Kim Y, Kang J, Kim H. Influence of NQO1, ALDH2, and CYP2E1 genetic polymorphisms, smoking, and alcohol drinking on the risk of lung cancer in Koreans. Cancer Causes Control 2009;20:137-45. [DOI: 10.1007/s10552-008-9225-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.1] [Reference Citation Analysis]
92 Ji Y, Dai Z, Wu G, Wu Z. 4-Hydroxy-2-nonenal induces apoptosis by activating ERK1/2 signaling and depleting intracellular glutathione in intestinal epithelial cells. Sci Rep 2016;6:32929. [PMID: 27620528 DOI: 10.1038/srep32929] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
93 Oh GS, Kim HJ, Choi JH, Shen A, Choe SK, Karna A, Lee SH, Jo HJ, Yang SH, Kwak TH, Lee CH, Park R, So HS. Pharmacological activation of NQO1 increases NAD⁺ levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int 2014;85:547-60. [PMID: 24025646 DOI: 10.1038/ki.2013.330] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 8.7] [Reference Citation Analysis]
94 Kern RJ, Zarek CM, Lindholm-Perry AK, Kuehn LA, Snelling WM, Freetly HC, Cunningham HC, Meyer AM. Ruminal expression of the NQO1, RGS5, and ACAT1 genes may be indicators of feed efficiency in beef steers. Anim Genet 2017;48:90-2. [PMID: 27611366 DOI: 10.1111/age.12490] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
95 Hong Y, Yan W, Chen S, Sun CR, Zhang JM. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin 2010;31:1421-30. [PMID: 20953205 DOI: 10.1038/aps.2010.101] [Cited by in F6Publishing: 82] [Reference Citation Analysis]
96 Asher G, Lotem J, Sachs L, Shaul Y. p53-dependent apoptosis and NAD(P)H:quinone oxidoreductase 1. Methods Enzymol 2004;382:278-93. [PMID: 15047108 DOI: 10.1016/S0076-6879(04)82016-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
97 Guengerich FP. Pharmacogenomics of cytochrome P450 and other enzymes involved in biotransformation of xenobiotics. Drug Dev Res 2000;49:4-16. [DOI: 10.1002/(sici)1098-2299(200001)49:1<4::aid-ddr2>3.0.co;2-r] [Cited by in Crossref: 26] [Article Influence: 1.2] [Reference Citation Analysis]
98 Li J, Yang W, Xie Z, Yu K, Chen Y, Cui K. Impact of VKORC1, CYP4F2 and NQO1 gene variants on warfarin dose requirement in Han Chinese patients with catheter ablation for atrial fibrillation. BMC Cardiovasc Disord 2018;18:96. [PMID: 29776386 DOI: 10.1186/s12872-018-0837-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
99 Gaikwad NW, Rogan EG, Cavalieri EL. Evidence from ESI-MS for NQO1-catalyzed reduction of estrogen ortho-quinones. Free Radic Biol Med. 2007;43:1289-1298. [PMID: 17893042 DOI: 10.1016/j.freeradbiomed.2007.07.02] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
100 Misra V, Grondin A, Klamut HJ, Rauth AM. Assessment of the relationship between genotypic status of a DT-diaphorase point mutation and enzymatic activity. Br J Cancer 2000;83:998-1002. [PMID: 10993645 DOI: 10.1054/bjoc.2000.1359] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 1.0] [Reference Citation Analysis]
101 Tsvetkov P, Asher G, Reiss V, Shaul Y, Sachs L, Lotem J. Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc Natl Acad Sci U S A 2005;102:5535-40. [PMID: 15809436 DOI: 10.1073/pnas.0501828102] [Cited by in Crossref: 107] [Cited by in F6Publishing: 109] [Article Influence: 6.3] [Reference Citation Analysis]
102 Ishihara Y, Ishii S, Sakai Y, Yamamura N, Onishi Y, Shimamoto N. Crucial role of cytochrome P450 in hepatotoxicity induced by 2,3-dimethoxy-1,4-naphthoquinone in rats. J Appl Toxicol 2011;31:173-8. [PMID: 20803752 DOI: 10.1002/jat.1578] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
