BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem. 1995;270:25752-25761. [PMID: 7592757 DOI: 10.1074/jbc.270.43.25752] [Cited by in Crossref: 807] [Cited by in F6Publishing: 802] [Article Influence: 29.9] [Reference Citation Analysis]
Number Citing Articles
1 Hu X, Liou AK, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014;119-120:60-84. [PMID: 24923657 DOI: 10.1016/j.pneurobio.2014.06.002] [Cited by in Crossref: 80] [Cited by in F6Publishing: 84] [Article Influence: 10.0] [Reference Citation Analysis]
2 Chou DK, Henion TR, Jungalwala FB. Regulation of expression of sulfoglucuronyl carbohydrate (HNK-1), Amphoterin and RAGE in retinoic acid-differentiated P19 embryonal carcinoma cells. J Neurochem 2003;86:917-31. [PMID: 12887690 DOI: 10.1046/j.1471-4159.2003.01911.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
3 Ramasamy R, Yan SF, Schmidt AM. RAGE: therapeutic target and biomarker of the inflammatory response--the evidence mounts. J Leukoc Biol 2009;86:505-12. [PMID: 19477910 DOI: 10.1189/jlb.0409230] [Cited by in Crossref: 192] [Cited by in F6Publishing: 181] [Article Influence: 14.8] [Reference Citation Analysis]
4 Li LC, Gao J, Li J. Emerging role of HMGB1 in fibrotic diseases. J Cell Mol Med 2014;18:2331-9. [PMID: 25284457 DOI: 10.1111/jcmm.12419] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 6.8] [Reference Citation Analysis]
5 Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med. 2014;20:138-146. [PMID: 24531836 DOI: 10.2119/molmed.2013.00164] [Cited by in Crossref: 160] [Cited by in F6Publishing: 157] [Article Influence: 20.0] [Reference Citation Analysis]
6 Miyashita M, Watanabe T, Ichikawa T, Toriumi K, Horiuchi Y, Kobori A, Kushima I, Hashimoto R, Fukumoto M, Koike S, Ujike H, Arinami T, Tatebayashi Y, Kasai K, Takeda M, Ozaki N, Okazaki Y, Yoshikawa T, Amano N, Washizuka S, Yamamoto H, Miyata T, Itokawa M, Yamamoto Y, Arai M. The regulation of soluble receptor for AGEs contributes to carbonyl stress in schizophrenia. Biochem Biophys Res Commun 2016;479:447-52. [PMID: 27641663 DOI: 10.1016/j.bbrc.2016.09.074] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
7 Pahuja M, Tran C, Wang H, Yin K. Alveolar macrophage suppression in sepsis is associated with high mobility group box 1 transmigration. Shock 2008;29:754-60. [PMID: 18004227 DOI: 10.1097/shk.0b013e31815d0c8f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
8 Rajaee A, Barnett R, Cheadle WG. Pathogen- and Danger-Associated Molecular Patterns and the Cytokine Response in Sepsis. Surgical Infections 2018;19:107-16. [DOI: 10.1089/sur.2017.264] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
9 Nguyen AH, Bhavsar SB, Riley EM, Caponetti GC, Agrawal DK. Association of high mobility group BOX-1 and receptor for advanced glycation endproducts with clinicopathological features of haematological malignancies: a systematic review. Contemp Oncol (Pozn) 2016;20:425-9. [PMID: 28239277 DOI: 10.5114/wo.2016.65600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
10 Hong SM, Cho JS, Um JY, Shin JM, Park IH, Lee SH, Lee SH, Lee HM. Increased expression of high-mobility group protein B1 in chronic rhinosinusitis. Am J Rhinol Allergy 2013;27:278-82. [PMID: 23883808 DOI: 10.2500/ajra.2013.27.3909] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
11 Wang M, Zhang W, Xu S, Peng L, Wang Z, Liu H, Fang Q, Deng T, Men X, Lou J. TRB3 mediates advanced glycation end product-induced apoptosis of pancreatic β-cells through the protein kinase C β pathway. Int J Mol Med 2017;40:130-6. [PMID: 28534945 DOI: 10.3892/ijmm.2017.2991] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
12 Yao Y, Guo D, Yang S, Jin Y, He L, Chen J, Zhao X, Chen Y, Zhou W, Shen C. HMGB1 gene polymorphism is associated with hypertension in Han Chinese population. Clin Exp Hypertens 2015;37:166-71. [PMID: 25050807 DOI: 10.3109/10641963.2014.933963] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
13 Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta. 2009;1793:993-1007. [PMID: 19121341 DOI: 10.1016/j.bbamcr.2008.11.016] [Cited by in Crossref: 292] [Cited by in F6Publishing: 284] [Article Influence: 20.9] [Reference Citation Analysis]
14 Konopka CJ, Woźniak M, Hedhli J, Siekierzycka A, Skokowski J, Pęksa R, Matuszewski M, Munirathinam G, Kajdacsy-Balla A, Dobrucki IT, Kalinowski L, Dobrucki LW. Quantitative imaging of the receptor for advanced glycation end-products in prostate cancer. Eur J Nucl Med Mol Imaging 2020;47:2562-76. [PMID: 32166512 DOI: 10.1007/s00259-020-04721-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Malik P, Hoidal JR, Mukherjee TK. Implication of RAGE Polymorphic Variants in COPD Complication and Anti-COPD Therapeutic Potential of sRAGE. COPD 2021;:1-12. [PMID: 34615424 DOI: 10.1080/15412555.2021.1984417] [Reference Citation Analysis]
16 Hofmann MA, Drury S, Hudson BI, Gleason MR, Qu W, Lu Y, Lalla E, Chitnis S, Monteiro J, Stickland MH. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun. 2002;3:123-135. [PMID: 12070776 DOI: 10.1038/sj.gene.6363861] [Cited by in Crossref: 255] [Cited by in F6Publishing: 253] [Article Influence: 13.4] [Reference Citation Analysis]
17 Carlier FM, Sibille Y, Pilette C. The epithelial barrier and immunoglobulin A system in allergy. Clin Exp Allergy 2016;46:1372-88. [PMID: 27684559 DOI: 10.1111/cea.12830] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
18 Ma J, Zhou Y, Li W, Xiao L, Yang M, Tan Q, Xu Y, Chen W. Association between Plasma HMGB-1 and Silicosis: A Case-Control Study. Int J Mol Sci. 2018;19. [PMID: 30558126 DOI: 10.3390/ijms19124043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
19 Sung HY, Dowarha D, Chou RH, Yu C. Blocking the interface region amongst S100A6 and RAGE V domain via S100B protein. Biochem Biophys Res Commun 2020;533:332-7. [PMID: 32958253 DOI: 10.1016/j.bbrc.2020.09.040] [Reference Citation Analysis]
20 Chen MC, Chen KC, Chang GC, Lin H, Wu CC, Kao WH, Teng CJ, Hsu SL, Yang TY. RAGE acts as an oncogenic role and promotes the metastasis of human lung cancer. Cell Death Dis 2020;11:265. [PMID: 32327633 DOI: 10.1038/s41419-020-2432-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
21 Ma W, Rai V, Hudson BI, Song F, Schmidt AM, Barile GR. RAGE binds C1q and enhances C1q-mediated phagocytosis. Cellular Immunology 2012;274:72-82. [DOI: 10.1016/j.cellimm.2012.02.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
22 Yan SF, Yan SD, Herold K, Ramsamy R, Schmidt AM. Receptor for Advanced Glycation End Products and the Cardiovascular Complications of Diabetes and Beyond: Lessons from AGEing. Endocrinology and Metabolism Clinics of North America 2006;35:511-24. [DOI: 10.1016/j.ecl.2006.06.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
23 Jaulmes A, Thierry S, Janvier B, Raymondjean M, Maréchal V. Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1beta. FASEB J 2006;20:1727-9. [PMID: 16807371 DOI: 10.1096/fj.05-5514fje] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 3.3] [Reference Citation Analysis]
24 Merianda TT, Coleman J, Kim HH, Kumar Sahoo P, Gomes C, Brito-Vargas P, Rauvala H, Blesch A, Yoo S, Twiss JL. Axonal amphoterin mRNA is regulated by translational control and enhances axon outgrowth. J Neurosci 2015;35:5693-706. [PMID: 25855182 DOI: 10.1523/JNEUROSCI.3397-14.2015] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
25 Ge X, Arriazu E, Magdaleno F, Antoine DJ, Dela Cruz R, Theise N, Nieto N. High Mobility Group Box-1 Drives Fibrosis Progression Signaling via the Receptor for Advanced Glycation End Products in Mice. Hepatology 2018;68:2380-404. [PMID: 29774570 DOI: 10.1002/hep.30093] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
26 Ding Q, Keller JN. Evaluation of rage isoforms, ligands, and signaling in the brain. Biochim Biophys Acta 2005;1746:18-27. [PMID: 16214242 DOI: 10.1016/j.bbamcr.2005.08.006] [Cited by in Crossref: 82] [Cited by in F6Publishing: 80] [Article Influence: 4.8] [Reference Citation Analysis]
27 Maeda R, Kawasaki Y, Kume Y, Go H, Suyama K, Hosoya M. Involvement of high mobility group box 1 in the pathogenesis of severe hemolytic uremic syndrome in a murine model. American Journal of Physiology-Renal Physiology 2019;317:F1420-9. [DOI: 10.1152/ajprenal.00263.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
28 Yonekura H, Yamamoto Y, Sakurai S, Yasui K, Petrova RG, Abedin M, Li H, Watanabe T, Makita Z, Takeuchi M, Yamamoto H. RAGE engagement and vascular cell derangement by short chain sugar-derived advanced glycation end products. International Congress Series 2002;1245:129-35. [DOI: 10.1016/s0531-5131(02)01021-x] [Cited by in Crossref: 4] [Article Influence: 0.2] [Reference Citation Analysis]
29 Wei H, Qu H, Wang H, Deng H. Plasma C1q/TNF-Related Protein-3 (CTRP-3) and High-Mobility Group Box-1 (HMGB-1) Concentrations in Subjects with Prediabetes and Type 2 Diabetes. J Diabetes Res 2016;2016:9438760. [PMID: 27738641 DOI: 10.1155/2016/9438760] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
30 Harris HE, Andersson U, Pisetsky DS. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol. 2012;8:195-202. [PMID: 22293756 DOI: 10.1038/nrrheum.2011.222] [Cited by in Crossref: 427] [Cited by in F6Publishing: 425] [Article Influence: 42.7] [Reference Citation Analysis]
31 Kato T, Yamashita T, Sekiguchi A, Tsuneda T, Sagara K, Takamura M, Kaneko S, Aizawa T, Fu LT. AGEs-RAGE system mediates atrial structural remodeling in the diabetic rat. J Cardiovasc Electrophysiol. 2008;19:415-420. [PMID: 18298515 DOI: 10.1111/j.1540-8167.2007.01037.x] [Cited by in Crossref: 76] [Cited by in F6Publishing: 76] [Article Influence: 5.4] [Reference Citation Analysis]
32 Xie J, Burz DS, He W, Bronstein IB, Lednev I, Shekhtman A. Hexameric Calgranulin C (S100A12) Binds to the Receptor for Advanced Glycated End Products (RAGE) Using Symmetric Hydrophobic Target-binding Patches. Journal of Biological Chemistry 2007;282:4218-31. [DOI: 10.1074/jbc.m608888200] [Cited by in Crossref: 119] [Cited by in F6Publishing: 61] [Article Influence: 7.9] [Reference Citation Analysis]
33 Liu Y, Yuan Y, Li Y, Zhang J, Xiao G, Vodovotz Y, Billiar TR, Wilson MA, Fan J. Interacting neuroendocrine and innate and acquired immune pathways regulate neutrophil mobilization from bone marrow following hemorrhagic shock. J Immunol 2009;182:572-80. [PMID: 19109190 DOI: 10.4049/jimmunol.182.1.572] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
34 Zhang L, Postina R, Wang Y. Ectodomain shedding of the receptor for advanced glycation end products: a novel therapeutic target for Alzheimer's disease. Cell Mol Life Sci 2009;66:3923-35. [PMID: 19672558 DOI: 10.1007/s00018-009-0121-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
35 Höhn A, König J, Grune T. Protein oxidation in aging and the removal of oxidized proteins. J Proteomics 2013;92:132-59. [PMID: 23333925 DOI: 10.1016/j.jprot.2013.01.004] [Cited by in Crossref: 141] [Cited by in F6Publishing: 127] [Article Influence: 15.7] [Reference Citation Analysis]
36 Rao NV, Argyle B, Xu X, Reynolds PR, Walenga JM, Prechel M, Prestwich GD, MacArthur RB, Walters BB, Hoidal JR, Kennedy TP. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am J Physiol Cell Physiol 2010;299:C97-110. [PMID: 20375277 DOI: 10.1152/ajpcell.00009.2010] [Cited by in Crossref: 98] [Cited by in F6Publishing: 93] [Article Influence: 8.2] [Reference Citation Analysis]
37 Ge WS, Wu JX, Fan JG, Wang YJ, Chen YW. Inhibition of high-mobility group box 1 expression by siRNA in rat hepatic stellate cells. World J Gastroenterol 2011; 17(36): 4090-4098 [PMID: 22039322 DOI: 10.3748/wjg.v17.i36.4090] [Cited by in CrossRef: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
38 Böhme R, Becker C, Keil B, Damm M, Rasch S, Beer S, Schneider R, Kovacs P, Bugert P, Riedel J, Griesmann H, Ruffert C, Kaune T, Michl P, Hesselbarth N, Rosendahl J. Serum levels of advanced glycation end products and their receptors sRAGE and Galectin-3 in chronic pancreatitis. Pancreatology 2020;20:187-92. [DOI: 10.1016/j.pan.2019.12.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
39 Nicolazzo JA, Mehta DC. Transport of drugs across the blood–brain barrier in Alzheimer’s disease. Therapeutic Delivery 2010;1:595-611. [DOI: 10.4155/tde.10.41] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
40 Kang R, Zhang Q, Zeh HJ, Lotze MT, Tang D. HMGB1 in cancer: good, bad, or both. Clin Cancer Res. 2013;19:4046-4057. [PMID: 23723299 DOI: 10.1158/1078-0432.ccr-13-0495] [Cited by in Crossref: 260] [Cited by in F6Publishing: 191] [Article Influence: 28.9] [Reference Citation Analysis]
41 Lee W, Ku SK, Bae JS. Factor Xa inhibits HMGB1-induced septic responses in human umbilical vein endothelial cells and in mice. Thromb Haemost 2014;112:757-69. [PMID: 25007770 DOI: 10.1160/TH14-03-0233] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.1] [Reference Citation Analysis]
42 Kim HC, Oh H, You JS, Chung YE. Glycyrrhizin ameliorating sterile inflammation induced by low-dose radiation exposure. Sci Rep 2021;11:18356. [PMID: 34526618 DOI: 10.1038/s41598-021-97800-8] [Reference Citation Analysis]
43 Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R, Liang Q. MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep 2020;40:BSR20193315. [PMID: 32096822 DOI: 10.1042/BSR20193315] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 16.0] [Reference Citation Analysis]
44 Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol. 2006;290:C917-924. [PMID: 16267105 DOI: 10.1152/ajpcell.00401.2005] [Cited by in Crossref: 644] [Cited by in F6Publishing: 639] [Article Influence: 37.9] [Reference Citation Analysis]
45 Sessa L, Bianchi ME. The evolution of High Mobility Group Box (HMGB) chromatin proteins in multicellular animals. Gene 2007;387:133-40. [DOI: 10.1016/j.gene.2006.08.034] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 4.1] [Reference Citation Analysis]
46 Nawroth P, Bierhaus A, Marrero M, Yamamoto H, Stern DM. Atherosclerosis and restenosis: Is there a role for rage? Curr Diab Rep 2005;5:11-6. [DOI: 10.1007/s11892-005-0061-9] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
47 Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl). 2005;83:876-886. [PMID: 16133426 DOI: 10.1007/s00109-005-0688-7] [Cited by in Crossref: 791] [Cited by in F6Publishing: 778] [Article Influence: 46.5] [Reference Citation Analysis]
48 Su Z, Yin J, Wang T, Sun Y, Ni P, Ma R, Zhu H, Zheng D, Shen H, Xu W, Xu H. Up-regulated HMGB1 in EAM directly led to collagen deposition by a PKCβ/Erk1/2-dependent pathway: cardiac fibroblast/myofibroblast might be another source of HMGB1. J Cell Mol Med 2014;18:1740-51. [PMID: 24912759 DOI: 10.1111/jcmm.12324] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
49 Ramasamy R, Yan SF, Schmidt AM. Arguing for the motion: yes, RAGE is a receptor for advanced glycation endproducts. Mol Nutr Food Res. 2007;51:1111-1115. [PMID: 17854009 DOI: 10.1002/mnfr.200700008] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 2.8] [Reference Citation Analysis]
50 Zhou Z, Yamamoto Y, Sugai F, Yoshida K, Kishima Y, Sumi H, Nakamura H, Sakoda S. Hepatoma-derived growth factor is a neurotrophic factor harbored in the nucleus. J Biol Chem. 2004;279:27320-27326. [PMID: 15140875 DOI: 10.1074/jbc.M308650200] [Cited by in Crossref: 47] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
51 Yang M, Li Y, Wang Y, Cheng N, Zhang Y, Pang S, Shen Q, Zhao L, Li G, Zhu G. The effects of lead exposure on the expression of HMGB1 and HO-1 in rats and PC12 cells. Toxicol Lett 2018;288:111-8. [PMID: 29447957 DOI: 10.1016/j.toxlet.2018.02.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
52 Yang D, Wei F, Tewary P, Howard OM, Oppenheim JJ. Alarmin-induced cell migration. Eur J Immunol 2013;43:1412-8. [PMID: 23619968 DOI: 10.1002/eji.201243138] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
53 Reynaert NL, Gopal P, Rutten EP, Wouters EF, Schalkwijk CG. Advanced glycation end products and their receptor in age-related, non-communicable chronic inflammatory diseases; Overview of clinical evidence and potential contributions to disease. The International Journal of Biochemistry & Cell Biology 2016;81:403-18. [DOI: 10.1016/j.biocel.2016.06.016] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 8.2] [Reference Citation Analysis]
54 Germani A, Limana F, Capogrossi MC. Pivotal advances: high-mobility group box 1 protein--a cytokine with a role in cardiac repair. J Leukoc Biol 2007;81:41-5. [PMID: 16940333 DOI: 10.1189/jlb.0306165] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 2.6] [Reference Citation Analysis]
55 Bianchi ME, Manfredi A. Chromatin and cell death. Biochim Biophys Acta. 2004;1677:181-186. [PMID: 15020058 DOI: 10.1016/j.bbaexp.2003.10.017] [Cited by in Crossref: 89] [Cited by in F6Publishing: 93] [Article Influence: 4.9] [Reference Citation Analysis]
56 Dziki JL, Hussey G, Badylak SF. Alarmins of the extracellular space. Semin Immunol 2018;38:33-9. [PMID: 30170910 DOI: 10.1016/j.smim.2018.08.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
57 Ueno H, Koyama H, Shoji T, Monden M, Fukumoto S, Tanaka S, Otsuka Y, Mima Y, Morioka T, Mori K, Shioi A, Yamamoto H, Inaba M, Nishizawa Y. Receptor for advanced glycation end-products (RAGE) regulation of adiposity and adiponectin is associated with atherogenesis in apoE-deficient mouse. Atherosclerosis. 2010;211:431-436. [PMID: 20435311 DOI: 10.1016/j.atherosclerosis.2010.04.006] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 3.4] [Reference Citation Analysis]