103 El-najjar N, Gali-muhtasib H, Ketola RA, Vuorela P, Urtti A, Vuorela H. The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochem Rev 2011;10:353-70. [DOI: 10.1007/s11101-011-9209-1] [Cited by in Crossref: 93] [Cited by in F6Publishing: 45] [Article Influence: 8.5] [Reference Citation Analysis]
104 Gonzalez FJ. Role of gene knockout and transgenic mice in the study of xenobiotic metabolism. Drug Metab Rev 2003;35:319-35. [PMID: 14705864 DOI: 10.1081/dmr-120026496] [Cited by in Crossref: 43] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
105 Long DJ, Jaiswal AK. Mouse NRH:quinone oxidoreductase (NQO2): cloning of cDNA and gene- and tissue-specific expression. Gene 2000;252:107-17. [DOI: 10.1016/s0378-1119(00)00221-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
106 Bongard RD, Myers CR, Lindemer BJ, Baumgardt S, Gonzalez FJ, Merker MP. Coenzyme Q(1) as a probe for mitochondrial complex I activity in the intact perfused hyperoxia-exposed wild-type and Nqo1-null mouse lung. Am J Physiol Lung Cell Mol Physiol 2012;302:L949-58. [PMID: 22268123 DOI: 10.1152/ajplung.00251.2011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
107 Gaikwad NW, Rogan EG, Cavalieri EL. Evidence from ESI-MS for NQO1-catalyzed reduction of estrogen ortho-quinones. Free Radic Biol Med 2007;43:1289-98. [PMID: 17893042 DOI: 10.1016/j.freeradbiomed.2007.07.021] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 4.0] [Reference Citation Analysis]
108 Ross D. Quinone reductases multitasking in the metabolic world. Drug Metab Rev. 2004;36:639-654. [PMID: 15554240 DOI: 10.1081/dmr-200033465] [Cited by in Crossref: 132] [Cited by in F6Publishing: 51] [Article Influence: 7.8] [Reference Citation Analysis]
109 Higgins LG, Kelleher MO, Eggleston IM, Itoh K, Yamamoto M, Hayes JD. Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents. Toxicology and Applied Pharmacology 2009;237:267-80. [DOI: 10.1016/j.taap.2009.03.005] [Cited by in Crossref: 124] [Cited by in F6Publishing: 128] [Article Influence: 9.5] [Reference Citation Analysis]
110 Dong H, Shertzer HG, Genter MB, Gonzalez FJ, Vasiliou V, Jefcoate C, Nebert DW. Mitochondrial targeting of mouse NQO1 and CYP1B1 proteins. Biochem Biophys Res Commun 2013;435:727-32. [PMID: 23692925 DOI: 10.1016/j.bbrc.2013.05.051] [Cited by in F6Publishing: 17] [Reference Citation Analysis]
111 Senger DR, Li D, Jaminet SC, Cao S. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet. PLoS One 2016;11:e0148042. [PMID: 26885667 DOI: 10.1371/journal.pone.0148042] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 8.5] [Reference Citation Analysis]
112 Celli CM, Tran N, Knox R, Jaiswal AK. NRH:quinone oxidoreductase 2 (NQO2) catalyzes metabolic activation of quinones and anti-tumor drugs. Biochem Pharmacol 2006;72:366-76. [PMID: 16765324 DOI: 10.1016/j.bcp.2006.04.029] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 3.2] [Reference Citation Analysis]
113 Nebert DW, Roe AL, Vandale SE, Bingham E, Oakley GG. NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: a HuGE review. Genet Med 2002;4:62-70. [PMID: 11882782 DOI: 10.1097/00125817-200203000-00003] [Cited by in Crossref: 124] [Cited by in F6Publishing: 110] [Article Influence: 6.2] [Reference Citation Analysis]
114 Li J, Zuo X, Cheng P, Ren X, Sun S, Xu J, Holmgren A, Lu J. The production of reactive oxygen species enhanced with the reduction of menadione by active thioredoxin reductase. Metallomics 2019;11:1490-7. [PMID: 31359011 DOI: 10.1039/c9mt00133f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
115 Lindemer BJ, Bongard RD, Hoffmann R, Baumgardt S, Gonzalez FJ, Merker MP. Genetic evidence for NAD(P)H:quinone oxidoreductase 1-catalyzed quinone reduction on passage through the mouse pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 2011;300:L773-80. [PMID: 21296895 DOI: 10.1152/ajplung.00394.2010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
116 Gonzalez FJ. Transgenic models in xenobiotic metabolism and toxicology. Toxicology 2002;181-182:237-9. [DOI: 10.1016/s0300-483x(02)00288-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
117 Fernández-Gajardo R, Matamala JM, Carrasco R, Gutiérrez R, Melo R, Rodrigo R. Novel therapeutic strategies for traumatic brain injury: acute antioxidant reinforcement. CNS Drugs 2014;28:229-48. [PMID: 24532027 DOI: 10.1007/s40263-013-0138-y] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
118 Augustine LM, Fisher CD, Lickteig AJ, Aleksunes LM, Slitt AL, Cherrington NJ. Gender divergent expression of Nqo1 in Sprague Dawley and August Copenhagen x Irish rats. J Biochem Mol Toxicol 2008;22:93-100. [PMID: 18418895 DOI: 10.1002/jbt.20224] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
119 Biniek C, Heyno E, Kruk J, Sparla F, Trost P, Krieger-liszkay A. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane. Planta 2017;245:807-17. [DOI: 10.1007/s00425-016-2643-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
120 Li C, Zhou Y. Association between NQO1 C609T polymorphism and acute lymphoblastic leukemia risk: evidence from an updated meta-analysis based on 17 case-control studies. J Cancer Res Clin Oncol 2014;140:873-81. [PMID: 24488035 DOI: 10.1007/s00432-014-1595-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
121 Tsvetkov P, Adamovich Y, Elliott E, Shaul Y. E3 ligase STUB1/CHIP regulates NAD(P)H:quinone oxidoreductase 1 (NQO1) accumulation in aged brain, a process impaired in certain Alzheimer disease patients. J Biol Chem 2011;286:8839-45. [PMID: 21220432 DOI: 10.1074/jbc.M110.193276] [Cited by in Crossref: 45] [Cited by in F6Publishing: 27] [Article Influence: 4.1] [Reference Citation Analysis]
122 Shearer MJ, Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J Lipid Res 2014;55:345-62. [PMID: 24489112 DOI: 10.1194/jlr.R045559] [Cited by in Crossref: 92] [Cited by in F6Publishing: 44] [Article Influence: 11.5] [Reference Citation Analysis]
123 Bakalova R, Semkova S, Ivanova D, Zhelev Z, Miller T, Takeshima T, Shibata S, Lazarova D, Aoki I, Higashi T. Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant. Oxid Med Cell Longev 2020;2020:6212935. [PMID: 33204397 DOI: 10.1155/2020/6212935] [Reference Citation Analysis]
124 Khadka D, Kim HJ, Oh GS, Shen A, Lee S, Lee SB, Sharma S, Kim SY, Pandit A, Choe SK, Kwak TH, Yang SH, Sim H, Eom GH, Park R, So HS. Augmentation of NAD+ levels by enzymatic action of NAD(P)H quinone oxidoreductase 1 attenuates adriamycin-induced cardiac dysfunction in mice. J Mol Cell Cardiol 2018;124:45-57. [PMID: 30291911 DOI: 10.1016/j.yjmcc.2018.10.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