58 Penumutchu SR, Chou RH, Yu C. Structural insights into calcium-bound S100P and the V domain of the RAGE complex. PLoS One 2014;9:e103947. [PMID: 25084534 DOI: 10.1371/journal.pone.0103947] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
59 Pedrazzi M, Raiteri L, Bonanno G, Patrone M, Ledda S, Passalacqua M, Milanese M, Melloni E, Raiteri M, Pontremoli S, Sparatore B. Stimulation of excitatory amino acid release from adult mouse brain glia subcellular particles by high mobility group box 1 protein. J Neurochem 2006;99:827-38. [PMID: 16911580 DOI: 10.1111/j.1471-4159.2006.04120.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 3.6] [Reference Citation Analysis]
60 Hudson BI, Wendt T, Bucciarelli LG, Rong LL, Naka Y, Yan SF, Schmidt AM. Diabetic Vascular Disease: It's All the RAGE. Antioxidants & Redox Signaling 2005;7:1588-600. [DOI: 10.1089/ars.2005.7.1588] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 2.1] [Reference Citation Analysis]
61 Berbaum K, Shanmugam K, Stuchbury G, Wiede F, Körner H, Münch G. Induction of novel cytokines and chemokines by advanced glycation endproducts determined with a cytometric bead array. Cytokine 2008;41:198-203. [DOI: 10.1016/j.cyto.2007.11.012] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
62 LeBlanc PM, Doggett TA, Choi J, Hancock MA, Durocher Y, Frank F, Nagar B, Ferguson TA, Saleh M. An immunogenic peptide in the A-box of HMGB1 protein reverses apoptosis-induced tolerance through RAGE receptor. J Biol Chem. 2014;289:7777-7786. [PMID: 24474694 DOI: 10.1074/jbc.m113.541474] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
63 Koyama AH, Adachi A, Irie H. PHYSIOLOGICAL SIGNIFICANCE OF APOPTOSIS DURING ANIMAL VIRUS INFECTION. International Reviews of Immunology 2009;22:341-59. [DOI: 10.1080/08830180305210] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 2.5] [Reference Citation Analysis]
64 Volz HC, Seidel C, Laohachewin D, Kaya Z, Müller OJ, Pleger ST, Lasitschka F, Bianchi ME, Remppis A, Bierhaus A, Katus HA, Andrassy M. HMGB1: the missing link between diabetes mellitus and heart failure. Basic Res Cardiol 2010;105:805-20. [PMID: 20703492 DOI: 10.1007/s00395-010-0114-3] [Cited by in Crossref: 76] [Cited by in F6Publishing: 79] [Article Influence: 6.3] [Reference Citation Analysis]
65 Aucott H, Lundberg J, Salo H, Klevenvall L, Damberg P, Ottosson L, Andersson U, Holmin S, Erlandsson Harris H. Neuroinflammation in Response to Intracerebral Injections of Different HMGB1 Redox Isoforms. J Innate Immun 2018;10:215-27. [PMID: 29478057 DOI: 10.1159/000487056] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
66 Zenerino C, Nuzzo AM, Giuffrida D, Biolcati M, Zicari A, Todros T, Rolfo A. The HMGB1/RAGE Pro-Inflammatory Axis in the Human Placenta: Modulating Effect of Low Molecular Weight Heparin. Molecules 2017;22:E1997. [PMID: 29149067 DOI: 10.3390/molecules22111997] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
67 Lai W, Li X, Kong Q, Chen H, Li Y, Xu LH, Fang J. Extracellular HMGB1 interacts with RAGE and promotes chemoresistance in acute leukemia cells. Cancer Cell Int 2021;21:700. [PMID: 34933679 DOI: 10.1186/s12935-021-02387-9] [Reference Citation Analysis]
68 Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T. The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett. 2003;550:107-113. [PMID: 12935895 DOI: 10.1016/s0014-5793(03)00846-9] [Cited by in Crossref: 131] [Cited by in F6Publishing: 56] [Article Influence: 6.9] [Reference Citation Analysis]
69 Saenz R, Messmer B, Futalan D, Tor Y, Larsson M, Daniels G, Esener S, Messmer D. Activity of the HMGB1-derived immunostimulatory peptide Hp91 resides in the helical C-terminal portion and is enhanced by dimerization. Mol Immunol 2014;57:191-9. [PMID: 24172222 DOI: 10.1016/j.molimm.2013.09.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
70 Kim S, Lim C, Kim J, Shin J, Lee S, Lee M, Lee J. Extracellular HMGB1 Released by NMDA Treatment Confers Neuronal Apoptosis via RAGE-p38 MAPK/ERK Signaling Pathway. Neurotox Res 2011;20:159-69. [DOI: 10.1007/s12640-010-9231-x] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 5.4] [Reference Citation Analysis]
71 Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, Grant PJ, Schmidt AM. Identification, classification, and expression of RAGE gene splice variants. FASEB J. 2008;22:1572-1580. [PMID: 18089847 DOI: 10.1096/fj.07-9909com] [Cited by in Crossref: 238] [Cited by in F6Publishing: 238] [Article Influence: 15.9] [Reference Citation Analysis]
72 Kokkola R, Sundberg E, Ulfgren AK, Palmblad K, Li J, Wang H, Ulloa L, Yang H, Yan XJ, Furie R. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis Rheum. 2002;46:2598-2603. [PMID: 12384917 DOI: 10.1002/art.10540] [Cited by in Crossref: 205] [Cited by in F6Publishing: 213] [Article Influence: 10.3] [Reference Citation Analysis]
73 Weil ZM. Ischemia-induced hyperglycemia: Consequences, neuroendocrine regulation, and a role for RAGE. Hormones and Behavior 2012;62:280-5. [DOI: 10.1016/j.yhbeh.2012.04.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
74 Zhang L, Ji YX, Jiang WL, Lv CJ. Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo. Braz J Med Biol Res 2015;48:545-52. [PMID: 25992646 DOI: 10.1590/1414-431X20144301] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
75 Gaskell H, Ge X, Nieto N. High-Mobility Group Box-1 and Liver Disease. Hepatol Commun 2018;2:1005-20. [PMID: 30202816 DOI: 10.1002/hep4.1223] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
76 Sterenczak KA, Willenbrock S, Barann M, Klemke M, Soller JT, Eberle N, Nolte I, Bullerdiek J, Escobar HM. Cloning, characterisation, and comparative quantitative expression analyses of receptor for advanced glycation end products (RAGE) transcript forms. Gene 2009;434:35-42. [DOI: 10.1016/j.gene.2008.10.027] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
77 Spelten O, Wetsch WA, Wrettos G, Kalenka A, Hinkelbein J. Response of rat lung tissue to short-term hyperoxia: a proteomic approach. Mol Cell Biochem 2013;383:231-42. [DOI: 10.1007/s11010-013-1771-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
78 Ohe K, Watanabe T, Harada S, Munesue S, Yamamoto Y, Yonekura H, Yamamoto H. Regulation of alternative splicing of the receptor for advanced glycation endproducts (RAGE) through G-rich cis-elements and heterogenous nuclear ribonucleoprotein H. J Biochem 2010;147:651-9. [PMID: 20028692 DOI: 10.1093/jb/mvp207] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
79 Sakaguchi M, Sonegawa H, Murata H, Kitazoe M, Futami J, Kataoka K, Yamada H, Huh NH. S100A11, an dual mediator for growth regulation of human keratinocytes. Mol Biol Cell 2008;19:78-85. [PMID: 17978094 DOI: 10.1091/mbc.e07-07-0682] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 3.7] [Reference Citation Analysis]
80 Inoue K, Kawahara K, Biswas KK, Ando K, Mitsudo K, Nobuyoshi M, Maruyama I. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc Pathol 2007;16:136-43. [PMID: 17502242 DOI: 10.1016/j.carpath.2006.11.006] [Cited by in Crossref: 97] [Cited by in F6Publishing: 93] [Article Influence: 6.5] [Reference Citation Analysis]
81 Kim D, Lee W, Bae J. Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflamm Res 2011;60:1161-8. [DOI: 10.1007/s00011-011-0381-y] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 5.0] [Reference Citation Analysis]
82 Liu H, Yao YM, Yu Y, Dong N, Yin HN, Sheng ZY. Role of Janus kinase/signal transducer and activator of transcription pathway in regulation of expression and inflammation-promoting activity of high mobility group box protein 1 in rat peritoneal macrophages. Shock 2007;27:55-60. [PMID: 17172981 DOI: 10.1097/01.shk.0000233197.40989.31] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
83 Fujioka M, Nakano T, Hayakawa K, Irie K, Akitake Y, Sakamoto Y, Mishima K, Muroi C, Yonekawa Y, Banno F, Kokame K, Miyata T, Nishio K, Okuchi K, Iwasaki K, Fujiwara M, Siesjö BK. ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury. Neurol Sci 2012;33:1107-15. [PMID: 22212812 DOI: 10.1007/s10072-011-0913-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
84 Zamora R, Grishin A, Wong C, Boyle P, Wang J, Hackam D, Upperman JS, Tracey KJ, Ford HR. High-mobility group box 1 protein is an inflammatory mediator in necrotizing enterocolitis: protective effect of the macrophage deactivator semapimod. American Journal of Physiology-Gastrointestinal and Liver Physiology 2005;289:G643-52. [DOI: 10.1152/ajpgi.00067.2005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 1.8] [Reference Citation Analysis]
85 Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med. 2016;37:99-107. [PMID: 26719855 DOI: 10.3892/ijmm.2015.2410] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 6.3] [Reference Citation Analysis]
86 Li J, Wang H, Mason JM, Levine J, Yu M, Ulloa L, Czura CJ, Tracey KJ, Yang H. Recombinant HMGB1 with cytokine-stimulating activity. J Immunol Methods 2004;289:211-23. [PMID: 15251426 DOI: 10.1016/j.jim.2004.04.019] [Cited by in Crossref: 101] [Cited by in F6Publishing: 103] [Article Influence: 6.3] [Reference Citation Analysis]
87 Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem. 2011;286:7214-7226. [PMID: 21209080 DOI: 10.1074/jbc.m110.169342] [Cited by in Crossref: 150] [Cited by in F6Publishing: 79] [Article Influence: 13.6] [Reference Citation Analysis]
88 Romero R, Chaiworapongsa T, Savasan ZA, Hussein Y, Dong Z, Kusanovic JP, Kim CJ, Hassan SS. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med 2012;25:558-67. [PMID: 22578261 DOI: 10.3109/14767058.2011.599083] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 6.4] [Reference Citation Analysis]
89 Sitkiewicz E, Tarnowski K, Poznański J, Kulma M, Dadlez M. Oligomerization interface of RAGE receptor revealed by MS-monitored hydrogen deuterium exchange. PLoS One 2013;8:e76353. [PMID: 24098480 DOI: 10.1371/journal.pone.0076353] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
90 Su Z, Zhang P, Yu Y, Lu H, Liu Y, Ni P, Su X, Wang D, Liu Y, Wang J, Shen H, Xu W, Xu H. HMGB1 Facilitated Macrophage Reprogramming towards a Proinflammatory M1-like Phenotype in Experimental Autoimmune Myocarditis Development. Sci Rep 2016;6:21884. [PMID: 26899795 DOI: 10.1038/srep21884] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 7.8] [Reference Citation Analysis]
91 Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P. HMGB1: guiding immunity from within. Trends Immunol. 2005;26:381-387. [PMID: 15978523 DOI: 10.1016/j.it.2005.04.009] [Cited by in Crossref: 239] [Cited by in F6Publishing: 235] [Article Influence: 14.1] [Reference Citation Analysis]
92 Hori O, Ichinoda F, Tamatani T, Yamaguchi A, Sato N, Ozawa K, Kitao Y, Miyazaki M, Harding HP, Ron D, Tohyama M, M Stern D, Ogawa S. Transmission of cell stress from endoplasmic reticulum to mitochondria: enhanced expression of Lon protease. J Cell Biol 2002;157:1151-60. [PMID: 12082077 DOI: 10.1083/jcb.200108103] [Cited by in Crossref: 146] [Cited by in F6Publishing: 145] [Article Influence: 7.3] [Reference Citation Analysis]
93 Park HY, Yun KH, Park DS. Levels of Soluble Receptor for Advanced Glycation End Products in Acute Ischemic Stroke without a Source of Cardioembolism. J Clin Neurol 2009;5:126-32. [PMID: 19826563 DOI: 10.3988/jcn.2009.5.3.126] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
94 Li Y, Yang Z, Chavko M, Liu B, Aderemi OA, Simovic MO, Dubick MA, Cancio LC. Complement inhibition ameliorates blast-induced acute lung injury in rats: Potential role of complement in intracellular HMGB1-mediated inflammation. PLoS One 2018;13:e0202594. [PMID: 30133517 DOI: 10.1371/journal.pone.0202594] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
95 Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001;108:949-955. [PMID: 11581294 DOI: 10.1172/jci200114002] [Cited by in Crossref: 797] [Cited by in F6Publishing: 1] [Article Influence: 38.0] [Reference Citation Analysis]
96 Degryse B, Bonaldi T, Scaffidi P, Müller S, Resnati M, Sanvito F, Arrigoni G, Bianchi ME. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol 2001;152:1197-206. [PMID: 11257120 DOI: 10.1083/jcb.152.6.1197] [Cited by in Crossref: 338] [Cited by in F6Publishing: 333] [Article Influence: 16.1] [Reference Citation Analysis]
97 Yang D, de la Rosa G, Tewary P, Oppenheim JJ. Alarmins link neutrophils and dendritic cells. Trends Immunol. 2009;30:531-537. [PMID: 19699678 DOI: 10.1016/j.it.2009.07.004] [Cited by in Crossref: 161] [Cited by in F6Publishing: 149] [Article Influence: 12.4] [Reference Citation Analysis]
98 Falcone C, Emanuele E, D'Angelo A, Buzzi MP, Belvito C, Cuccia M, Geroldi D. Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol. 2005;25:1032-1037. [PMID: 15731496 DOI: 10.1161/01.atv.0000160342.20342.00] [Cited by in Crossref: 267] [Cited by in F6Publishing: 108] [Article Influence: 15.7] [Reference Citation Analysis]
99 Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem 2000;275:25781-90. [PMID: 10829018 DOI: 10.1074/jbc.M001235200] [Cited by in Crossref: 306] [Cited by in F6Publishing: 103] [Article Influence: 13.9] [Reference Citation Analysis]
100 Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Seminars in Immunology 2018;38:40-8. [DOI: 10.1016/j.smim.2018.02.011] [Cited by in Crossref: 103] [Cited by in F6Publishing: 106] [Article Influence: 25.8] [Reference Citation Analysis]
101 Sato F, Maruyama S, Hayashi H, Sakamoto I, Yamada S, Uchimura T, Morita Y, Ito Y, Yuzawa Y, Maruyama I, Matsuo S. High mobility group box chromosomal protein 1 in patients with renal diseases. Nephron Clin Pract 2008;108:c194-201. [PMID: 18311084 DOI: 10.1159/000118942] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
102 Huang YF, Li QP, Dou YX, Wang TT, Qu C, Liang JL, Lin ZX, Huang XQ, Su ZR, Chen JN, Xie YL. Therapeutic effect of Brucea javanica oil emulsion on experimental Crohn's disease in rats: Involvement of TLR4/ NF-κB signaling pathway. Biomed Pharmacother 2019;114:108766. [PMID: 30901719 DOI: 10.1016/j.biopha.2019.108766] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
103 Lee W, Ku S, Na DH, Bae J. Anti-Inflammatory Effects of Lysozyme Against HMGB1 in Human Endothelial Cells and in Mice. Inflammation 2015;38:1911-24. [DOI: 10.1007/s10753-015-0171-8] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 5.1] [Reference Citation Analysis]
104 Kumano-Kuramochi M, Tatematsu KI, Ohnishi-Kameyama M, Maeda-Yamamoto M, Kobori T, Sezutsu H, Machida S. Co-expression of BirA with biotin bait achieves in vivo biotinylation of overexpressed stable N-glycosylated sRAGE in transgenic silkworms. Sci Rep 2017;7:356. [PMID: 28336960 DOI: 10.1038/s41598-017-00420-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
105 Kim YH, Kwak MS, Park JB, Lee SA, Choi JE, Cho HS, Shin JS. N-linked glycosylation plays a crucial role in the secretion of HMGB1. J Cell Sci 2016;129:29-38. [PMID: 26567221 DOI: 10.1242/jcs.176412] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
106 Wang L, Wu J, Guo X, Huang X, Huang Q. RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability. Sensors (Basel) 2017;17:E722. [PMID: 28358333 DOI: 10.3390/s17040722] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
107 de Carvalho GC, Borget M, Bernier S, Garneau D, da Silva Duarte AJ, Dumais N. RAGE and CCR7 mediate the transmigration of Zika-infected monocytes through the blood-brain barrier. Immunobiology 2019;224:792-803. [DOI: 10.1016/j.imbio.2019.08.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
108 Bartling B, Zunkel K, Al-Robaiy S, Dehghani F, Simm A. Gene doubling increases glyoxalase 1 expression in RAGE knockout mice. Biochim Biophys Acta Gen Subj 2020;1864:129438. [PMID: 31526867 DOI: 10.1016/j.bbagen.2019.129438] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
109 Palumbo R, De Marchis F, Pusterla T, Conti A, Alessio M, Bianchi ME. Src family kinases are necessary for cell migration induced by extracellular HMGB1. J Leukoc Biol. 2009;86:617-623. [PMID: 19401391 DOI: 10.1189/jlb.0908581] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 3.2] [Reference Citation Analysis]
110 Bachtell RK, Jones JD, Heinzerling KG, Beardsley PM, Comer SD. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend 2017;180:156-70. [PMID: 28892721 DOI: 10.1016/j.drugalcdep.2017.08.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 9.0] [Reference Citation Analysis]
111 Xia Q, Xu J, Chen H, Gao Y, Gong F, Hu L, Yang L. Association between an elevated level of HMGB1 and non-small-cell lung cancer: a meta-analysis and literature review. Onco Targets Ther 2016;9:3917-23. [PMID: 27418836 DOI: 10.2147/OTT.S104409] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
112 Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. J Neuroinflammation 2015;12:137. [PMID: 26224068 DOI: 10.1186/s12974-015-0360-2] [Cited by in Crossref: 84] [Cited by in F6Publishing: 82] [Article Influence: 12.0] [Reference Citation Analysis]
113 Okuma Y, Wake H, Teshigawara K, Takahashi Y, Hishikawa T, Yasuhara T, Mori S, Takahashi HK, Date I, Nishibori M. Anti–High Mobility Group Box 1 Antibody Therapy May Prevent Cognitive Dysfunction After Traumatic Brain Injury. World Neurosurgery 2019;122:e864-71. [DOI: 10.1016/j.wneu.2018.10.164] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
114 Gelain DP, de Bittencourt Pasquali MA, Caregnato FF, Moreira JC. Vitamin A (retinol) up-regulates the receptor for advanced glycation endproducts (RAGE) through p38 and Akt oxidant-dependent activation. Toxicology 2011;289:38-44. [PMID: 21807062 DOI: 10.1016/j.tox.2011.07.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
115 Harashima A, Yamamoto Y, Cheng C, Tsuneyama K, Myint KM, Takeuchi A, Yoshimura K, Li H, Watanabe T, Takasawa S, Okamoto H, Yonekura H, Yamamoto H. Identification of mouse orthologue of endogenous secretory receptor for advanced glycation end-products: structure, function and expression. Biochem J 2006;396:109-15. [PMID: 16503878 DOI: 10.1042/BJ20051573] [Cited by in Crossref: 40] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
116 A. Richard S, Min W, Su Z, Xu H; 1 Department of Neurosurgery, Affiliated Hospital of Jiangsu University (Jiangbin Hospital), Zhenjiang, 212001, China, 2 Department of Immunology, Jiangsu University, Zhenjiang, 212013, China. . AIMS Molecular Science 2017;4:185-218. [DOI: 10.3934/molsci.2017.2.185] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
117 Bertheloot D, Latz E. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol 2017;14:43-64. [PMID: 27569562 DOI: 10.1038/cmi.2016.34] [Cited by in Crossref: 203] [Cited by in F6Publishing: 204] [Article Influence: 33.8] [Reference Citation Analysis]
118 Le Bagge S, Fotheringham AK, Leung SS, Forbes JM. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med Res Rev 2020;40:1200-19. [PMID: 32112452 DOI: 10.1002/med.21654] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
119 Fineschi S, De Cunto G, Facchinetti F, Civelli M, Imbimbo BP, Carnini C, Villetti G, Lunghi B, Stochino S, Gibbons DL, Hayday A, Lungarella G, Cavarra E. Receptor for advanced glycation end products contributes to postnatal pulmonary development and adult lung maintenance program in mice. Am J Respir Cell Mol Biol 2013;48:164-71. [PMID: 23144333 DOI: 10.1165/rcmb.2012-0111OC] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
120 Win MT, Yamamoto Y, Munesue S, Saito H, Han D, Motoyoshi S, Kamal T, Ohara T, Watanabe T, Yamamoto H. Regulation of RAGE for attenuating progression of diabetic vascular complications. Exp Diabetes Res 2012;2012:894605. [PMID: 22110482 DOI: 10.1155/2012/894605] [Cited by in Crossref: 26] [Cited by in F6Publishing: 34] [Article Influence: 2.4] [Reference Citation Analysis]
121 Murakami Y, Fujino T, Kurachi R, Hasegawa T, Usui T, Hayase F, Watanabe H. Identification of pyridinoline, a collagen crosslink, as a novel intrinsic ligand for the receptor for advanced glycation end-products (RAGE). Bioscience, Biotechnology, and Biochemistry 2018;82:1508-14. [DOI: 10.1080/09168451.2018.1475213] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
122 Marchini G, Hultenby K, Nelson A, Yektaei-karin E, Ståbi B, Lonne-rahm S, Ulfgren A, Brismar H. Increased Expression of HMGB-1 in the Skin Lesions of Erythema Toxicum. Pediatr Dermatol 2007;24:474-82. [DOI: 10.1111/j.1525-1470.2007.00498.x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
123 Devi Ramnath R, Weing S, He M, Sun J, Zhang H, Singh Bawa M, Bhatia M. Inflammatory mediators in sepsis: Cytokines, chemokines, adhesion molecules and gases. Journal of Organ Dysfunction 2009;2:80-92. [DOI: 10.1080/17471060500435662] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
124 Lizotte PP, Hanford LE, Enghild JJ, Nozik-Grayck E, Giles BL, Oury TD. Developmental expression of the receptor for advanced glycation end-products (RAGE) and its response to hyperoxia in the neonatal rat lung. BMC Dev Biol 2007;7:15. [PMID: 17343756 DOI: 10.1186/1471-213X-7-15] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
125 Zhang Z, Wang M, Zhou L, Feng X, Cheng J, Yu Y, Gong Y, Zhu Y, Li C, Tian L, Huang Q. Increased HMGB1 and cleaved caspase-3 stimulate the proliferation of tumor cells and are correlated with the poor prognosis in colorectal cancer. J Exp Clin Cancer Res 2015;34:51. [PMID: 25986235 DOI: 10.1186/s13046-015-0166-1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
126 Zhan J, Wang K, Zhang C, Zhang C, Li Y, Zhang Y, Chang X, Zhou Q, Yao Y, Liu Y, Xu G. GSPE Inhibits HMGB1 Release, Attenuating Renal IR-Induced Acute Renal Injury and Chronic Renal Fibrosis. Int J Mol Sci 2016;17:E1647. [PMID: 27690015 DOI: 10.3390/ijms17101647] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
127 Weber DJ, Allette YM, Wilkes DS, White FA. The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction. Antioxid Redox Signal 2015;23:1316-28. [PMID: 25751601 DOI: 10.1089/ars.2015.6299] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
128 Aucott H, Sowinska A, Harris HE, Lundback P. Ligation of free HMGB1 to TLR2 in the absence of ligand is negatively regulated by the C-terminal tail domain. Mol Med 2018;24:19. [PMID: 30134807 DOI: 10.1186/s10020-018-0021-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
129 Wang WK, Wang B, Lu QH, Zhang W, Qin WD, Liu XJ, Liu XQ, An FS, Zhang Y, Zhang MX. Inhibition of high-mobility group box 1 improves myocardial fibrosis and dysfunction in diabetic cardiomyopathy. Int J Cardiol 2014;172:202-12. [PMID: 24485636 DOI: 10.1016/j.ijcard.2014.01.011] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 8.3] [Reference Citation Analysis]
130 Guazzi S, Strangio A, Franzi AT, Bianchi ME. HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain. Gene Expression Patterns 2003;3:29-33. [DOI: 10.1016/s1567-133x(02)00093-5] [Cited by in Crossref: 58] [Cited by in F6Publishing: 33] [Article Influence: 3.1] [Reference Citation Analysis]
131 Chen Y, Sun W, Gao R, Su Y, Umehara H, Dong L, Gong F. The role of high mobility group box chromosomal protein 1 in rheumatoid arthritis. Rheumatology (Oxford). 2013;52:1739-1747. [PMID: 23584368 DOI: 10.1093/rheumatology/ket134] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
132 Lee W, Ku S, Lee Y, Bae J. Anti-septic effects of glyceollins in HMGB1-induced inflammatory responses in vitro and in vivo. Food and Chemical Toxicology 2014;63:1-8. [DOI: 10.1016/j.fct.2013.10.034] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
133 Sorci G, Riuzzi F, Agneletti AL, Marchetti C, Donato R. S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. J Cell Physiol 2004;199:274-83. [DOI: 10.1002/jcp.10462] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 2.6] [Reference Citation Analysis]
134 Tchaikovski V, Waltenberger J. Angiogenesis and Arteriogenesis in Diabetes Mellitus: Signal Transduction Defects as the Molecular Basis of Vascular Cell Dysfunction. In: Deindl E, Kupatt C, editors. Therapeutic Neovascularization–Quo Vadis?. Dordrecht: Springer Netherlands; 2007. pp. 33-73. [DOI: 10.1007/1-4020-5955-8_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
135 Nakano N, Fukuhara-takaki K, Jono T, Nakajou K, Eto N, Horiuchi S, Takeya M, Nagai R. Association of Advanced Glycation End Products with A549 Cells, a Human Pulmonary Epithelial Cell Line, Is Mediated by a Receptor Distinct from the Scavenger Receptor Family and RAGE. The Journal of Biochemistry 2006;139:821-9. [DOI: 10.1093/jb/mvj092] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
136 Wang M, Theis T, Kabat M, Loers G, Agre LA, Schachner M. Functions of Small Organic Compounds that Mimic the HNK-1 Glycan. Int J Mol Sci 2020;21:E7018. [PMID: 32987628 DOI: 10.3390/ijms21197018] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
137 Gou X, Ying J, Yue Y, Qiu X, Hu P, Qu Y, Li J, Mu D. The Roles of High Mobility Group Box 1 in Cerebral Ischemic Injury. Front Cell Neurosci 2020;14:600280. [PMID: 33384585 DOI: 10.3389/fncel.2020.600280] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
138 Rose JA, Rabenold JJ, Parast MM, Milstone DS, Abrahams VM, Riley JK. Peptidoglycan induces necrosis and regulates cytokine production in murine trophoblast stem cells. Am J Reprod Immunol 2011;66:209-22. [PMID: 21385270 DOI: 10.1111/j.1600-0897.2011.00986.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
139 Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012;12:168-179. [PMID: 22301850 DOI: 10.1038/nri3151] [Cited by in Crossref: 277] [Cited by in F6Publishing: 254] [Article Influence: 27.7] [Reference Citation Analysis]
140 Hayakawa K, Pham LD, Katusic ZS, Arai K, Lo EH. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci U S A 2012;109:7505-10. [PMID: 22529378 DOI: 10.1073/pnas.1121146109] [Cited by in Crossref: 127] [Cited by in F6Publishing: 124] [Article Influence: 12.7] [Reference Citation Analysis]
141 Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. HMG-1 as a mediator of acute lung inflammation. J Immunol 2000;165:2950-4. [PMID: 10975801 DOI: 10.4049/jimmunol.165.6.2950] [Cited by in Crossref: 538] [Cited by in F6Publishing: 533] [Article Influence: 24.5] [Reference Citation Analysis]
142 Oliver JA, Al-Awqati Q. An endothelial growth factor involved in rat renal development. J Clin Invest 1998;102:1208-19. [PMID: 9739055 DOI: 10.1172/JCI785] [Cited by in Crossref: 94] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
143 Yamamoto Y, Yonekura H, Watanabe T, Sakurai S, Li H, Harashima A, Myint KM, Osawa M, Takeuchi A, Takeuchi M, Yamamoto H. Short-chain aldehyde-derived ligands for RAGE and their actions on endothelial cells. Diabetes Res Clin Pract 2007;77 Suppl 1:S30-40. [PMID: 17462779 DOI: 10.1016/j.diabres.2007.01.030] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 1.8] [Reference Citation Analysis]
144 O'Connor KA, Hansen MK, Rachal Pugh C, Deak MM, Biedenkapp JC, Milligan ED, Johnson JD, Wang H, Maier SF, Tracey KJ. Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: central nervous system effects. Cytokine. 2003;24:254-265. [PMID: 14609567 DOI: 10.1016/j.cyto.2003.08.001] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 5.1] [Reference Citation Analysis]
145 Hirsiger S, Simmen HP, Werner CM, Wanner GA, Rittirsch D. Danger signals activating the immune response after trauma. Mediators Inflamm. 2012;2012:189-194. [PMID: 22778496 DOI: 10.1155/2012/315941] [Cited by in Crossref: 132] [Cited by in F6Publishing: 126] [Article Influence: 13.2] [Reference Citation Analysis]
146 Uchida C, Mizukami H, Hara Y, Saito T, Umetsu S, Igawa A, Osonoi S, Kudoh K, Yamamoto Y, Yamamoto H, Yagihashi S, Hakamada K. Diabetes in Humans Activates Pancreatic Stellate Cells via RAGE in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2021;22:11716. [PMID: 34769147 DOI: 10.3390/ijms222111716] [Reference Citation Analysis]
147 Youn JH, Oh YJ, Kim ES, Choi JE, Shin JS. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J Immunol 2008;180:5067-74. [PMID: 18354232 DOI: 10.4049/jimmunol.180.7.5067] [Cited by in Crossref: 185] [Cited by in F6Publishing: 187] [Article Influence: 13.2] [Reference Citation Analysis]
148 Wang L, Li S, Jungalwala FB. Receptor for advanced glycation end products (RAGE) mediates neuronal differentiation and neurite outgrowth. J Neurosci Res 2008;86:1254-66. [PMID: 18058943 DOI: 10.1002/jnr.21578] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 2.7] [Reference Citation Analysis]
149 Ito R, Ishii Y, Wakiyama S, Shiba H, Fujioka S, Misawa T, Ishida Y, Hano H, Yanaga K. Prognostic significance of receptor for advanced glycation end products expression in hepatocellular carcinoma after hepatectomy. J Surg Res. 2014;192:503-508. [PMID: 25043528 DOI: 10.1016/j.jss.2014.06.028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
150 Yang QW, Wang JZ, Li JC, Zhou Y, Zhong Q, Lu FL, Xiang J. High-mobility group protein box-1 and its relevance to cerebral ischemia. J Cereb Blood Flow Metab 2010;30:243-54. [PMID: 19794402 DOI: 10.1038/jcbfm.2009.202] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 4.8] [Reference Citation Analysis]
151 Su Z, Li Y, Lv H, Cui X, Liu M, Wang Z, Zhang Y, Zhen J, Tang W, Wang X, Yi F. CLEC14A protects against podocyte injury in mice with adriamycin nephropathy. FASEB J 2021;35:e21711. [PMID: 34107098 DOI: 10.1096/fj.202100283R] [Reference Citation Analysis]
152 Bae JS, Rezaie AR. Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood 2011;118:3952-9. [PMID: 21849480 DOI: 10.1182/blood-2011-06-360701] [Cited by in Crossref: 125] [Cited by in F6Publishing: 113] [Article Influence: 11.4] [Reference Citation Analysis]
153 Hazeldine J, Hampson P, Lord JM. The impact of trauma on neutrophil function. Injury 2014;45:1824-33. [PMID: 25106876 DOI: 10.1016/j.injury.2014.06.021] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 6.4] [Reference Citation Analysis]
154 Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY, Choe KH, Strassheim D, Pitts TM, Tracey KJ, Abraham E. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol. 2003;284:C870-C879. [PMID: 12620891 DOI: 10.1152/ajpcell.00322.2002] [Cited by in Crossref: 316] [Cited by in F6Publishing: 313] [Article Influence: 16.6] [Reference Citation Analysis]
155 Manti S, Cutrupi MC, Cuppari C, Ferro E, Dipasquale V, Di Rosa G, Chimenz R, La Rosa MA, Valenti A, Salpietro V. Inflammatory biomarkers and intellectual disability in patients with Down syndrome. J Intellect Disabil Res 2018;62:382-90. [PMID: 29349839 DOI: 10.1111/jir.12470] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
156 Cho HJ, Kim CH. Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis. BMB Rep 2018;51:59-64. [PMID: 29366441 DOI: 10.5483/bmbrep.2018.51.2.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
157 Zhang Q, O’hearn S, Kavalukas SL, Barbul A. Role of High Mobility Group Box 1 (HMGB1) in Wound Healing. Journal of Surgical Research 2012;176:343-7. [DOI: 10.1016/j.jss.2011.06.069] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
158 Tang D, Kang R, Xiao W, Wang H, Calderwood SK, Xiao X. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol 2007;179:1236-44. [PMID: 17617616 DOI: 10.4049/jimmunol.179.2.1236] [Cited by in Crossref: 88] [Cited by in F6Publishing: 92] [Article Influence: 5.9] [Reference Citation Analysis]
159 Rauvala H, Huttunen HJ, Fages C, Kaksonen M, Kinnunen T, Imai S, Raulo E, Kilpeläinen I. Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol 2000;19:377-87. [PMID: 10980414 DOI: 10.1016/s0945-053x(00)00084-6] [Cited by in Crossref: 100] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
160 Xue J, Rai V, Singer D, Chabierski S, Xie J, Reverdatto S, Burz DS, Schmidt AM, Hoffmann R, Shekhtman A. Advanced glycation end product recognition by the receptor for AGEs. Structure 2011;19:722-32. [PMID: 21565706 DOI: 10.1016/j.str.2011.02.013] [Cited by in Crossref: 119] [Cited by in F6Publishing: 113] [Article Influence: 10.8] [Reference Citation Analysis]
161 Hansen LM, Gupta D, Joseph G, Weiss D, Taylor WR. The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. Lab Invest 2017;97:34-42. [PMID: 27869797 DOI: 10.1038/labinvest.2016.113] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
162 Deng C, Zhao L, Yang Z, Shang JJ, Wang CY, Shen MZ, Jiang S, Li T, Di WC, Chen Y, Li H, Cheng YD, Yang Y. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin 2021. [PMID: 34040166 DOI: 10.1038/s41401-021-00676-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
163 Kato J, Agalave NM, Svensson CI. Pattern recognition receptors in chronic pain: Mechanisms and therapeutic implications. Eur J Pharmacol 2016;788:261-73. [PMID: 27343378 DOI: 10.1016/j.ejphar.2016.06.039] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
164 Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB, Bianchi ME. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol. 2007;179:33-40. [PMID: 17923528 DOI: 10.1083/jcb.200704015] [Cited by in Crossref: 196] [Cited by in F6Publishing: 194] [Article Influence: 14.0] [Reference Citation Analysis]
165 Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, Oppenheim JJ. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol. 2007;81:59-66. [PMID: 16966386 DOI: 10.1189/jlb.0306180] [Cited by in Crossref: 272] [Cited by in F6Publishing: 269] [Article Influence: 17.0] [Reference Citation Analysis]
166 Heo D, Lim S, Lee J, Lee ME, Cho S, Jeong J, Seo M, Park S, Yang J. Radiological assessment of effectiveness of soluble RAGE in attenuating Angiotensin II-induced LVH mouse model using in vivo 9.4T MRI. Sci Rep 2019;9:8475. [PMID: 31186521 DOI: 10.1038/s41598-019-44933-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
167 Bustin M. At the crossroads of necrosis and apoptosis: signaling to multiple cellular targets by HMGB1. Sci STKE 2002;2002:pe39. [PMID: 12297673 DOI: 10.1126/stke.2002.151.pe39] [Cited by in Crossref: 13] [Cited by in F6Publishing: 30] [Article Influence: 0.7] [Reference Citation Analysis]
168 Liu A, Dirsch O, Fang H, Sun J, Jin H, Dong W, Dahmen U. HMGB1 in ischemic and non-ischemic liver after selective warm ischemia/reperfusion in rat. Histochem Cell Biol 2011;135:443-52. [DOI: 10.1007/s00418-011-0802-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.2] [Reference Citation Analysis]
169 Kornblit B, Munthe-Fog L, Petersen SL, Madsen HO, Vindeløv L, Garred P. The genetic variation of the human HMGB1 gene. Tissue Antigens. 2007;70:151-156. [PMID: 17610420 DOI: 10.1111/j.1399-0039.2007.00854.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
170 Monteiro FA, Cardoso I, Sousa MM, Saraiva MJ. In vitro inhibition of transthyretin aggregate-induced cytotoxicity by full and peptide derived forms of the soluble receptor for advanced glycation end products (RAGE). FEBS Lett 2006;580:3451-6. [PMID: 16716307 DOI: 10.1016/j.febslet.2006.05.020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.3] [Reference Citation Analysis]
171 Yatime L, Andersen GR. Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. FEBS J 2013;280:6556-68. [PMID: 24119142 DOI: 10.1111/febs.12556] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
172 Moon L, Asher R, Rhodes K, Fawcett J. Relationship between sprouting axons, proteoglycans and glial cells following unilateral nigrostriatal axotomy in the adult rat. Neuroscience 2002;109:101-17. [DOI: 10.1016/s0306-4522(01)00457-2] [Cited by in Crossref: 71] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