125 Rao VA, Klein SR, Bonar SJ, Zielonka J, Mizuno N, Dickey JS, Keller PW, Joseph J, Kalyanaraman B, Shacter E. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J Biol Chem 2010;285:34447-59. [PMID: 20805228 DOI: 10.1074/jbc.M110.133579] [Cited by in Crossref: 91] [Cited by in F6Publishing: 63] [Article Influence: 7.6] [Reference Citation Analysis]
126 Li H, Wu S, Shi N, Lin W, You J, Zhou W. NF-E2-related factor 2 activation in PC12 cells: its protective role in manganese-induced damage. Arch Toxicol 2011;85:901-10. [DOI: 10.1007/s00204-010-0625-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
127 Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, Bey EA, Boothman DA, Gao J. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 2013;3:116-26. [PMID: 23423156 DOI: 10.7150/thno.5411] [Cited by in Crossref: 201] [Cited by in F6Publishing: 187] [Article Influence: 22.3] [Reference Citation Analysis]
128 Phillips RM. Inhibition of DT-diaphorase (NAD(P)H:Quinone oxidoreductase, ec 1.6.99.2) by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and flavone-8-acetic acid (FAA): implications for bioreductive drug development. Biochemical Pharmacology 1999;58:303-10. [DOI: 10.1016/s0006-2952(99)00092-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
129 Sturve J, Stephensen E, Förlin L. Effects of redox cycling compounds on DT diaphorase activity in the liver of rainbow trout (Oncorhynchus mykiss). Comp Hepatol 2005;4:4. [PMID: 15871734 DOI: 10.1186/1476-5926-4-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 1.6] [Reference Citation Analysis]
130 Wu Q, Zhang XS, Wang HD, Zhang X, Yu Q, Li W, Zhou ML, Wang XL. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar Drugs 2014;12:6125-41. [PMID: 25528957 DOI: 10.3390/md12126125] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 8.9] [Reference Citation Analysis]
131 Alaouna M, Hull R, Penny C, Dlamini Z. Esophageal cancer genetics in South Africa. Clin Exp Gastroenterol 2019;12:157-77. [PMID: 31114287 DOI: 10.2147/CEG.S182000] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
132 Lovern D, Marbois B. Does menaquinone participate in brain astrocyte electron transport? Med Hypotheses 2013;81:587-91. [PMID: 23910074 DOI: 10.1016/j.mehy.2013.07.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
133 Halilovic A, Schmedt T, Benischke AS, Hamill C, Chen Y, Santos JH, Jurkunas UV. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy. Antioxid Redox Signal 2016;24:1072-83. [PMID: 26935406 DOI: 10.1089/ars.2015.6532] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]
134 Li LS, Bey EA, Dong Y, Meng J, Patra B, Yan J, Xie XJ, Brekken RA, Barnett CC, Bornmann WG, Gao J, Boothman DA. Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy. Clin Cancer Res 2011;17:275-85. [PMID: 21224367 DOI: 10.1158/1078-0432.CCR-10-1983] [Cited by in Crossref: 83] [Cited by in F6Publishing: 40] [Article Influence: 7.5] [Reference Citation Analysis]
135 Pey AL. Biophysical and functional perturbation analyses at cancer-associated P187 and K240 sites of the multifunctional NADP(H):quinone oxidoreductase 1. Int J Biol Macromol 2018;118:1912-23. [PMID: 30009918 DOI: 10.1016/j.ijbiomac.2018.07.051] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
136 Joseph P, Jaiswal AK. A unique cytosolic activity related but distinct from NQO1 catalyses metabolic activation of mitomycin C. Br J Cancer 2000;82:1305-11. [PMID: 10755406 DOI: 10.1054/bjoc.1999.1096] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
137 Yan W, Wang HD, Hu ZG, Wang QF, Yin HX. Activation of Nrf2-ARE pathway in brain after traumatic brain injury. Neurosci Lett 2008;431:150-4. [PMID: 18162315 DOI: 10.1016/j.neulet.2007.11.060] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 3.9] [Reference Citation Analysis]
138 Stringer JL, Gaikwad A, Gonzales BN, Long DJ Jr, Marks LM, Jaiswal AK. Presence and induction of the enzyme NAD(P)H: quinone oxidoreductase 1 in the central nervous system. J Comp Neurol 2004;471:289-97. [PMID: 14991562 DOI: 10.1002/cne.20048] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 1.6] [Reference Citation Analysis]
139 Prawan A, Buranrat B, Kukongviriyapan U, Sripa B, Kukongviriyapan V. Inflammatory cytokines suppress NAD(P)H:quinone oxidoreductase-1 and induce oxidative stress in cholangiocarcinoma cells. J Cancer Res Clin Oncol 2009;135:515-22. [DOI: 10.1007/s00432-008-0483-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
140 Chen M, Gong L, Qi X, Xing G, Luan Y, Wu Y, Xiao Y, Yao J, Li Y, Xue X, Pan G, Ren J. Inhibition of Renal NQO1 Activity by Dicoumarol Suppresses Nitroreduction of Aristolochic Acid I and Attenuates its Nephrotoxicity. Toxicological Sciences 2011;122:288-96. [DOI: 10.1093/toxsci/kfr138] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 3.3] [Reference Citation Analysis]
141 De Haan LH, Boerboom AJ, Rietjens IM, van Capelle D, De Ruijter AJ, Jaiswal AK, Aarts JM. A physiological threshold for protection against menadione toxicity by human NAD(P)H:quinone oxidoreductase (NQO1) in Chinese hamster ovary (CHO) cells. Biochemical Pharmacology 2002;64:1597-603. [DOI: 10.1016/s0006-2952(02)01383-7] [Cited by in Crossref: 37] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
142 Bolufer P, Barragan E, Collado M, Cervera J, López JA, Sanz MA. Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 2006;30:1471-91. [PMID: 17023046 DOI: 10.1016/j.leukres.2006.01.016] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 4.8] [Reference Citation Analysis]
143 Long DJ 2nd, Waikel RL, Wang XJ, Roop DR, Jaiswal AK. NAD(P)H:quinone oxidoreductase 1 deficiency and increased susceptibility to 7,12-dimethylbenz[a]-anthracene-induced carcinogenesis in mouse skin. J Natl Cancer Inst 2001;93:1166-70. [PMID: 11481389 DOI: 10.1093/jnci/93.15.1166] [Cited by in Crossref: 93] [Cited by in F6Publishing: 82] [Article Influence: 4.4] [Reference Citation Analysis]
144 Gan Z, Roerig DL, Clough AV, Audi SH. Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen. J Appl Physiol (1985) 2011;111:95-107. [PMID: 21551015 DOI: 10.1152/japplphysiol.01451.2010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
145 Parry JD, Pointon AV, Lutz U, Teichert F, Charlwood JK, Chan PH, Athersuch TJ, Taylor EL, Singh R, Luo J, Phillips KM, Vetillard A, Lyon JJ, Keun HC, Lutz WK, Gant TW. Pivotal role for two electron reduction in 2,3-dimethoxy-1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone metabolism and kinetics in vivo that prevents liver redox stress. Chem Res Toxicol 2009;22:717-25. [PMID: 19338340 DOI: 10.1021/tx800472z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
146 Balamurugan A, Akhov L, Selvaraj G, Pugazhenthi S. Induction of Antioxidant Enzymes by Curcumin and Its Analogues in Human Islets: Implications in Transplantation. Pancreas 2009;38:454-60. [DOI: 10.1097/mpa.0b013e318196c3e7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