173 Sitia G, Iannacone M, Müller S, Bianchi ME, Guidotti LG. Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice. J Leukoc Biol. 2007;81:100-107. [PMID: 16935945 DOI: 10.1189/jlb.0306173] [Cited by in Crossref: 94] [Cited by in F6Publishing: 96] [Article Influence: 5.9] [Reference Citation Analysis]
174 Lee W, Ku SK, Park EJ, Na DH, Kim KM, Bae JS. Exendin-4 inhibits HMGB1-induced inflammatory responses in HUVECs and in murine polymicrobial sepsis. Inflammation 2014;37:1876-88. [PMID: 24826914 DOI: 10.1007/s10753-014-9919-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
175 Kigerl KA, Lai W, Wallace LM, Yang H, Popovich PG. High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation. Brain Behav Immun 2018;72:22-33. [PMID: 29175543 DOI: 10.1016/j.bbi.2017.11.018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
176 Jabaudon M, Blondonnet R, Roszyk L, Bouvier D, Audard J, Clairefond G, Fournier M, Marceau G, Déchelotte P, Pereira B, Sapin V, Constantin JM. Soluble Receptor for Advanced Glycation End-Products Predicts Impaired Alveolar Fluid Clearance in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2015;192:191-9. [PMID: 25932660 DOI: 10.1164/rccm.201501-0020OC] [Cited by in Crossref: 84] [Cited by in F6Publishing: 55] [Article Influence: 12.0] [Reference Citation Analysis]
177 Kim TH, Ku S, Lee T, Bae J. Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo. Food and Chemical Toxicology 2012;50:2188-95. [DOI: 10.1016/j.fct.2012.03.082] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
178 Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Mao X. Glycyrrhizin inhibits porcine epidemic diarrhea virus infection and attenuates the proinflammatory responses by inhibition of high mobility group box-1 protein. Arch Virol 2017;162:1467-76. [PMID: 28175983 DOI: 10.1007/s00705-017-3259-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
179 Schenk S, Schraml P, Bendik I, Ludwig CU. A novel polymorphism in the promoter of the RAGE gene is associated with non-small cell lung cancer. Lung Cancer 2001;32:7-12. [DOI: 10.1016/s0169-5002(00)00209-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
180 Subramaniam R, Fan X, Scivittaro V, Yang J, Ha C, Petersen CE, Surewicz WK, Bhagavan NV, Weiss MF, Monnier VM. Cellular Oxidant Stress and Advanced Glycation Endproducts of Albumin: Caveats of the Dichlorofluorescein Assay*. Archives of Biochemistry and Biophysics 2002;400:15-25. [DOI: 10.1006/abbi.2002.2776] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 1.6] [Reference Citation Analysis]
181 Tamada K, Nakajima S, Ogawa N, Inada M, Shibasaki H, Sato A, Takasawa R, Yoshimori A, Suzuki Y, Watanabe N, Oyama T, Abe H, Inoue S, Abe T, Yokomizo T, Tanuma S. Papaverine identified as an inhibitor of high mobility group box 1/receptor for advanced glycation end-products interaction suppresses high mobility group box 1-mediated inflammatory responses. Biochem Biophys Res Commun 2019;511:665-70. [PMID: 30826057 DOI: 10.1016/j.bbrc.2019.01.136] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
182 Schierbeck H, Pullerits R, Pruunsild C, Fischer M, Holzinger D, Laestadius Å, Sundberg E, Harris HE. HMGB1 levels are increased in patients with juvenile idiopathic arthritis, correlate with early onset of disease, and are independent of disease duration. J Rheumatol 2013;40:1604-13. [PMID: 23858044 DOI: 10.3899/jrheum.120987] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
183 Ladrech S, Mathieu M, Puel J, Lenoir M. Supporting cells regulate the remodelling of aminoglycoside-injured organ of Corti, through the release of high mobility group box 1. Eur J Neurosci 2013. [DOI: 10.1111/ejn.12290] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 0.2] [Reference Citation Analysis]
184 Relja B, Mörs K, Marzi I. Danger signals in trauma. Eur J Trauma Emerg Surg 2018;44:301-16. [PMID: 29728738 DOI: 10.1007/s00068-018-0962-3] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
185 Ando A, Uno H, Urisu T, Hamaguchi S. Grid-pattern formation of extracellular matrix on silicon by low-temperature atmospheric-pressure plasma jets for neural network biochip fabrication. Applied Surface Science 2013;276:1-6. [DOI: 10.1016/j.apsusc.2013.02.001] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
186 Yan SF, Ramasamy R, Schmidt AM. Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol 2010;79:1379-86. [PMID: 20096667 DOI: 10.1016/j.bcp.2010.01.013] [Cited by in Crossref: 110] [Cited by in F6Publishing: 102] [Article Influence: 9.2] [Reference Citation Analysis]
187 Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84:489-497. [PMID: 10082470 DOI: 10.1161/01.res.84.5.489] [Cited by in Crossref: 515] [Cited by in F6Publishing: 156] [Article Influence: 22.4] [Reference Citation Analysis]
188 Li J, Schmidt AM. Characterization and Functional Analysis of the Promoter of RAGE, the Receptor for Advanced Glycation End Products. Journal of Biological Chemistry 1997;272:16498-506. [DOI: 10.1074/jbc.272.26.16498] [Cited by in Crossref: 363] [Cited by in F6Publishing: 344] [Article Influence: 14.5] [Reference Citation Analysis]
189 Zill H, Günther R, Erbersdobler HF, Fölsch UR, Faist V. RAGE Expression and AGE-Induced MAP Kinase Activation in Caco-2 Cells. Biochemical and Biophysical Research Communications 2001;288:1108-11. [DOI: 10.1006/bbrc.2001.5901] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 3.0] [Reference Citation Analysis]
190 Han SH, Kim YH, Mook-Jung I. RAGE: the beneficial and deleterious effects by diverse mechanisms of actions. Mol Cells. 2011;31:91-97. [PMID: 21347704 DOI: 10.1007/s10059-011-0030-x] [Cited by in Crossref: 66] [Cited by in F6Publishing: 69] [Article Influence: 6.0] [Reference Citation Analysis]
191 Tsekovska R, Sredovska-Bozhinov A, Niwa T, Ivanov I, Mironova R. Maillard reaction and immunogenicity of protein therapeutics. World J Immunol 2016; 6(1): 19-38 [DOI: 10.5411/wji.v6.i1.19] [Cited by in CrossRef: 2] [Article Influence: 0.3] [Reference Citation Analysis]
192 Schmitt HP. ε-Glycation, APP and Aβ in ageing and Alzheimer disease: A hypothesis. Medical Hypotheses 2006;66:898-906. [DOI: 10.1016/j.mehy.2005.11.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
193 Vlassara H, Striker G. Glycotoxins in the diet promote diabetes and diabetic complications. Curr Diab Rep. 2007;7:235-241. [PMID: 17547841 DOI: 10.1007/s11892-007-0037-z] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 3.0] [Reference Citation Analysis]
194 Oh YJ, Youn JH, Min HJ, Kim DH, Lee SS, Choi IH, Shin JS. CKD712, (S)-1-(α-naphthylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, inhibits the lipopolysaccharide-stimulated secretion of HMGB1 by inhibiting PI3K and classical protein kinase C. Int Immunopharmacol 2011;11:1160-5. [PMID: 21457762 DOI: 10.1016/j.intimp.2011.03.013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
195 Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, Wallström E, Lobell A, Brundin L, Lassmann H, Harris RA. Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 2008;84:1248-55. [PMID: 18644848 DOI: 10.1189/jlb.1207844] [Cited by in Crossref: 140] [Cited by in F6Publishing: 134] [Article Influence: 10.0] [Reference Citation Analysis]
196 Zhang LT, Yao YM, Yao FH, Huang LF, Dong N, Yu Y, Sheng ZY. Association between high-mobility group box-1 protein release and immune function of dendritic cells in thermal injury. J Interferon Cytokine Res 2010;30:487-95. [PMID: 20233162 DOI: 10.1089/jir.2009.0055] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
197 Yang J, Zhao Y, Zhang P, Li Y, Yang Y, Yang Y, Zhu J, Song X, Jiang G, Fan J. Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS. Cell Death Dis 2016;7:e2363. [PMID: 27607578 DOI: 10.1038/cddis.2016.274] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 8.3] [Reference Citation Analysis]
198 Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L, Klune JR, Zlotnicki J, Billiar T, Tsung A. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 2010;285:39888-39897. [PMID: 20937823 DOI: 10.1074/jbc.m110.128348] [Cited by in Crossref: 160] [Cited by in F6Publishing: 100] [Article Influence: 13.3] [Reference Citation Analysis]
199 Kheirallah A, Miller S, Hall I, Sayers I. Translating Lung Function Genome-Wide Association Study (GWAS) Findings. Elsevier; 2016. pp. 57-145. [DOI: 10.1016/bs.adgen.2015.12.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
200 Min HJ, Ko EA, Wu J, Kim ES, Kwon MK, Kwak MS, Choi JE, Lee JE, Shin JS. Chaperone-like activity of high-mobility group box 1 protein and its role in reducing the formation of polyglutamine aggregates. J Immunol 2013;190:1797-806. [PMID: 23303669 DOI: 10.4049/jimmunol.1202472] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
201 Huang Y, Yin H, Han J, Huang B, Xu J, Zheng F, Tan Z, Fang M, Rui L, Chen D, Wang S, Zheng X, Wang CY, Gong F. Extracellular hmgb1 functions as an innate immune-mediator implicated in murine cardiac allograft acute rejection. Am J Transplant 2007;7:799-808. [PMID: 17331117 DOI: 10.1111/j.1600-6143.2007.01734.x] [Cited by in Crossref: 105] [Cited by in F6Publishing: 105] [Article Influence: 7.0] [Reference Citation Analysis]
202 Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S. Scavenger receptor structure and function in health and disease. Cells. 2015;4:178-201. [PMID: 26010753 DOI: 10.3390/cells4020178] [Cited by in Crossref: 163] [Cited by in F6Publishing: 147] [Article Influence: 23.3] [Reference Citation Analysis]
203 Chen G, Wu Y, Wang T, Liang J, Lin W, Li L, Wen J, Lin L, Huang H. Association between serum endogenous secretory receptor for advanced glycation end products and risk of type 2 diabetes mellitus with combined depression in the Chinese population. Diabetes Technol Ther 2012;14:936-42. [PMID: 22856651 DOI: 10.1089/dia.2012.0072] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
204 Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJ, Fritz G. Structural basis for ligand recognition and activation of RAGE. Structure 2010;18:1342-52. [PMID: 20947022 DOI: 10.1016/j.str.2010.05.017] [Cited by in Crossref: 143] [Cited by in F6Publishing: 150] [Article Influence: 13.0] [Reference Citation Analysis]
205 Penzo M, Molteni R, Suda T, Samaniego S, Raucci A, Habiel DM, Miller F, Jiang HP, Li J, Pardi R, Palumbo R, Olivotto E, Kew RR, Bianchi ME, Marcu KB. Inhibitor of NF-kappa B kinases alpha and beta are both essential for high mobility group box 1-mediated chemotaxis [corrected]. J Immunol. 2010;184:4497-4509. [PMID: 20231695 DOI: 10.4049/jimmunol.0903131] [Cited by in Crossref: 72] [Cited by in F6Publishing: 71] [Article Influence: 6.0] [Reference Citation Analysis]
206 Borges da Silva H, Fonseca R, Pereira RM, Cassado Ados A, Álvarez JM, D'Império Lima MR. Splenic Macrophage Subsets and Their Function during Blood-Borne Infections. Front Immunol 2015;6:480. [PMID: 26441984 DOI: 10.3389/fimmu.2015.00480] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 11.6] [Reference Citation Analysis]
207 Sorci G, Riuzzi F, Arcuri C, Giambanco I, Donato R. Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding. Mol Cell Biol. 2004;24:4880-4894. [PMID: 15143181 DOI: 10.1128/mcb.24.11.4880-4894.2004] [Cited by in Crossref: 89] [Cited by in F6Publishing: 42] [Article Influence: 4.9] [Reference Citation Analysis]
208 Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 1999;274:19919-24. [PMID: 10391939 DOI: 10.1074/jbc.274.28.19919] [Cited by in Crossref: 453] [Cited by in F6Publishing: 450] [Article Influence: 19.7] [Reference Citation Analysis]
209 Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93:1159-1169. [PMID: 14670831 DOI: 10.1161/01.res.0000103862.26506.3d] [Cited by in Crossref: 354] [Cited by in F6Publishing: 133] [Article Influence: 19.7] [Reference Citation Analysis]
210 Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, Uchimura T, Ida N, Yamazaki Y, Yamada S. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest. 2005;115:1267-1274. [PMID: 15841214 DOI: 10.1172/jci200522782] [Cited by in Crossref: 49] [Cited by in F6Publishing: 1] [Article Influence: 2.9] [Reference Citation Analysis]
211 Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev. 2007;220:35-46. [PMID: 17979838 DOI: 10.1111/j.1600-065X.2007.00574.x] [Cited by in Crossref: 410] [Cited by in F6Publishing: 207] [Article Influence: 29.3] [Reference Citation Analysis]
212 Robinson AP, Caldis MW, Harp CT, Goings GE, Miller SD. High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis. J Autoimmun 2013;43:32-43. [PMID: 23514872 DOI: 10.1016/j.jaut.2013.02.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 4.2] [Reference Citation Analysis]
213 Chang C, Khan I, Tsai K, Li H, Yang L, Chou R, Yu C. Blocking the interaction between S100A9 and RAGE V domain using CHAPS molecule: A novel route to drug development against cell proliferation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2016;1864:1558-69. [DOI: 10.1016/j.bbapap.2016.08.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
214 Vliegenthart AD, Antoine DJ, Dear JW. Target biomarker profile for the clinical management of paracetamol overdose. Br J Clin Pharmacol 2015;80:351-62. [PMID: 26076366 DOI: 10.1111/bcp.12699] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
215 Lee W, Ku S, Yoo H, Song K, Bae J. Andrographolide inhibits HMGB1-induced inflammatory responses in human umbilical vein endothelial cells and in murine polymicrobial sepsis. Acta Physiol (Oxf) 2014;211:176-87. [PMID: 24581270 DOI: 10.1111/apha.12264] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
216 Plazyo O, Romero R, Unkel R, Balancio A, Mial TN, Xu Y, Dong Z, Hassan SS, Gomez-Lopez N. HMGB1 Induces an Inflammatory Response in the Chorioamniotic Membranes That Is Partially Mediated by the Inflammasome. Biol Reprod 2016;95:130. [PMID: 27806943 DOI: 10.1095/biolreprod.116.144139] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 10.3] [Reference Citation Analysis]
217 El-Far AHAM, Munesue S, Harashima A, Sato A, Shindo M, Nakajima S, Inada M, Tanaka M, Takeuchi A, Tsuchiya H, Yamamoto H, Shaheen HME, El-Sayed YS, Kawano S, Tanuma SI, Yamamoto Y. In vitro anticancer effects of a RAGE inhibitor discovered using a structure-based drug design system. Oncol Lett 2018;15:4627-34. [PMID: 29541234 DOI: 10.3892/ol.2018.7902] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
218 Chang YC, Lin CW, Hsieh MC, Wu HJ, Wu WS, Wu WC, Kao YH. High mobility group B1 up-regulates angiogenic and fibrogenic factors in human retinal pigment epithelial ARPE-19 cells. Cell Signal 2017;40:248-57. [PMID: 28970183 DOI: 10.1016/j.cellsig.2017.09.019] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
219 Lorenzi R, Grossin N, Lambert M, Daroux M, Adjoutah Z, Flahaut C, Jacolot P, Tessier FJ, Lefranc D, Desremaux P, Dubucquoi S, Boulanger E. Soluble form of receptor for advanced glycation end-products (sRAGE): do sRAGE ligands or anti-sRAGE auto-antibodies interfere with sRAGE quantification? Ann Clin Biochem 2014;51:248-57. [DOI: 10.1177/0004563213493402] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
220 Kumano-Kuramochi M, Xie Q, Sakakibara Y, Niimi S, Sekizawa K, Komba S, Machida S. Expression and characterization of recombinant C-terminal biotinylated extracellular domain of human receptor for advanced glycation end products (hsRAGE) in Escherichia coli. J Biochem 2008;143:229-36. [PMID: 18032414 DOI: 10.1093/jb/mvm213] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
221 Yan S, Ramasamy R, Bucciarelli LG, Wendt T, Lee LK, Hudson BI, Stenr DM, Lalla E, Du Yan S, Rong LL, Naka Y, Schmidt AM. RAGE and its ligands: a lasting memory in diabetic complications? Diabetes and Vascular Disease Research 2004;1:10-20. [DOI: 10.3132/dvdr.2004.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
222 Yu Y, Tang D, Kang R. Oxidative stress-mediated HMGB1 biology. Front Physiol. 2015;6:93. [PMID: 25904867 DOI: 10.3389/fphys.2015.00093] [Cited by in Crossref: 109] [Cited by in F6Publishing: 118] [Article Influence: 15.6] [Reference Citation Analysis]
223 Gross C, Belville C, Lavergne M, Choltus H, Jabaudon M, Blondonnet R, Constantin JM, Chiambaretta F, Blanchon L, Sapin V. Advanced Glycation End Products and Receptor (RAGE) Promote Wound Healing of Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2020;61:14. [PMID: 32176265 DOI: 10.1167/iovs.61.3.14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
224 Wang H, Zhang Y, Wang Q, Wei X, Wang H, Gu K. The regulatory mechanism of neutrophil extracellular traps in cancer biological behavior. Cell Biosci 2021;11:193. [PMID: 34758877 DOI: 10.1186/s13578-021-00708-z] [Reference Citation Analysis]
225 Bernard NJ, O'Neill LA. Mal, more than a bridge to MyD88. IUBMB Life 2013;65:777-86. [PMID: 23983209 DOI: 10.1002/iub.1201] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
226 Yammani RR. S100 proteins in cartilage: role in arthritis. Biochim Biophys Acta 2012;1822:600-6. [PMID: 22266138 DOI: 10.1016/j.bbadis.2012.01.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 4.2] [Reference Citation Analysis]
227 Malherbe P, Richards JG, Gaillard H, Thompson A, Diener C, Schuler A, Huber G. cDNA cloning of a novel secreted isoform of the human receptor for advanced glycation end products and characterization of cells co-expressing cell-surface scavenger receptors and Swedish mutant amyloid precursor protein. Brain Res Mol Brain Res. 1999;71:159-170. [PMID: 10521570 DOI: 10.1016/S0169-328X(99)00174-6] [Cited by in Crossref: 96] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