147 Gao X, Dinkova-Kostova AT, Talalay P. Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci USA. 2001;98:15221-15226. [PMID: 11752465 DOI: 10.1073/pnas.261572998] [Cited by in Crossref: 138] [Cited by in F6Publishing: 131] [Article Influence: 6.9] [Reference Citation Analysis]
148 Bonkovsky HL, Jones DP, Labrecque DR, Shedlofsky SI. Drug-Induced Liver Injury. Zakim and Boyer's Hepatology. Elsevier; 2006. pp. 503-50. [DOI: 10.1016/b978-1-4160-3258-8.50031-0] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
149 Nichols KD, Kirby GM. Expression of cytochrome P450 2A5 in a glucose-6-phosphate dehydrogenase-deficient mouse model of oxidative stress. Biochem Pharmacol 2008;75:1230-9. [PMID: 18068688 DOI: 10.1016/j.bcp.2007.10.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
150 Ingram BO, Turbyfill JL, Bledsoe PJ, Jaiswal AK, Stafford DW. Assessment of the contribution of NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) to the reduction of vitamin K in wild-type and NQO1-deficient mice. Biochem J 2013;456:47-54. [PMID: 24015818 DOI: 10.1042/BJ20130639] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
151 Beaver SK, Mesa-Torres N, Pey AL, Timson DJ. NQO1: A target for the treatment of cancer and neurological diseases, and a model to understand loss of function disease mechanisms. Biochim Biophys Acta Proteins Proteom 2019;1867:663-76. [PMID: 31091472 DOI: 10.1016/j.bbapap.2019.05.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 11.7] [Reference Citation Analysis]
152 Mesia-vela S, Sanchez RI, Reuhl KR, Conney AH, Kauffman FC. Phenobarbital Treatment Inhibits the Formation of Estradiol-Dependent Mammary Tumors in the August-Copenhagen Irish Rat. J Pharmacol Exp Ther 2006;317:590-7. [DOI: 10.1124/jpet.105.096867] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
153 Gong X, Gutala R, Jaiswal AK. Quinone Oxidoreductases and Vitamin K Metabolism. Vitamin K. Elsevier; 2008. pp. 85-101. [DOI: 10.1016/s0083-6729(07)00005-2] [Cited by in Crossref: 56] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
154 Gaikwad A, Long DJ 2nd, Stringer JL, Jaiswal AK. In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J Biol Chem 2001;276:22559-64. [PMID: 11309386 DOI: 10.1074/jbc.M101053200] [Cited by in Crossref: 147] [Cited by in F6Publishing: 57] [Article Influence: 7.0] [Reference Citation Analysis]
155 Valenzuela-García LI, Zapata BL, Ramírez-Ramírez N, Huchin-Mian JP, Robleto EA, Ayala-García VM, Pedraza-Reyes M. Novel Biochemical Properties and Physiological Role of the Flavin Mononucleotide Oxidoreductase YhdA from Bacillus subtilis. Appl Environ Microbiol 2020;86:e01688-20. [PMID: 32801174 DOI: 10.1128/AEM.01688-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
156 Takahashi T, Okuno M, Okamoto T, Kishi T. NADPH-dependent coenzyme Q reductase is the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells. Biofactors 2008;32:59-70. [PMID: 19096101 DOI: 10.1002/biof.5520320108] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
157 Floreani M, Napoli E, Quintieri L, Palatini P. Oral administration of trans-resveratrol to guinea pigs increases cardiac DT-diaphorase and catalase activities, and protects isolated atria from menadione toxicity. Life Sciences 2003;72:2741-50. [DOI: 10.1016/s0024-3205(03)00179-6] [Cited by in Crossref: 47] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