228 Buckley ST, Ehrhardt C. The receptor for advanced glycation end products (RAGE) and the lung. J Biomed Biotechnol 2010;2010:917108. [PMID: 20145712 DOI: 10.1155/2010/917108] [Cited by in Crossref: 128] [Cited by in F6Publishing: 133] [Article Influence: 10.7] [Reference Citation Analysis]
229 Rendon-mitchell B, Ochani M, Li J, Han J, Wang H, Yang H, Susarla S, Czura C, Mitchell RA, Chen G, Sama AE, Tracey KJ, Wang H. IFN-γ Induces High Mobility Group Box 1 Protein Release Partly Through a TNF-Dependent Mechanism. J Immunol 2003;170:3890-7. [DOI: 10.4049/jimmunol.170.7.3890] [Cited by in Crossref: 245] [Cited by in F6Publishing: 237] [Article Influence: 12.9] [Reference Citation Analysis]
230 Kobayashi S, Kubo H, Suzuki T, Ishizawa K, Yamada M, He M, Yamamoto Y, Yamamoto H, Sasano H, Sasaki H, Suzuki S. Endogenous Secretory Receptor for Advanced Glycation End Products in Non–Small Cell Lung Carcinoma. Am J Respir Crit Care Med 2007;175:184-9. [DOI: 10.1164/rccm.200602-212oc] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
231 Borde C, Barnay-Verdier S, Gaillard C, Hocini H, Maréchal V, Gozlan J. Stepwise release of biologically active HMGB1 during HSV-2 infection. PLoS One 2011;6:e16145. [PMID: 21283827 DOI: 10.1371/journal.pone.0016145] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 3.1] [Reference Citation Analysis]
232 Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E. A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA. 2002;99:7444-7449. [PMID: 12032302 DOI: 10.1073/pnas.062189599] [Cited by in Crossref: 196] [Cited by in F6Publishing: 180] [Article Influence: 9.8] [Reference Citation Analysis]
233 Vitali R, Terrin G, Palone F, Laudadio I, Cucchiara S, Boscarino G, Di Chiara M, Stronati L. Fecal High-Mobility Group Box 1 as a Marker of Early Stage of Necrotizing Enterocolitis in Preterm Neonates. Front Pediatr 2021;9:672131. [PMID: 34178888 DOI: 10.3389/fped.2021.672131] [Reference Citation Analysis]
234 Lee J, Hong YS, Jeong JH, Yang EJ, Jhun JY, Park MK, Jung YO, Min JK, Kim HY, Park SH, Cho ML. Coenzyme Q10 ameliorates pain and cartilage degradation in a rat model of osteoarthritis by regulating nitric oxide and inflammatory cytokines. PLoS One 2013;8:e69362. [PMID: 23894457 DOI: 10.1371/journal.pone.0069362] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
235 Juranek JK, Kothary P, Mehra A, Hays A, Brannagan TH 3rd, Schmidt AM. Increased expression of the receptor for advanced glycation end-products in human peripheral neuropathies. Brain Behav 2013;3:701-9. [PMID: 24363972 DOI: 10.1002/brb3.176] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
236 Anggayasti WL, Mancera RL, Bottomley S, Helmerhorst E. The effect of physicochemical factors on the self-association of HMGB1: A surface plasmon resonance study. Biochim Biophys Acta 2016;1864:1620-9. [PMID: 27476953 DOI: 10.1016/j.bbapap.2016.07.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
237 Takata K, Kitamura Y, Kakimura J, Shibagaki K, Tsuchiya D, Taniguchi T, Smith MA, Perry G, Shimohama S. Role of high mobility group protein-1 (HMG1) in amyloid-β homeostasis. Biochemical and Biophysical Research Communications 2003;301:699-703. [DOI: 10.1016/s0006-291x(03)00024-x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
238 Festoff BW, Sajja RK, Cucullo L. Proximate Mediators of Microvascular Dysfunction at the Blood-Brain Barrier: Neuroinflammatory Pathways to Neurodegeneration. Biomed Res Int 2017;2017:1549194. [PMID: 28890893 DOI: 10.1155/2017/1549194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
239 Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139-162. [PMID: 21219181 DOI: 10.1146/annurev-immunol-030409-101323] [Cited by in Crossref: 881] [Cited by in F6Publishing: 852] [Article Influence: 80.1] [Reference Citation Analysis]
240 Dumitriu IE, Baruah P, Bianchi ME, Manfredi AA, Rovere-Querini P. Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur J Immunol. 2005;35:2184-2190. [PMID: 15915542 DOI: 10.1002/eji.200526066] [Cited by in Crossref: 144] [Cited by in F6Publishing: 143] [Article Influence: 8.5] [Reference Citation Analysis]
241 Wagner S, Ngezahayo A, Murua Escobar H, Nolte I. Role of miRNA let-7 and its major targets in prostate cancer. Biomed Res Int 2014;2014:376326. [PMID: 25276782 DOI: 10.1155/2014/376326] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 3.4] [Reference Citation Analysis]
242 Nguyen A, Bhavsar S, Riley E, Caponetti G, Agrawal D. Clinical Value of High Mobility Group Box 1 and the Receptor for Advanced Glycation End-products in Head and Neck Cancer: A Systematic Review. Int Arch Otorhinolaryngol 2016;20:382-9. [PMID: 27746844 DOI: 10.1055/s-0036-1583168] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
243 Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y. Decrease with age in methylcytosines in the promoter region of receptor for advanced glycated end products (RAGE) gene in autopsy human cortex. Molecular Brain Research 1999;65:124-8. [DOI: 10.1016/s0169-328x(98)00351-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
244 Kohka Takahashi H, Sadamori H, Liu K, Wake H, Mori S, Yoshino T, Yamamoto Y, Yamamoto H, Nishibori M. Role of cell-cell interactions in high mobility group box 1 cytokine activity in human peripheral blood mononuclear cells and mouse splenocytes. Eur J Pharmacol 2013;701:194-202. [PMID: 23228930 DOI: 10.1016/j.ejphar.2012.11.058] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
245 Fink MP. Bench-to-bedside review: High-mobility group box 1 and critical illness. Crit Care 2007;11:229. [PMID: 17903310 DOI: 10.1186/cc6088] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 2.6] [Reference Citation Analysis]
246 Oppenheim JJ, Tewary P, de la Rosa G, Yang D. Alarmins initiate host defense. Adv Exp Med Biol. 2007;601:185-194. [PMID: 17713005 DOI: 10.1007/978-0-387-72005-0_19] [Cited by in Crossref: 134] [Cited by in F6Publishing: 128] [Article Influence: 8.9] [Reference Citation Analysis]
247 Leclerc E, Sturchler E, Vetter SW. The S100B/RAGE Axis in Alzheimer's Disease. Cardiovasc Psychiatry Neurol 2010;2010:539581. [PMID: 20672051 DOI: 10.1155/2010/539581] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 3.3] [Reference Citation Analysis]
248 Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019;31:954-93. [PMID: 31184204 DOI: 10.1089/ars.2019.7818] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
249 Hudson BI, Bucciarelli LG, Wendt T, Sakaguchi T, Lalla E, Qu W, Lu Y, Lee L, Stern DM, Naka Y. Blockade of receptor for advanced glycation endproducts: a new target for therapeutic intervention in diabetic complications and inflammatory disorders. Arch Biochem Biophys. 2003;419:80-88. [PMID: 14568011 DOI: 10.1016/j.abb.2003.08.030] [Cited by in Crossref: 122] [Cited by in F6Publishing: 119] [Article Influence: 6.4] [Reference Citation Analysis]
250 Willenbrock S, Braun O, Baumgart J, Lange S, Junghanss C, Heisterkamp A, Nolte I, Bullerdiek J, Murua Escobar H. TNF-α induced secretion of HMGB1 from non-immune canine mammary epithelial cells (MTH53A). Cytokine 2012;57:210-20. [PMID: 22154216 DOI: 10.1016/j.cyto.2011.11.011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
251 Shao J, Zhao M, Tong M, Wei J, Wise MR, Stone P, Chamley L, Chen Q. Increased levels of HMGB1 in trophoblastic debris may contribute to preeclampsia. Reproduction 2016;152:775-84. [PMID: 27658754 DOI: 10.1530/REP-16-0083] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
252 Muth IE, Zschüntzsch J, Kleinschnitz K, Wrede A, Gerhardt E, Balcarek P, Schreiber-Katz O, Zierz S, Dalakas MC, Voll RE, Schmidt J. HMGB1 and RAGE in skeletal muscle inflammation: Implications for protein accumulation in inclusion body myositis. Exp Neurol 2015;271:189-97. [PMID: 26048613 DOI: 10.1016/j.expneurol.2015.05.023] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
253 Ma KC, Schenck EJ, Pabon MA, Choi AMK. The Role of Danger Signals in the Pathogenesis and Perpetuation of Critical Illness. Am J Respir Crit Care Med 2018;197:300-9. [PMID: 28977759 DOI: 10.1164/rccm.201612-2460PP] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
254 Li J, Qu X, Schmidt AM. Sp1-binding elements in the promoter of RAGE are essential for amphoterin-mediated gene expression in cultured neuroblastoma cells. J Biol Chem 1998;273:30870-8. [PMID: 9812979 DOI: 10.1074/jbc.273.47.30870] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 2.5] [Reference Citation Analysis]
255 Goff WL, Bastos RG, Brown WC, Johnson WC, Schneider DA. The bovine spleen: interactions among splenic cell populations in the innate immunologic control of hemoparasitic infections. Vet Immunol Immunopathol 2010;138:1-14. [PMID: 20692048 DOI: 10.1016/j.vetimm.2010.07.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
256 Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999;97:889-901. [PMID: 10399917 DOI: 10.1016/s0092-8674(00)80801-6] [Cited by in Crossref: 1285] [Cited by in F6Publishing: 560] [Article Influence: 55.9] [Reference Citation Analysis]
257 Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015;5:194-222. [PMID: 25786107 DOI: 10.3390/biom5010194] [Cited by in Crossref: 411] [Cited by in F6Publishing: 378] [Article Influence: 58.7] [Reference Citation Analysis]
258 Leung SS, Forbes JM, Borg DJ. Receptor for Advanced Glycation End Products (RAGE) in Type 1 Diabetes Pathogenesis. Curr Diab Rep 2016;16. [DOI: 10.1007/s11892-016-0782-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
259 Cinel I, Opal SM. Molecular biology of inflammation and sepsis: a primer. Crit Care Med 2009;37:291-304. [PMID: 19050640 DOI: 10.1097/CCM.0b013e31819267fb] [Cited by in Crossref: 234] [Cited by in F6Publishing: 126] [Article Influence: 18.0] [Reference Citation Analysis]
260 Höhne C, Wenzel M, Angele B, Hammerschmidt S, Häcker H, Klein M, Bierhaus A, Sperandio M, Pfister H, Koedel U. High mobility group box 1 prolongs inflammation and worsens disease in pneumococcal meningitis. Brain 2013;136:1746-59. [DOI: 10.1093/brain/awt064] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
261 Lee W, Park EJ, Kwak S, Kim Y, Na DH, Bae JS. PEGylated lysozymes with anti-septic effects in human endothelial cells and in mice. Biochem Biophys Res Commun 2015;459:662-7. [PMID: 25769950 DOI: 10.1016/j.bbrc.2015.02.167] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
262 Wang H, Zhao Z, Liu C, Guo Z, Yuan Y, Zhao H, Zhou Z, Mei X. Receptor for Advanced Glycation End-Products (RAGE) Blockade Do Damage to Neuronal Survival via Disrupting Wnt/β-Catenin Signaling in Spinal Cord Injury. Neurochem Res 2018;43:1405-12. [PMID: 29790067 DOI: 10.1007/s11064-018-2555-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
263 Bartling B, Fuchs C, Somoza V, Niemann B, Silber R, Simm A. Lung level of HMBG1 is elevated in response to advanced glycation end product-enriched foodin vivo. Mol Nutr Food Res 2007;51:479-87. [DOI: 10.1002/mnfr.200600223] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
264 Jiang W, Li J, Gallowitsch-Puerta M, Tracey KJ, Pisetsky DS. The effects of CpG DNA on HMGB1 release by murine macrophage cell lines. J Leukoc Biol 2005;78:930-6. [PMID: 16081598 DOI: 10.1189/jlb.0405208] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 2.0] [Reference Citation Analysis]
265 Huttunen HJ, Rauvala H. Amphoterin as an extracellular regulator of cell motility: from discovery to disease. J Intern Med 2004;255:351-66. [PMID: 14871459 DOI: 10.1111/j.1365-2796.2003.01301.x] [Cited by in Crossref: 121] [Cited by in F6Publishing: 111] [Article Influence: 6.7] [Reference Citation Analysis]
266 Sambamurthy N, Leme AS, Oury TD, Shapiro SD. The receptor for advanced glycation end products (RAGE) contributes to the progression of emphysema in mice. PLoS One 2015;10:e0118979. [PMID: 25781626 DOI: 10.1371/journal.pone.0118979] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
267 González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of Astrocytes in Alzheimer's Disease from a Neuroinflammatory and Oxidative Stress Perspective. Front Mol Neurosci 2017;10:427. [PMID: 29311817 DOI: 10.3389/fnmol.2017.00427] [Cited by in Crossref: 179] [Cited by in F6Publishing: 163] [Article Influence: 35.8] [Reference Citation Analysis]
268 Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012;137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Reference Citation Analysis]
269 Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. HMGB1-Mediated Neuroinflammatory Responses in Brain Injuries: Potential Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2020;21:E4609. [PMID: 32610502 DOI: 10.3390/ijms21134609] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
270 Schlueter C, Weber H, Meyer B, Rogalla P, Röser K, Hauke S, Bullerdiek J. Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule. Am J Pathol 2005;166:1259-63. [PMID: 15793304 DOI: 10.1016/S0002-9440(10)62344-9] [Cited by in Crossref: 163] [Cited by in F6Publishing: 82] [Article Influence: 9.6] [Reference Citation Analysis]
271 Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33:637-668. [PMID: 11390274 DOI: 10.1016/s1357-2725(01)00046-2] [Cited by in Crossref: 1056] [Cited by in F6Publishing: 399] [Article Influence: 50.3] [Reference Citation Analysis]
272 Wilton R, Yousef MA, Saxena P, Szpunar M, Stevens FJ. Expression and purification of recombinant human receptor for advanced glycation endproducts in Escherichia coli. Protein Expression and Purification 2006;47:25-35. [DOI: 10.1016/j.pep.2006.01.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
273 Kim W, Hudson BI, Moser B, Guo J, Rong LL, Lu Y, Qu W, Lalla E, Lerner S, Chen Y, Yan SS, D'Agati V, Naka Y, Ramasamy R, Herold K, Yan SF, Schmidt AM. Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. Ann N Y Acad Sci 2005;1043:553-61. [PMID: 16037278 DOI: 10.1196/annals.1338.063] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 4.3] [Reference Citation Analysis]
274 Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, Yasui K, Takeuchi M, Makita Z, Takasawa S, Okamoto H, Watanabe T, Yamamoto H. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J. 2003;370:1097-1109. [PMID: 12495433 DOI: 10.1042/bj20021371] [Cited by in Crossref: 470] [Cited by in F6Publishing: 417] [Article Influence: 24.7] [Reference Citation Analysis]
275 Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 1996;382:685-91. [DOI: 10.1038/382685a0] [Cited by in Crossref: 1369] [Cited by in F6Publishing: 1362] [Article Influence: 52.7] [Reference Citation Analysis]
276 Tolle LB, Standiford TJ. Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol 2013;229:145-56. [PMID: 23097158 DOI: 10.1002/path.4124] [Cited by in Crossref: 88] [Cited by in F6Publishing: 84] [Article Influence: 9.8] [Reference Citation Analysis]
277 Yan SF, Naka Y, Hudson BI, Herold K, Yan SD, Ramasamy R, Schmidt AM. The ligand/RAGE axis: lighting the fuse and igniting vascular stress. Curr Atheroscler Rep 2006;8:232-9. [PMID: 16640960 DOI: 10.1007/s11883-006-0078-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
278 Mikkelsen SE, Novitskaya V, Kriajevska M, Berezin V, Bock E, Norrild B, Lukanidin E. S100A12 protein is a strong inducer of neurite outgrowth from primary hippocampal neurons. J Neurochem 2001;79:767-76. [PMID: 11723169 DOI: 10.1046/j.1471-4159.2001.00605.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 1.3] [Reference Citation Analysis]
279 Poljicanin A, Filipovic N, Vukusic Pusic T, Soljic V, Caric A, Saraga-babic M, Vukojevic K. Expression pattern of RAGE and IGF-1 in the human fetal ovary and ovarian serous carcinoma. Acta Histochemica 2015;117:468-76. [DOI: 10.1016/j.acthis.2015.01.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
280 Zglejc-Waszak K, Mukherjee K, Juranek JK. The cross-talk between RAGE and DIAPH1 in neurological complications of diabetes: A review. Eur J Neurosci 2021;54:5982-99. [PMID: 34449932 DOI: 10.1111/ejn.15433] [Reference Citation Analysis]
281 Nakamura T, Asanuma H, Kusuda S, Imai K, Hosono S, Kato R, Suzuki S, Yokoi K, Kokubo M, Yamada S, Kamohara T. Multicenter study for brain/body hypothermia for hypoxic-ischemic encephalopathy: Changes in HMGB-1. Pediatr Int 2017;59:1074-9. [PMID: 28741799 DOI: 10.1111/ped.13377] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
282 Stern D, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts: a multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev. 2002;54:1615-1625. [PMID: 12453678 DOI: 10.1016/s0169-409x(02)00160-6] [Cited by in Crossref: 186] [Cited by in F6Publishing: 75] [Article Influence: 9.8] [Reference Citation Analysis]
283 Salo H, Qu H, Mitsiou D, Aucott H, Han J, Zhang XM, Aulin C, Erlandsson Harris H. Disulfide and Fully Reduced HMGB1 Induce Different Macrophage Polarization and Migration Patterns. Biomolecules 2021;11:800. [PMID: 34071440 DOI: 10.3390/biom11060800] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
284 He ZW, Qin YH, Wang ZW, Chen Y, Shen Q, Dai SM. HMGB1 acts in synergy with lipopolysaccharide in activating rheumatoid synovial fibroblasts via p38 MAPK and NF-κB signaling pathways. Mediators Inflamm. 2013;2013:596716. [PMID: 24302816 DOI: 10.1155/2013/596716] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 4.0] [Reference Citation Analysis]
285 Hallam S, Escorcio-Correia M, Soper R, Schultheiss A, Hagemann T. Activated macrophages in the tumour microenvironment-dancing to the tune of TLR and NF-kappaB. J Pathol 2009;219:143-52. [PMID: 19662665 DOI: 10.1002/path.2602] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
286 Raucci A, Palumbo R, Bianchi ME. HMGB1: a signal of necrosis. Autoimmunity. 2007;40:285-289. [PMID: 17516211 DOI: 10.1080/08916930701356978] [Cited by in Crossref: 124] [Cited by in F6Publishing: 118] [Article Influence: 8.3] [Reference Citation Analysis]
287 Sun L, Li M, Ma X, Feng H, Song J, Lv C, He Y. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner. J Neuroinflammation 2017;14:231. [PMID: 29178911 DOI: 10.1186/s12974-017-1008-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
288 Stitt AW, He C, Vlassara H. Characterization of the Advanced Glycation End-Product Receptor Complex in Human Vascular Endothelial Cells. Biochemical and Biophysical Research Communications 1999;256:549-56. [DOI: 10.1006/bbrc.1999.0291] [Cited by in Crossref: 75] [Cited by in F6Publishing: 68] [Article Influence: 3.3] [Reference Citation Analysis]
289 Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res 2020;1867:118677. [PMID: 32057918 DOI: 10.1016/j.bbamcr.2020.118677] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
290 Sakaguchi M, Murata H, Yamamoto K, Ono T, Sakaguchi Y, Motoyama A, Hibino T, Kataoka K, Huh NH. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One. 2011;6:e23132. [PMID: 21829704 DOI: 10.1371/journal.pone.0023132] [Cited by in Crossref: 135] [Cited by in F6Publishing: 137] [Article Influence: 12.3] [Reference Citation Analysis]
291 Schmohl J, Guenther T, Sutanto W, Schuster F, Kroell T, Hartmann A, Salih H, Stoetzer O, Schmetzer H. Expression profiles of HMGB1 on B-CLL related leukocytes contribute to prediction of relapse. Immunobiology 2021;226:152048. [PMID: 33485134 DOI: 10.1016/j.imbio.2020.152048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
292 Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem. 1999;274:31740-31749. [PMID: 10531386 DOI: 10.1074/jbc.274.44.31740] [Cited by in Crossref: 642] [Cited by in F6Publishing: 610] [Article Influence: 27.9] [Reference Citation Analysis]
293 Feng B, Xu L, Wang H, Yan X, Xue J, Liu F, Hu JF. Atorvastatin exerts its anti-atherosclerotic effects by targeting the receptor for advanced glycation end products. Biochim Biophys Acta 2011;1812:1130-7. [PMID: 21651980 DOI: 10.1016/j.bbadis.2011.05.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
294 Kwak T, Drews-elger K, Ergonul A, Miller PC, Braley A, Hwang GH, Zhao D, Besser A, Yamamoto Y, Yamamoto H, El-ashry D, Slingerland JM, Lippman ME, Hudson BI. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis. Oncogene 2017;36:1559-72. [DOI: 10.1038/onc.2016.324] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 8.5] [Reference Citation Analysis]
295 Ramji N, Toth C, Kennedy J, Zochodne DW. Does diabetes mellitus target motor neurons? Neurobiol Dis 2007;26:301-11. [PMID: 17337195 DOI: 10.1016/j.nbd.2006.11.016] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 3.9] [Reference Citation Analysis]
296 Kuroda N, Inoue K, Ikeda T, Hara Y, Wake K, Sato T. Apoptotic response through a high mobility box 1 protein-dependent mechanism in LPS/GalN-induced mouse liver failure and glycyrrhizin-mediated inhibition. PLoS One 2014;9:e92884. [PMID: 24690901 DOI: 10.1371/journal.pone.0092884] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
297 Yoon S, Park S, Shim CY, Park CM, Ko Y, Choi D, Park H, Oh B, Kim H, Jang Y, Chung N. Association of RAGE gene polymorphisms with coronary artery disease in the Korean population. Coronary Artery Disease 2007;18:1-8. [DOI: 10.1097/mca.0b013e3280105b4d] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
298 Dozmorov MG, Yang Q, Wu W, Wren J, Suhail MM, Woolley CL, Young DG, Fung KM, Lin HK. Differential effects of selective frankincense (Ru Xiang) essential oil versus non-selective sandalwood (Tan Xiang) essential oil on cultured bladder cancer cells: a microarray and bioinformatics study. Chin Med 2014;9:18. [PMID: 25006348 DOI: 10.1186/1749-8546-9-18] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
299 Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, Tracey KJ, Chiorazzi N. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 2004;173:307-13. [PMID: 15210788 DOI: 10.4049/jimmunol.173.1.307] [Cited by in Crossref: 315] [Cited by in F6Publishing: 310] [Article Influence: 17.5] [Reference Citation Analysis]
300 Yamada S, Inoue K, Yakabe K, Imaizumi H, Maruyama I. High mobility group protein 1 (HMGB1) quantified by ELISA with a monoclonal antibody that does not cross-react with HMGB2. Clin Chem. 2003;49:1535-1537. [PMID: 12928240 DOI: 10.1373/49.9.1535] [Cited by in Crossref: 88] [Cited by in F6Publishing: 82] [Article Influence: 4.6] [Reference Citation Analysis]
301 Hoste E, Maueröder C, van Hove L, Catrysse L, Vikkula HK, Sze M, Maes B, Karjosukarso D, Martens L, Gonçalves A, Parthoens E, Roelandt R, Declercq W, Fuentes I, Palisson F, Gonzalez S, Salas-Alanis JC, Boon L, Huebener P, Mulder KW, Ravichandran K, Saeys Y, Schwabe RF, van Loo G. Epithelial HMGB1 Delays Skin Wound Healing and Drives Tumor Initiation by Priming Neutrophils for NET Formation. Cell Rep 2019;29:2689-2701.e4. [PMID: 31775038 DOI: 10.1016/j.celrep.2019.10.104] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
302 Pichiule P, Chavez JC, Schmidt AM, Vannucci SJ. Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia. J Biol Chem. 2007;282:36330-36340. [PMID: 17942394 DOI: 10.1074/jbc.m706407200] [Cited by in Crossref: 69] [Cited by in F6Publishing: 42] [Article Influence: 4.6] [Reference Citation Analysis]
303 Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002;418:191-5. [DOI: 10.1038/nature00858] [Cited by in Crossref: 2782] [Cited by in F6Publishing: 2707] [Article Influence: 139.1] [Reference Citation Analysis]
304 Yan SF, Yan SD, Ramasamy R, Schmidt AM. Tempering the wrath of RAGE: an emerging therapeutic strategy against diabetic complications, neurodegeneration, and inflammation. Ann Med 2009;41:408-22. [PMID: 19322705 DOI: 10.1080/07853890902806576] [Cited by in Crossref: 76] [Cited by in F6Publishing: 85] [Article Influence: 6.9] [Reference Citation Analysis]
305 Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med. 2008;14:476-484. [PMID: 18431461 DOI: 10.2119/2008-00034.klune] [Cited by in Crossref: 509] [Cited by in F6Publishing: 304] [Article Influence: 36.4] [Reference Citation Analysis]
306 Rosin DL, Okusa MD. Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol. 2011;22:416-425. [PMID: 21335516 DOI: 10.1681/asn.2010040430] [Cited by in Crossref: 178] [Cited by in F6Publishing: 116] [Article Influence: 16.2] [Reference Citation Analysis]
307 Jeong SJ, Lim BJ, Park S, Choi D, Kim HW, Ku NS, Han SH, Kim CO, Choi JY, Song YG, Kim JM. The effect of sRAGE-Fc fusion protein attenuates inflammation and decreases mortality in a murine cecal ligation and puncture model. Inflamm Res 2012;61:1211-8. [DOI: 10.1007/s00011-012-0518-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
308 Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update 2016;22:535-60. [PMID: 27363410 DOI: 10.1093/humupd/dmw022] [Cited by in Crossref: 128] [Cited by in F6Publishing: 114] [Article Influence: 21.3] [Reference Citation Analysis]
309 Yano T, Hagiwara Y, Ando A, Kanazawa K, Koide M, Sekiguchi T, Itaya N, Onoki T, Suzuki K, Tsuchiya M, Sogi Y, Yabe Y, Itoi E. RAGE-dependent NF-kB inflammation processes in the capsule of frozen shoulders. J Shoulder Elbow Surg 2020;29:1884-91. [PMID: 32279986 DOI: 10.1016/j.jse.2020.01.076] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
310 Pullerits R, Brisslert M, Jonsson IM, Tarkowski A. Soluble receptor for advanced glycation end products triggers a proinflammatory cytokine cascade via beta2 integrin Mac-1. Arthritis Rheum 2006;54:3898-907. [PMID: 17133598 DOI: 10.1002/art.22217] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 5.1] [Reference Citation Analysis]
311 Feghali K, Iwasaki K, Tanaka K, Komaki M, Machigashira M, Ishikawa I, Izumi Y. Human gingival fibroblasts release high-mobility group box-1 protein through active and passive pathways. Oral Microbiology and Immunology 2009;24:292-8. [DOI: 10.1111/j.1399-302x.2009.00508.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
312 Bonanno G, Raiteri L, Milanese M, Zappettini S, Melloni E, Pedrazzi M, Passalacqua M, Tacchetti C, Usai C, Sparatore B. The high-mobility group box 1 cytokine induces transporter-mediated release of glutamate from glial subcellular particles (gliosomes) prepared from in situ-matured astrocytes. Int Rev Neurobiol 2007;82:73-93. [PMID: 17678956 DOI: 10.1016/S0074-7742(07)82004-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
313 Manev H, Uz T, Manev R. Glia as a putative target for antidepressant treatments. Journal of Affective Disorders 2003;75:59-64. [DOI: 10.1016/s0165-0327(02)00044-7] [Cited by in Crossref: 39] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
314 Shi H, Che Y, Bai L, Zhang J, Fan J, Mao H. High mobility group box 1 in diabetic nephropathy. Exp Ther Med 2017;14:2431-3. [PMID: 28962177 DOI: 10.3892/etm.2017.4826] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
315 Bertheloot D, Naumovski AL, Langhoff P, Horvath GL, Jin T, Xiao TS, Garbi N, Agrawal S, Kolbeck R, Latz E. RAGE Enhances TLR Responses through Binding and Internalization of RNA. J Immunol 2016;197:4118-26. [PMID: 27798148 DOI: 10.4049/jimmunol.1502169] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
316 Ulfgren AK, Grundtman C, Borg K, Alexanderson H, Andersson U, Harris HE, Lundberg IE. Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum. 2004;50:1586-1594. [PMID: 15146429 DOI: 10.1002/art.20220] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 4.1] [Reference Citation Analysis]
317 Ramasamy R, Yan SF, Schmidt AM. The RAGE axis and endothelial dysfunction: maladaptive roles in the diabetic vasculature and beyond. Trends Cardiovasc Med 2005;15:237-43. [PMID: 16226677 DOI: 10.1016/j.tcm.2005.08.003] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 3.3] [Reference Citation Analysis]
318 El Mezayen R, El Gazzar M, Seeds MC, McCall CE, Dreskin SC, Nicolls MR. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol Lett 2007;111:36-44. [PMID: 17568691 DOI: 10.1016/j.imlet.2007.04.011] [Cited by in Crossref: 108] [Cited by in F6Publishing: 109] [Article Influence: 7.2] [Reference Citation Analysis]
319 Penfold SA, Coughlan MT, Patel SK, Srivastava PM, Sourris KC, Steer D, Webster DE, Thomas MC, MacIsaac RJ, Jerums G, Burrell LM, Cooper ME, Forbes JM. Circulating high-molecular-weight RAGE ligands activate pathways implicated in the development of diabetic nephropathy. Kidney Int 2010;78:287-95. [PMID: 20463655 DOI: 10.1038/ki.2010.134] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 4.5] [Reference Citation Analysis]
320 Sato H, Sakaguchi M, Yamamoto H, Tomida S, Aoe K, Shien K, Yoshioka T, Namba K, Torigoe H, Soh J, Tsukuda K, Tao H, Okabe K, Miyoshi S, Pass HI, Toyooka S. Therapeutic potential of targeting S100A11 in malignant pleural mesothelioma. Oncogenesis 2018;7:11. [PMID: 29362358 DOI: 10.1038/s41389-017-0017-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
321 Hinkelbein J, Böhm L, Spelten O, Sander D, Soltész S, Braunecker S. Hyperoxia-Induced Protein Alterations in Renal Rat Tissue: A Quantitative Proteomic Approach to Identify Hyperoxia-Induced Effects in Cellular Signaling Pathways. Dis Markers 2015;2015:964263. [PMID: 26106253 DOI: 10.1155/2015/964263] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
322 Dandona P, Ghanim H, Green K, Sia CL, Abuaysheh S, Kuhadiya N, Batra M, Dhindsa S, Chaudhuri A. Insulin infusion suppresses while glucose infusion induces Toll-like receptors and high-mobility group-B1 protein expression in mononuclear cells of type 1 diabetes patients. Am J Physiol Endocrinol Metab 2013;304:E810-8. [PMID: 23403945 DOI: 10.1152/ajpendo.00566.2012] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
323 Moser B, Szabolcs MJ, Ankersmit HJ, Lu Y, Qu W, Weinberg A, Herold KC, Schmidt AM. Blockade of RAGE suppresses alloimmune reactions in vitro and delays allograft rejection in murine heart transplantation. Am J Transplant 2007;7:293-302. [PMID: 17241110 DOI: 10.1111/j.1600-6143.2006.01617.x] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 4.3] [Reference Citation Analysis]
324 Dong Y, Gu Y, Huan Y, Wang Y, Liu Y, Liu M, Ding F, Gu X, Wang Y. HMGB1 protein does not mediate the inflammatory response in spontaneous spinal cord regeneration: a hint for CNS regeneration. J Biol Chem 2013;288:18204-18. [PMID: 23649623 DOI: 10.1074/jbc.M113.463810] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
325 Zeng S, Dun H, Ippagunta N, Rosario R, Zhang QY, Lefkowitch J, Yan SF, Schmidt AM, Emond JC. Receptor for advanced glycation end product (RAGE)-dependent modulation of early growth response-1 in hepatic ischemia/reperfusion injury. J Hepatol. 2009;50:929-936. [PMID: 19303658 DOI: 10.1016/j.jhep.2008.11.022] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 4.5] [Reference Citation Analysis]
326 Son S, Bowie LE, Maiuri T, Hung CLK, Desmond CR, Xia J, Truant R. High-mobility group box 1 links sensing of reactive oxygen species by huntingtin to its nuclear entry. J Biol Chem 2019;294:1915-23. [PMID: 30538129 DOI: 10.1074/jbc.RA117.001440] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
327 Crews FT, Lawrimore CJ, Walter TJ, Coleman LG Jr. The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017;122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Cited by in Crossref: 124] [Cited by in F6Publishing: 121] [Article Influence: 24.8] [Reference Citation Analysis]
328 Rouhiainen A, Kuja-Panula J, Tumova S, Rauvala H. RAGE-mediated cell signaling. Methods Mol Biol. 2013;963:239-263. [PMID: 23296615 DOI: 10.1007/978-1-62703-230-8_15] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
329 Ebina M, Taniguchi H, Miyasho T, Yamada S, Shibata N, Ohta H, Hisata S, Ohkouchi S, Tamada T, Nishimura H, Ishizaka A, Maruyama I, Okada Y, Takashi K, Nukiwa T. Gradual increase of high mobility group protein b1 in the lungs after the onset of acute exacerbation of idiopathic pulmonary fibrosis. Pulm Med 2011;2011:916486. [PMID: 21637372 DOI: 10.1155/2011/916486] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
330 Hou L, Yang Z, Wang Z, Zhang X, Zhao Y, Yang H, Zheng B, Tian W, Wang S, He Z, Wang X. NLRP3/ASC-mediated alveolar macrophage pyroptosis enhances HMGB1 secretion in acute lung injury induced by cardiopulmonary bypass. Lab Invest 2018;98:1052-64. [PMID: 29884910 DOI: 10.1038/s41374-018-0073-0] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
331 Chuah YK, Basir R, Talib H, Tie TH, Nordin N. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam 2013;2013:403460. [PMID: 24102034 DOI: 10.1155/2013/403460] [Cited by in Crossref: 113] [Cited by in F6Publishing: 123] [Article Influence: 12.6] [Reference Citation Analysis]
332 Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 2020;13:91. [PMID: 32660524 DOI: 10.1186/s13045-020-00920-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
333 Sanders KA, Delker DA, Huecksteadt T, Beck E, Wuren T, Chen Y, Zhang Y, Hazel MW, Hoidal JR. RAGE is a Critical Mediator of Pulmonary Oxidative Stress, Alveolar Macrophage Activation and Emphysema in Response to Cigarette Smoke. Sci Rep 2019;9:231. [PMID: 30659203 DOI: 10.1038/s41598-018-36163-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
334 Ramasamy R, Yan SF, Schmidt AM. The RAGE connection to diabetes and atherosclerosis: an intertwined web of advanced glycation and inflammation. Future Lipidology 2007;2:239-50. [DOI: 10.2217/17460875.2.2.239] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
335 Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998;78:547-81. [PMID: 9562038 DOI: 10.1152/physrev.1998.78.2.547] [Cited by in Crossref: 2542] [Cited by in F6Publishing: 2239] [Article Influence: 105.9] [Reference Citation Analysis]
336 Ku SK, Kim JA, Bae JS. Vascular barrier protective effects of piperlonguminine in vitro and in vivo. Inflamm Res. 2014;63:369-379. [PMID: 24468889 DOI: 10.1007/s00011-014-0708-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
337 Shanley TP, Hallstrom C, Wong HR. Sepsis. Pediatric Critical Care. Elsevier; 2006. pp. 1474-93. [DOI: 10.1016/b978-032301808-1.50099-7] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
338 Ramasamy R, Yan SF, Schmidt AM. Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids. 2012;42:1151-1161. [PMID: 20957395 DOI: 10.1007/s00726-010-0773-2] [Cited by in Crossref: 99] [Cited by in F6Publishing: 90] [Article Influence: 8.3] [Reference Citation Analysis]
339 Sousa MM, Yan SD, Stern D, Saraiva MJ. Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor kB (NF-kB) activation. Lab Invest 2000;80:1101-10. [PMID: 10908156 DOI: 10.1038/labinvest.3780116] [Cited by in Crossref: 114] [Cited by in F6Publishing: 108] [Article Influence: 5.2] [Reference Citation Analysis]
340 Xie J, Méndez JD, Méndez-valenzuela V, Aguilar-hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling 2013;25:2185-97. [DOI: 10.1016/j.cellsig.2013.06.013] [Cited by in Crossref: 288] [Cited by in F6Publishing: 271] [Article Influence: 32.0] [Reference Citation Analysis]
341 Hofer S, Uhle F, Fleming T, Hell C, Schmoch T, Bruckner T, Weigand MA, Brenner T. RAGE-mediated inflammation in patients with septic shock. J Surg Res 2016;202:315-27. [PMID: 27229106 DOI: 10.1016/j.jss.2016.01.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