158 El Ali Z, Deloménie C, Botton J, Pallardy M, Kerdine-römer S. Dendritic cells' death induced by contact sensitizers is controlled by Nrf2 and depends on glutathione levels. Toxicology and Applied Pharmacology 2017;322:41-50. [DOI: 10.1016/j.taap.2017.02.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
159 Criddle DN, Gerasimenko JV, Baumgartner HK, Jaffar M, Voronina S, Sutton R, Petersen OH, Gerasimenko OV. Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ. 2007;14:1285-1294. [PMID: 17431416 DOI: 10.1038/sj.cdd.4402150] [Cited by in Crossref: 109] [Cited by in F6Publishing: 111] [Article Influence: 7.3] [Reference Citation Analysis]
160 Potts-Kant EN, Li Z, Tighe RM, Lindsey JY, Frush BW, Foster WM, Hollingsworth JW. RETRACTED: NAD(P)H:quinone oxidoreductase 1 protects lungs from oxidant-induced emphysema in mice. Free Radic Biol Med 2012;52:705-15. [PMID: 22198263 DOI: 10.1016/j.freeradbiomed.2011.11.027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
161 Kang HJ, Song HY, Ahmed MA, Guo Y, Zhang M, Chen C, Cristofanilli M, Horiuchi D, Vassilopoulos A. NQO1 regulates mitotic progression and response to mitotic stress through modulating SIRT2 activity. Free Radic Biol Med 2018;126:358-71. [PMID: 30114477 DOI: 10.1016/j.freeradbiomed.2018.08.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
162 Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J. 2003;374:337-348. [PMID: 12816537 DOI: 10.1042/bj20030754] [Cited by in Crossref: 343] [Cited by in F6Publishing: 309] [Article Influence: 18.1] [Reference Citation Analysis]
163 Gonzalez FJ, Kimura S. Role of gene knockout mice in understanding the mechanisms of chemical toxicity and carcinogenesis. Cancer Lett 1999;143:199-204. [PMID: 10503904 DOI: 10.1016/s0304-3835(99)00125-1] [Cited by in Crossref: 27] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
164 Mahmoudinasab H, Saadat M. Short-term Exposure to 50-Hz Electromagnetic Field and Alterations in NQO1 and NQO2 Expression in MCF-7 Cells. Open Access Maced J Med Sci 2016;4:548-50. [PMID: 28028389 DOI: 10.3889/oamjms.2016.102] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
165 Tighe RM, Li Z, Potts EN, Frush S, Liu N, Gunn MD, Foster WM, Noble PW, Hollingsworth JW. Ozone inhalation promotes CX3CR1-dependent maturation of resident lung macrophages that limit oxidative stress and inflammation. J Immunol 2011;187:4800-8. [PMID: 21930959 DOI: 10.4049/jimmunol.1101312] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.6] [Reference Citation Analysis]
166 Bloom DA, Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 2003;278:44675-82. [PMID: 12947090 DOI: 10.1074/jbc.M307633200] [Cited by in Crossref: 367] [Cited by in F6Publishing: 168] [Article Influence: 19.3] [Reference Citation Analysis]
167 Das A, Kole L, Wang L, Barrios R, Moorthy B, Jaiswal AK. BALT development and augmentation of hyperoxic lung injury in mice deficient in NQO1 and NQO2. Free Radic Biol Med 2006;40:1843-56. [PMID: 16678022 DOI: 10.1016/j.freeradbiomed.2006.01.025] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 1.7] [Reference Citation Analysis]
168 Yeo SH, Noh JR, Kim YH, Gang GT, Kim SW, Kim KS, Hwang JH, Shong M, Lee CH. Increased vulnerability to β-cell destruction and diabetes in mice lacking NAD(P)H:quinone oxidoreductase 1. Toxicol Lett 2013;219:35-41. [PMID: 23458895 DOI: 10.1016/j.toxlet.2013.02.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