342 Zhou F, Wang Y, Tan Y, Wu C, Chen Y. HMGB1 regulates lipopolysaccharide-induced cellular dysfunction in HTR8/SVneo cells: Implications for the role of HMGB1 in unexplained spontaneous miscarriage. Placenta 2021;112:16-22. [PMID: 34243116 DOI: 10.1016/j.placenta.2021.06.012] [Reference Citation Analysis]
343 Basta G, Leonardis D, Mallamaci F, Cutrupi S, Pizzini P, Gaetano L, Tripepi R, Tripepi G, De Caterina R, Zoccali C. Circulating soluble receptor of advanced glycation end product inversely correlates with atherosclerosis in patients with chronic kidney disease. Kidney Int 2010;77:225-31. [PMID: 19924100 DOI: 10.1038/ki.2009.419] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
344 Tian S, Liu W, Pan Y, Zhan S. Long non-coding RNA Linc00320 inhibits glioma cell proliferation through restraining Wnt/β-catenin signaling. Biochemical and Biophysical Research Communications 2019;508:458-64. [DOI: 10.1016/j.bbrc.2018.11.101] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
345 Ramasamy R, Yan SF, Herold K, Clynes R, Schmidt AM. Receptor for advanced glycation end products: fundamental roles in the inflammatory response: winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Ann N Y Acad Sci 2008;1126:7-13. [PMID: 18448789 DOI: 10.1196/annals.1433.056] [Cited by in Crossref: 88] [Cited by in F6Publishing: 88] [Article Influence: 6.3] [Reference Citation Analysis]
346 Sárkány Z, Ikonen TP, Ferreira-da-Silva F, Saraiva MJ, Svergun D, Damas AM. Solution structure of the soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 2011;286:37525-34. [PMID: 21865159 DOI: 10.1074/jbc.M111.223438] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
347 Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y, Yang H, Tracey KJ, Billiar TR, Wilson MA. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol. 2007;178:6573-6580. [PMID: 17475888 DOI: 10.4049/jimmunol.178.10.6573] [Cited by in Crossref: 219] [Cited by in F6Publishing: 216] [Article Influence: 14.6] [Reference Citation Analysis]
348 Caillier SJ, Briggs F, Cree BA, Baranzini SE, Fernandez-Viña M, Ramsay PP, Khan O, Royal W 3rd, Hauser SL, Barcellos LF, Oksenberg JR. Uncoupling the roles of HLA-DRB1 and HLA-DRB5 genes in multiple sclerosis. J Immunol 2008;181:5473-80. [PMID: 18832704 DOI: 10.4049/jimmunol.181.8.5473] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 5.4] [Reference Citation Analysis]
349 Knapp S, Müller S, Digilio G, Bonaldi T, Bianchi ME, Musco G. The Long Acidic Tail of High Mobility Group Box 1 (HMGB1) Protein Forms an Extended and Flexible Structure That Interacts with Specific Residues within and between the HMG Boxes. Biochemistry 2004;43:11992-7. [DOI: 10.1021/bi049364k] [Cited by in Crossref: 65] [Cited by in F6Publishing: 71] [Article Influence: 3.6] [Reference Citation Analysis]
350 Julia S, Peter S, Karl-Heinz W, Daniel Nils G, Christian R. Possible role of the HMGB1 and RAGE inflammatory pathway in primary sclerosing cholangitis. Clin Res Hepatol Gastroenterol 2021;46:101791. [PMID: 34400366 DOI: 10.1016/j.clinre.2021.101791] [Reference Citation Analysis]
351 Matsuoka N, Itoh T, Watarai H, Sekine-Kondo E, Nagata N, Okamoto K, Mera T, Yamamoto H, Yamada S, Maruyama I, Taniguchi M, Yasunami Y. High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in mice. J Clin Invest 2010;120:735-43. [PMID: 20124731 DOI: 10.1172/JCI41360] [Cited by in Crossref: 104] [Cited by in F6Publishing: 51] [Article Influence: 8.7] [Reference Citation Analysis]
352 Zhai DX, Kong QF, Xu WS, Bai SS, Peng HS, Zhao K, Li GZ, Wang DD, Sun B, Wang JH, Wang GY, Li HL. RAGE expression is up-regulated in human cerebral ischemia and pMCAO rats. Neurosci Lett 2008;445:117-21. [PMID: 18782604 DOI: 10.1016/j.neulet.2008.08.077] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 2.1] [Reference Citation Analysis]
353 Son M, Oh S, Choi CH, Park KY, Son KH, Byun K. Pyrogallol-Phloroglucinol-6,6-Bieckol from Ecklonia cava Attenuates Tubular Epithelial Cell (TCMK-1) Death in Hypoxia/Reoxygenation Injury. Mar Drugs 2019;17:E602. [PMID: 31652920 DOI: 10.3390/md17110602] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
354 Koyama H, Yamamoto H, Nishizawa Y. RAGE and soluble RAGE: potential therapeutic targets for cardiovascular diseases. Mol Med. 2007;13:625-635. [PMID: 17932553 DOI: 10.2119/2007-00087.koyama] [Cited by in Crossref: 98] [Cited by in F6Publishing: 46] [Article Influence: 7.0] [Reference Citation Analysis]
355 Shim CY, Park S, Yoon SJ, Park HY, Kim HT, Oh B, Park C, Ko YG, Choi D, Jang Y, Chung N. Association of RAGE gene polymorphisms with in-stent restenosis in non-diabetic Korean population. Cardiology 2007;107:261-8. [PMID: 16954682 DOI: 10.1159/000095516] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
356 Bauer EM, Shapiro R, Zheng H, Ahmad F, Ishizawar D, Comhair SA, Erzurum SC, Billiar TR, Bauer PM. High mobility group box 1 contributes to the pathogenesis of experimental pulmonary hypertension via activation of Toll-like receptor 4. Mol Med 2013;18:1509-18. [PMID: 23269975 DOI: 10.2119/molmed.2012.00283] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 7.8] [Reference Citation Analysis]
357 Mittal D, Saccheri F, Vénéreau E, Pusterla T, Bianchi ME, Rescigno M. TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO J 2010;29:2242-52. [PMID: 20526283 DOI: 10.1038/emboj.2010.94] [Cited by in Crossref: 116] [Cited by in F6Publishing: 112] [Article Influence: 9.7] [Reference Citation Analysis]
358 Body-malapel M, Djouina M, Waxin C, Langlois A, Gower-rousseau C, Zerbib P, Schmidt A, Desreumaux P, Boulanger E, Vignal C. The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for Inflammatory Bowel Diseases. Mucosal Immunol 2019;12:468-78. [DOI: 10.1038/s41385-018-0119-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
359 Czura CJ, Wang H, Tracey KJ. Dual roles for HMGB1: DNA binding and cytokine. J Endotoxin Res 2001;7:315-21. [PMID: 11717586 DOI: 10.1177/09680519010070041401] [Cited by in Crossref: 73] [Cited by in F6Publishing: 78] [Article Influence: 3.7] [Reference Citation Analysis]
360 Wuren T, Huecksteadt T, Beck E, Warren K, Hoidal J, Ostrand-Rosenberg S, Sanders K. The receptor for advanced glycation endproducts (RAGE) decreases survival of tumor-bearing mice by enhancing the generation of lung metastasis-associated myeloid-derived suppressor cells. Cell Immunol 2021;365:104379. [PMID: 34038758 DOI: 10.1016/j.cellimm.2021.104379] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
361 Lalla E, Lamster IB, Feit M, Huang L, Schmidt AM. A murine model of accelerated periodontal disease in diabetes. J Periodontal Res 1998;33:387-99. [PMID: 9842504 DOI: 10.1111/j.1600-0765.1998.tb02335.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 2.5] [Reference Citation Analysis]
362 Kato J, Svensson CI. Role of Extracellular Damage-Associated Molecular Pattern Molecules (DAMPs) as Mediators of Persistent Pain. Molecular and Cell Biology of Pain. Elsevier; 2015. pp. 251-79. [DOI: 10.1016/bs.pmbts.2014.11.014] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
363 Sano H, Nagai R, Matsumoto K, Horiuchi S. Receptors for proteins modified by advanced glycation endproducts (AGE)—their functional role in atherosclerosis. Mechanisms of Ageing and Development 1999;107:333-46. [DOI: 10.1016/s0047-6374(99)00011-1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
364 Nakamura T, Sato E, Fujiwara N, Kawagoe Y, Ueda Y, Suzuki T, Yamada S, Takeuchi M, Fukami K, Ueda S, Adachi H, Matsui T, Okuda S, Yamagishi S. Positive association of serum levels of advanced glycation end products and high mobility group box–1 with asymmetric dimethylarginine in nondiabetic chronic kidney disease patients. Metabolism 2009;58:1624-8. [DOI: 10.1016/j.metabol.2009.05.018] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 2.8] [Reference Citation Analysis]
365 Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000;405:354-360. [PMID: 10830965 DOI: 10.1038/35012626] [Cited by in Crossref: 867] [Cited by in F6Publishing: 855] [Article Influence: 39.4] [Reference Citation Analysis]
366 Chen M, Li H, Wang G, Shen X, Zhao S, Su W. Atorvastatin prevents advanced glycation end products (AGEs)-induced cardiac fibrosis via activating peroxisome proliferator-activated receptor gamma (PPAR-γ). Metabolism 2016;65:441-53. [PMID: 26975536 DOI: 10.1016/j.metabol.2015.11.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
367 Kim SY, Son M, Lee SE, Park IH, Kwak MS, Han M, Lee HS, Kim ES, Kim JY, Lee JE, Choi JE, Diamond B, Shin JS. High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation. Front Immunol 2018;9:705. [PMID: 29696019 DOI: 10.3389/fimmu.2018.00705] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
368 Stark K, Philippi V, Stockhausen S, Busse J, Antonelli A, Miller M, Schubert I, Hoseinpour P, Chandraratne S, von Brühl ML, Gaertner F, Lorenz M, Agresti A, Coletti R, Antoine DJ, Heermann R, Jung K, Reese S, Laitinen I, Schwaiger M, Walch A, Sperandio M, Nawroth PP, Reinhardt C, Jäckel S, Bianchi ME, Massberg S. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016;128:2435-49. [PMID: 27574188 DOI: 10.1182/blood-2016-04-710632] [Cited by in Crossref: 117] [Cited by in F6Publishing: 112] [Article Influence: 19.5] [Reference Citation Analysis]
369 Shin JJ, Lee EK, Park TJ, Kim W. Damage-associated molecular patterns and their pathological relevance in diabetes mellitus. Ageing Research Reviews 2015;24:66-76. [DOI: 10.1016/j.arr.2015.06.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
370 Tancharoen S, Gando S, Binita S, Nagasato T, Kikuchi K, Nawa Y, Dararat P, Yamamoto M, Narkpinit S, Maruyama I. HMGB1 Promotes Intraoral Palatal Wound Healing through RAGE-Dependent Mechanisms. Int J Mol Sci 2016;17:E1961. [PMID: 27886093 DOI: 10.3390/ijms17111961] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
371 Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008;3:99-126. [PMID: 18039143 DOI: 10.1146/annurev.pathmechdis.3.121806.151456] [Cited by in Crossref: 514] [Cited by in F6Publishing: 485] [Article Influence: 36.7] [Reference Citation Analysis]
372 Van Crombruggen K, Jacob F, Zhang N, Bachert C. Damage-associated molecular patterns and their receptors in upper airway pathologies. Cell Mol Life Sci 2013;70:4307-21. [DOI: 10.1007/s00018-013-1356-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
373 Yan SD, Roher A, Schmidt AM, Stern DM. Cellular cofactors for amyloid beta-peptide-induced cell stress. Moving from cell culture to in vivo. Am J Pathol 1999;155:1403-11. [PMID: 10550293 DOI: 10.1016/s0002-9440(10)65452-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
374 Nowotny K, Jung T, Grune T, Höhn A. Accumulation of modified proteins and aggregate formation in aging. Exp Gerontol 2014;57:122-31. [PMID: 24877899 DOI: 10.1016/j.exger.2014.05.016] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 6.0] [Reference Citation Analysis]
375 Sheikpranbabu S, Haribalaganesh R, Lee K, Gurunathan S. Pigment epithelium-derived factor inhibits advanced glycation end products-induced retinal vascular permeability. Biochimie 2010;92:1040-51. [DOI: 10.1016/j.biochi.2010.05.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
376 Pellegrini L, Foglio E, Pontemezzo E, Germani A, Russo MA, Limana F. HMGB1 and repair: focus on the heart. Pharmacol Ther 2019;196:160-82. [PMID: 30529040 DOI: 10.1016/j.pharmthera.2018.12.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
377 Camoretti-Mercado B, Karrar E, Nuñez L, Bowman MA. S100A12 and the Airway Smooth Muscle: Beyond Inflammation and Constriction. J Allergy Ther 2012;3:S1-007. [PMID: 25984393 DOI: 10.4172/2155-6121.S1-007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
378 Sternberg Z, Weinstock-Guttman B, Hojnacki D, Zamboni P, Zivadinov R, Chadha K, Lieberman A, Kazim L, Drake A, Rocco P, Grazioli E, Munschauer F. Soluble receptor for advanced glycation end products in multiple sclerosis: a potential marker of disease severity. Mult Scler 2008;14:759-63. [PMID: 18505774 DOI: 10.1177/1352458507088105] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
379 Nin JW, Ferreira I, Schalkwijk CG, Prins MH, Chaturvedi N, Fuller JH, Stehouwer CD; EURODIAB Prospective Complications Study Group. Serum high-mobility group box-1 levels are positively associated with micro- and macroalbuminuria but not with cardiovascular disease in type 1 diabetes: the EURODIAB Prospective Complications Study. Eur J Endocrinol 2012;166:325-32. [PMID: 22127490 DOI: 10.1530/EJE-11-0662] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
380 Clark IA, Alleva LM, Mills AC, Cowden WB. Pathogenesis of malaria and clinically similar conditions. Clin Microbiol Rev 2004;17:509-39, table of contents. [PMID: 15258091 DOI: 10.1128/CMR.17.3.509-539.2004] [Cited by in Crossref: 126] [Cited by in F6Publishing: 61] [Article Influence: 7.0] [Reference Citation Analysis]
381 Takeuchi A, Yamamoto Y, Tsuneyama K, Cheng C, Yonekura H, Watanabe T, Shimizu K, Tomita K, Yamamoto H, Tsuchiya H. Endogenous secretory receptor for advanced glycation endproducts as a novel prognostic marker in chondrosarcoma. Cancer 2007;109:2532-40. [PMID: 17497647 DOI: 10.1002/cncr.22731] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
382 Lee JH, Yoon EJ, Seo J, Kavoussi A, Chung YE, Chung SP, Park I, Kim CH, You JS. Hypothermia inhibits the propagation of acute ischemic injury by inhibiting HMGB1. Mol Brain 2016;9:81. [PMID: 27544687 DOI: 10.1186/s13041-016-0260-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
383 Tadié JM, Bae HB, Banerjee S, Zmijewski JW, Abraham E. Differential activation of RAGE by HMGB1 modulates neutrophil-associated NADPH oxidase activity and bacterial killing. Am J Physiol Cell Physiol 2012;302:C249-56. [PMID: 22012330 DOI: 10.1152/ajpcell.00302.2011] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 4.1] [Reference Citation Analysis]
384 Huttunen HJ, Kuja-panula J, Rauvala H. Receptor for Advanced Glycation End Products (RAGE) Signaling Induces CREB-dependent Chromogranin Expression during Neuronal Differentiation. Journal of Biological Chemistry 2002;277:38635-46. [DOI: 10.1074/jbc.m202515200] [Cited by in Crossref: 131] [Cited by in F6Publishing: 57] [Article Influence: 6.6] [Reference Citation Analysis]
385 Wang H, Qu H, Deng H. Plasma HMGB-1 Levels in Subjects with Obesity and Type 2 Diabetes: A Cross-Sectional Study in China. PLoS One 2015;10:e0136564. [PMID: 26317615 DOI: 10.1371/journal.pone.0136564] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
386 Kamide T, Kitao Y, Takeichi T, Okada A, Mohri H, Schmidt AM, Kawano T, Munesue S, Yamamoto Y, Yamamoto H, Hamada J, Hori O. RAGE mediates vascular injury and inflammation after global cerebral ischemia. Neurochem Int 2012;60:220-8. [PMID: 22202666 DOI: 10.1016/j.neuint.2011.12.008] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 3.9] [Reference Citation Analysis]
387 Fehrenbach H, Kasper M, Tschernig T, Shearman MS, Schuh D, Müller M. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-grand) 1998;44:1147-57. [PMID: 9846897 [PMID: 9846897 DOI: 10.1161/atvbaha.120.315527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
388 Finlay WJ, Cunningham O, Lambert MA, Darmanin-Sheehan A, Liu X, Fennell BJ, Mahon CM, Cummins E, Wade JM, O'Sullivan CM. Affinity maturation of a humanized rat antibody for anti-RAGE therapy: comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions. J Mol Biol. 2009;388:541-558. [PMID: 19285987 DOI: 10.1016/j.jmb.2009.03.019] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 3.7] [Reference Citation Analysis]
389 Huang YK, Chou RH, Yu C. Tranilast Blocks the Interaction between the Protein S100A11 and Receptor for Advanced Glycation End Products (RAGE) V Domain and Inhibits Cell Proliferation. J Biol Chem 2016;291:14300-10. [PMID: 27226584 DOI: 10.1074/jbc.M116.722215] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
390 Romero R, Espinoza J, Hassan S, Gotsch F, Kusanovic JP, Avila C, Erez O, Edwin S, Schmidt AM. Soluble receptor for advanced glycation end products (sRAGE) and endogenous secretory RAGE (esRAGE) in amniotic fluid: modulation by infection and inflammation. J Perinat Med 2008;36:388-98. [PMID: 18593373 DOI: 10.1515/JPM.2008.076] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 3.5] [Reference Citation Analysis]
391 Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, Uchimura T, Ida N, Yamazaki Y, Yamada S. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest. 2005;115:1267-1274. [PMID: 15841214 DOI: 10.1172/jci22782] [Cited by in Crossref: 345] [Cited by in F6Publishing: 160] [Article Influence: 20.3] [Reference Citation Analysis]
392 Bhatwadekar A, Stitt AW. AGE and RAGE inhibitors in the treatment of diabetic retinopathy. Expert Review of Ophthalmology 2014;2:105-20. [DOI: 10.1586/17469899.2.1.105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
393 Wang H, Vishnubhakat JM, Bloom O, Zhang M, Ombrellino M, Sama A, Tracey KJ. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery 1999;126:389-92. [DOI: 10.1016/s0039-6060(99)70182-0] [Cited by in Crossref: 210] [Article Influence: 9.1] [Reference Citation Analysis]
394 Mehta DC, Short JL, Hilmer SN, Nicolazzo JA. Drug Access to the Central Nervous System in Alzheimer’s Disease: Preclinical and Clinical Insights. Pharm Res 2015;32:819-39. [DOI: 10.1007/s11095-014-1522-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
395 Flohé SB, Flohé S, Schade FU. Invited review: deterioration of the immune system after trauma: signals and cellular mechanisms. Innate Immun 2008;14:333-44. [PMID: 19039057 DOI: 10.1177/1753425908100016] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 4.6] [Reference Citation Analysis]