169 Watanabe N, Forman HJ. Autoxidation of extracellular hydroquinones is a causative event for the cytotoxicity of menadione and DMNQ in A549-S cells. Arch Biochem Biophys 2003;411:145-57. [PMID: 12590933 DOI: 10.1016/s0003-9861(02)00716-6] [Cited by in Crossref: 74] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
170 Talalay P. Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors. 2000;12:5-11. [PMID: 11216505 DOI: 10.1002/biof.5520120102] [Cited by in Crossref: 306] [Cited by in F6Publishing: 268] [Article Influence: 14.6] [Reference Citation Analysis]
171 Yin H, Lee B, Kim Y, Sohn D, Lee B. Induction of the anticarcinogenic marker enzyme, quinone reductase, by Dalbergiae Lignum. Arch Pharm Res 2004;27:919-22. [DOI: 10.1007/bf02975844] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
172 Cordaro M, Trovato Salinaro A, Siracusa R, D'Amico R, Impellizzeri D, Scuto M, Ontario ML, Crea R, Cuzzocrea S, Di Paola R, Fusco R, Calabrese V. Hidrox® Roles in Neuroprotection: Biochemical Links between Traumatic Brain Injury and Alzheimer's Disease. Antioxidants (Basel) 2021;10:818. [PMID: 34065584 DOI: 10.3390/antiox10050818] [Reference Citation Analysis]
173 Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med. 2014;66:36-44. [PMID: 23434765 DOI: 10.1016/j.freeradbiomed.2013.02.008] [Cited by in Crossref: 508] [Cited by in F6Publishing: 486] [Article Influence: 56.4] [Reference Citation Analysis]
174 Scandurra G, Britton W, Triccas J. Inactivation of the Mycobacterium tuberculosis fadB4 gene results in increased virulence in host cell and mice. Microbes and Infection 2008;10:38-44. [DOI: 10.1016/j.micinf.2007.10.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
175 Iskander K, Barrios RJ, Jaiswal AK. NRH:quinone oxidoreductase 2-deficient mice are highly susceptible to radiation-induced B-cell lymphomas. Clin Cancer Res 2009;15:1534-42. [PMID: 19223498 DOI: 10.1158/1078-0432.CCR-08-1783] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
176 Boverhof DR, Chamberlain MP, Elcombe CR, Gonzalez FJ, Heflich RH, Hernández LG, Jacobs AC, Jacobson-Kram D, Luijten M, Maggi A, Manjanatha MG, Benthem Jv, Gollapudi BB. Transgenic animal models in toxicology: historical perspectives and future outlook. Toxicol Sci 2011;121:207-33. [PMID: 21447610 DOI: 10.1093/toxsci/kfr075] [Cited by in Crossref: 70] [Cited by in F6Publishing: 54] [Article Influence: 6.4] [Reference Citation Analysis]
177 Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 2003;278:12029-38. [PMID: 12556532 DOI: 10.1074/jbc.M211558200] [Cited by in Crossref: 554] [Cited by in F6Publishing: 259] [Article Influence: 29.2] [Reference Citation Analysis]
178 Lee H, Oh ET, Choi BH, Park MT, Lee JK, Lee JS, Park HJ. NQO1-induced activation of AMPK contributes to cancer cell death by oxygen-glucose deprivation. Sci Rep 2015;5:7769. [PMID: 25586669 DOI: 10.1038/srep07769] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
179 Nakae K, Adachi H, Sawa R, Hosokawa N, Hatano M, Igarashi M, Nishimura Y, Akamatsu Y, Nomoto A. NAD(P)H Quinone Oxidoreductase 1 (NQO1)-Bioactivated Pronqodine A Regulates Prostaglandin Release from Human Synovial Sarcoma Cells. J Nat Prod 2013;76:510-5. [DOI: 10.1021/np300643f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
180 Miranda SR, Meyer SA. Cytotoxicity of chloroacetanilide herbicide alachlor in HepG2 cells independent of CYP3A4 and CYP3A7. Food and Chemical Toxicology 2007;45:871-7. [DOI: 10.1016/j.fct.2006.11.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]