396 Peila C, Coscia A, Bertino E, Li Volti G, Galvano F, Visser GHA, Gazzolo D. Holder pasteurization affects S100B concentrations in human milk. The Journal of Maternal-Fetal & Neonatal Medicine 2018;31:513-7. [DOI: 10.1080/14767058.2017.1291618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
397 Zhang L, Ji Y, Kang Z, Lv C, Jiang W. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. Toxicology and Applied Pharmacology 2015;283:50-6. [DOI: 10.1016/j.taap.2015.01.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
398 Hudson BI, Schmidt AM. RAGE: a novel target for drug intervention in diabetic vascular disease. Pharm Res. 2004;21:1079-1086. [PMID: 15290845 DOI: 10.1023/b:pham.0000032992.75423.9b] [Cited by in Crossref: 56] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
399 Taneja S, Vetter SW, Leclerc E. Hypoxia and the Receptor for Advanced Glycation End Products (RAGE) Signaling in Cancer. Int J Mol Sci 2021;22:8153. [PMID: 34360919 DOI: 10.3390/ijms22158153] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
400 Li JH, Zhao B, Zhu XH, Wang L, Zou HJ, Chen S, Guo H, Ruan YL, Zheng F, Xiang Y, Ming CS, Gong FL, Chen G. Blockade of Extracellular HMGB1 Suppresses Xenoreactive B Cell Responses and Delays Acute Vascular Xenogeneic Rejection. Am J Transplant 2015;15:2062-74. [PMID: 25943147 DOI: 10.1111/ajt.13275] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
401 Anzilotti S, Giampà C, Laurenti D, Perrone L, Bernardi G, Melone MA, Fusco FR. Immunohistochemical localization of receptor for advanced glycation end (RAGE) products in the R6/2 mouse model of Huntington's disease. Brain Res Bull 2012;87:350-8. [PMID: 21272617 DOI: 10.1016/j.brainresbull.2011.01.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.9] [Reference Citation Analysis]
402 Watanabe M, Toyomura T, Wake H, Liu K, Teshigawara K, Takahashi H, Nishibori M, Mori S. Differential contribution of possible pattern-recognition receptors to advanced glycation end product-induced cellular responses in macrophage-like RAW264.7 cells. Biotechnol Appl Biochem 2020;67:265-72. [PMID: 31654427 DOI: 10.1002/bab.1843] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
403 Müller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, Beltrame M, Bianchi ME. New EMBO members’ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J. 2001;20:4337-4340. [PMID: 11500360 DOI: 10.1093/emboj/20.16.4337] [Cited by in Crossref: 302] [Cited by in F6Publishing: 303] [Article Influence: 14.4] [Reference Citation Analysis]
404 Valencia JV, Weldon SC, Quinn D, Kiers GH, DeGroot J, TeKoppele JM, Hughes TE. Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics. Anal Biochem 2004;324:68-78. [PMID: 14654047 DOI: 10.1016/j.ab.2003.09.013] [Cited by in Crossref: 132] [Cited by in F6Publishing: 123] [Article Influence: 7.3] [Reference Citation Analysis]
405 Gibot S, Massin F, Cravoisy A, Barraud D, Nace L, Levy B, Bollaert PE. High-mobility group box 1 protein plasma concentrations during septic shock. Intensive Care Med. 2007;33:1347-1353. [PMID: 17525840 DOI: 10.1007/s00134-007-0691-2] [Cited by in Crossref: 112] [Cited by in F6Publishing: 110] [Article Influence: 7.5] [Reference Citation Analysis]
406 Walko TD 3rd, Bola RA, Hong JD, Au AK, Bell MJ, Kochanek PM, Clark RS, Aneja RK. Cerebrospinal fluid mitochondrial DNA: a novel DAMP in pediatric traumatic brain injury. Shock 2014;41:499-503. [PMID: 24667615 DOI: 10.1097/SHK.0000000000000160] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
407 Sugars R, Karlström E, Christersson C, Olsson M, Wendel M, Fried K. Expression of HMGB1 during tooth development. Cell Tissue Res 2007;327:511-9. [DOI: 10.1007/s00441-006-0293-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
408 Hayakawa K, Pham LD, Arai K, Lo EH. Reactive astrocytes promote adhesive interactions between brain endothelium and endothelial progenitor cells via HMGB1 and beta-2 integrin signaling. Stem Cell Res 2014;12:531-8. [PMID: 24480450 DOI: 10.1016/j.scr.2013.12.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
409 Wong A, Dukic-stefanovic S, Gasic-milenkovic J, Schinzel R, Wiesinger H, Riederer P, Münch G. Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia: Inhibition of NO synthase induction by antioxidants. European Journal of Neuroscience 2001;14:1961-7. [DOI: 10.1046/j.0953-816x.2001.01820.x] [Cited by in Crossref: 76] [Cited by in F6Publishing: 70] [Article Influence: 3.8] [Reference Citation Analysis]
410 Koyama H, Nishizawa Y. AGEs/RAGE in CKD: irreversible metabolic memory road toward CVD? Eur J Clin Invest 2010;40:623-35. [PMID: 20497213 DOI: 10.1111/j.1365-2362.2010.02298.x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.2] [Reference Citation Analysis]
411 Hernández-Pando R, Barrios-Payán J, Mata-Espinosa D, Marquina-Castillo B, Hernández-Ramírez D, Bottasso OA, Bini EI. The Role of High Mobility Group Box 1 Protein (HMGB1) in the Immunopathology of Experimental Pulmonary Tuberculosis. PLoS One 2015;10:e0133200. [PMID: 26201072 DOI: 10.1371/journal.pone.0133200] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
412 Kupniewska-kozak A, Gospodarska E, Dadlez M. Intertwined Structured and Unstructured Regions of exRAGE Identified by Monitoring Hydrogen–Deuterium Exchange. Journal of Molecular Biology 2010;403:52-65. [DOI: 10.1016/j.jmb.2010.08.027] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
413 Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab. 2008;28:927-938. [PMID: 18000511 DOI: 10.1038/sj.jcbfm.9600582] [Cited by in Crossref: 303] [Cited by in F6Publishing: 299] [Article Influence: 20.2] [Reference Citation Analysis]
414 Leach ST, Day AS. S100 proteins in the pathogenesis and diagnosis of inflammatory bowel disease. Expert Review of Clinical Immunology 2014;2:471-80. [DOI: 10.1586/1744666x.2.3.471] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
415 Wang Q, Zeng M, Wang W, Tang J. The HMGB1 acidic tail regulates HMGB1 DNA binding specificity by a unique mechanism. Biochemical and Biophysical Research Communications 2007;360:14-9. [DOI: 10.1016/j.bbrc.2007.05.130] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 2.0] [Reference Citation Analysis]
416 Sparatore B, Patrone M, Passalacqua M, Pedrazzi M, Gaggero D, Pontremoli S, Melloni E. Extracellular processing of amphoterin generates a peptide active on erythroleukaemia cell differentiation. Biochem J 2001;357:569-74. [PMID: 11439110 DOI: 10.1042/0264-6021:3570569] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 0.5] [Reference Citation Analysis]
417 Antoine DJ, Williams DP, Kipar A, Jenkins RE, Regan SL, Sathish JG, Kitteringham NR, Park BK. High-Mobility Group Box-1 Protein and Keratin-18, Circulating Serum Proteins Informative of Acetaminophen-Induced Necrosis and Apoptosis In Vivo. Toxicological Sciences 2009;112:521-31. [DOI: 10.1093/toxsci/kfp235] [Cited by in Crossref: 172] [Cited by in F6Publishing: 152] [Article Influence: 13.2] [Reference Citation Analysis]
418 Kianian F, Kadkhodaee M, Sadeghipour HR, Karimian SM, Seifi B. An overview of high-mobility group box 1, a potent pro-inflammatory cytokine in asthma. J Basic Clin Physiol Pharmacol 2020;31. [PMID: 32651983 DOI: 10.1515/jbcpp-2019-0363] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
419 Bae JS. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Arch Pharm Res 2012;35:1511-23. [PMID: 23054707 DOI: 10.1007/s12272-012-0901-5] [Cited by in Crossref: 131] [Cited by in F6Publishing: 125] [Article Influence: 13.1] [Reference Citation Analysis]
420 Tang J, Zhuang S. Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin Sci (Lond) 2019;133:597-609. [PMID: 30804072 DOI: 10.1042/CS20180465] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
421 Antoine DJ, Williams DP, Kipar A, Laverty H, Park BK. Diet restriction inhibits apoptosis and HMGB1 oxidation and promotes inflammatory cell recruitment during acetaminophen hepatotoxicity. Mol Med. 2010;16:479-490. [PMID: 20811657 DOI: 10.2119/molmed.2010.00126] [Cited by in Crossref: 83] [Cited by in F6Publishing: 76] [Article Influence: 6.9] [Reference Citation Analysis]
422 Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 2018;9:1213-34. [PMID: 30334619 DOI: 10.1002/jcsm.12350] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 8.3] [Reference Citation Analysis]
423 Metz VV, Kojro E, Rat D, Postina R. Induction of RAGE shedding by activation of G protein-coupled receptors. PLoS One 2012;7:e41823. [PMID: 22860017 DOI: 10.1371/journal.pone.0041823] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
424 Qing X, Pitashny M, Thomas DB, Barrat FJ, Hogarth MP, Putterman C. Pathogenic anti-DNA antibodies modulate gene expression in mesangial cells: involvement of HMGB1 in anti-DNA antibody-induced renal injury. Immunol Lett 2008;121:61-73. [PMID: 18822317 DOI: 10.1016/j.imlet.2008.08.007] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 4.7] [Reference Citation Analysis]
425 Liu Y, Chen GY, Zheng P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol 2009;30:557-61. [PMID: 19786366 DOI: 10.1016/j.it.2009.09.006] [Cited by in Crossref: 81] [Cited by in F6Publishing: 81] [Article Influence: 6.2] [Reference Citation Analysis]
426 Chen H, Agrawal DK, Thankam FG. Biomaterials-Driven Sterile Inflammation. Tissue Eng Part B Rev 2021. [PMID: 33213285 DOI: 10.1089/ten.TEB.2020.0253] [Reference Citation Analysis]
427 Wang D, Liu K, Wake H, Teshigawara K, Mori S, Nishibori M. Anti-high mobility group box-1 (HMGB1) antibody inhibits hemorrhage-induced brain injury and improved neurological deficits in rats. Sci Rep 2017;7:46243. [PMID: 28393932 DOI: 10.1038/srep46243] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 8.6] [Reference Citation Analysis]
428 Das SK, Yuan YF, Li MQ. An Overview on Current Issues and Challenges of Endothelial Progenitor Cell-Based Neovascularization in Patients with Diabetic Foot Ulcer. Cell Reprogram 2017;19:75-87. [PMID: 28266867 DOI: 10.1089/cell.2016.0050] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
429 Kawada M, Usami I, Someno T, Watanabe T, Abe H, Inoue H, Ohba S, Masuda T, Tabata Y, Yamaguchi S, Ikeda D. NBRI17671, a new antitumor compound, produced by Acremonium sp. CR17671. J Antibiot 2010;63:237-43. [DOI: 10.1038/ja.2010.28] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
430 Xu L, Wang YR, Li PC, Feng B. Advanced glycation end products increase lipids accumulation in macrophages through upregulation of receptor of advanced glycation end products: increasing uptake, esterification and decreasing efflux of cholesterol. Lipids Health Dis 2016;15:161. [PMID: 27644038 DOI: 10.1186/s12944-016-0334-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
431 Jeanes A, Coulthard LG, Mantovani S, Markham K, Woodruff TM. Co-ordinated expression of innate immune molecules during mouse neurulation. Mol Immunol 2015;68:253-60. [PMID: 26383831 DOI: 10.1016/j.molimm.2015.09.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
432 Porat A, Giat E, Kowal C, He M, Son M, Latz E, Ben-Zvi I, Al-Abed Y, Diamond B. DNA-Mediated Interferon Signature Induction by SLE Serum Occurs in Monocytes Through Two Pathways: A Mechanism to Inhibit Both Pathways. Front Immunol 2018;9:2824. [PMID: 30619247 DOI: 10.3389/fimmu.2018.02824] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
433 Leclerc E, Sturchler E, Vetter SW, Heizmann CW. Crosstalk Between Calcium, Amyloid β and the Receptor for Advanced Glycation Endproducts in Alzheimer's Disease. Reviews in the Neurosciences 2009;20. [DOI: 10.1515/revneuro.2009.20.2.95] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
434 Schmidt AM, Yan SD, Stern DM. The dark side of glucose. Nat Med 1995;1:1002-4. [PMID: 7489352 DOI: 10.1038/nm1095-1002] [Cited by in Crossref: 110] [Cited by in F6Publishing: 88] [Article Influence: 4.2] [Reference Citation Analysis]
435 Kim Y, Kim C, Son SM, Song H, Hong HS, Han SH, Mook-Jung I. The novel RAGE interactor PRAK is associated with autophagy signaling in Alzheimer's disease pathogenesis. Mol Neurodegener 2016;11:4. [PMID: 26758977 DOI: 10.1186/s13024-016-0068-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
436 Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta. 2000;1498:99-111. [PMID: 11108954 DOI: 10.1016/s0167-4889(00)00087-2] [Cited by in Crossref: 453] [Cited by in F6Publishing: 201] [Article Influence: 21.6] [Reference Citation Analysis]
437 Liu Q, Qiao A, Yi L, Liu Z, Sheng S. Protection of kinsenoside against AGEs-induced endothelial dysfunction in human umbilical vein endothelial cells. Life Sciences 2016;162:102-7. [DOI: 10.1016/j.lfs.2016.08.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
438 Yoo H, Ku SK, Han MS, Kim KM, Bae JS. Anti-septic effects of fisetin in vitro and in vivo. Inflammation 2014;37:1560-74. [PMID: 24706001 DOI: 10.1007/s10753-014-9883-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
439 Fontaine M, Lepape A, Piriou V, Venet F, Friggeri A. Innate danger signals in acute injury: From bench to bedside. Anaesth Crit Care Pain Med 2016;35:283-92. [PMID: 26987739 DOI: 10.1016/j.accpm.2015.10.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
440 Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, Fink MP. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology. 2002;123:790-802. [PMID: 12198705 DOI: 10.1053/gast.2002.35391] [Cited by in Crossref: 227] [Cited by in F6Publishing: 223] [Article Influence: 11.4] [Reference Citation Analysis]
441 Piras S, Furfaro AL, Domenicotti C, Traverso N, Marinari UM, Pronzato MA, Nitti M. RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage. Oxid Med Cell Longev 2016;2016:9348651. [PMID: 27313835 DOI: 10.1155/2016/9348651] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
442 Matsuo N, Ogawa S, Takagi T, Wanaka A, Mori T, Matsuyama T, Pinsky DJ, Stern DM, Tohyama M. Cloning of a Putative Vesicle Transport-related Protein, RA410, from Cultured Rat Astrocytes and Its Expression in Ischemic Rat Brain. Journal of Biological Chemistry 1997;272:16438-44. [DOI: 10.1074/jbc.272.26.16438] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 0.8] [Reference Citation Analysis]
443 Sharma AK, LaPar DJ, Stone ML, Zhao Y, Kron IL, Laubach VE. Receptor for advanced glycation end products (RAGE) on iNKT cells mediates lung ischemia-reperfusion injury. Am J Transplant 2013;13:2255-67. [PMID: 23865790 DOI: 10.1111/ajt.12368] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 5.0] [Reference Citation Analysis]
444 Srikrishna G, Freeze HH. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 2009;11:615-28. [PMID: 19568407 DOI: 10.1593/neo.09284] [Cited by in Crossref: 178] [Cited by in F6Publishing: 176] [Article Influence: 13.7] [Reference Citation Analysis]
445 Kokkola R, Li J, Sundberg E, Aveberger AC, Palmblad K, Yang H, Tracey KJ, Andersson U, Harris HE. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum. 2003;48:2052-2058. [PMID: 12847700 DOI: 10.1002/art.11161] [Cited by in Crossref: 232] [Cited by in F6Publishing: 235] [Article Influence: 12.2] [Reference Citation Analysis]
446 Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 2009;7:17. [PMID: 19292913 DOI: 10.1186/1479-5876-7-17] [Cited by in Crossref: 332] [Cited by in F6Publishing: 330] [Article Influence: 25.5] [Reference Citation Analysis]
447 Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, Stern D, Schmidt AM, D'agati VD. Expression of Advanced Glycation End Products and Their Cellular Receptor RAGE in Diabetic Nephropathy and Nondiabetic Renal Disease. JASN 2000;11:1656-66. [DOI: 10.1681/asn.v1191656] [Cited by in Crossref: 122] [Cited by in F6Publishing: 111] [Article Influence: 5.5] [Reference Citation Analysis]
448 Olaoba OT, Kadasah S, Vetter SW, Leclerc E. RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020;21:E8989. [PMID: 33256110 DOI: 10.3390/ijms21238989] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
449 Miller S, Henry AP, Hodge E, Kheirallah AK, Billington CK, Rimington TL, Bhaker SK, Obeidat M, Melén E, Merid SK, Swan C, Gowland C, Nelson CP, Stewart CE, Bolton CE, Kilty I, Malarstig A, Parker SG, Moffatt MF, Wardlaw AJ, Hall IP, Sayers I. The Ser82 RAGE Variant Affects Lung Function and Serum RAGE in Smokers and sRAGE Production In Vitro. PLoS One 2016;11:e0164041. [PMID: 27755550 DOI: 10.1371/journal.pone.0164041] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
450 Berbets A, Koval H, Barbe A, Albota O, Yuzko O. Melatonin decreases and cytokines increase in women with placental insufficiency. J Matern Fetal Neonatal Med 2021;34:373-8. [PMID: 31023180 DOI: 10.1080/14767058.2019.1608432] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
451 Grimm S, Ott C, Hörlacher M, Weber D, Höhn A, Grune T. Advanced-glycation-end-product-induced formation of immunoproteasomes: involvement of RAGE and Jak2/STAT1. Biochem J. 2012;448:127-139. [PMID: 22892029 DOI: 10.1042/bj20120298] [Cited by in Crossref: 58] [Cited by in F6Publishing: 30] [Article Influence: 6.4] [Reference Citation Analysis]
452 Alleva L, Yang H, Tracey K, Clark I. High mobility group box 1 (HMGB1) protein: possible amplification signal in the pathogenesis of falciparum malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 2005;99:171-4. [DOI: 10.1016/j.trstmh.2004.06.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 1.4] [Reference Citation Analysis]
453 Watanabe H, Son M. The Immune Tolerance Role of the HMGB1-RAGE Axis. Cells 2021;10:564. [PMID: 33807604 DOI: 10.3390/cells10030564] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
454 Lv Q, Li C, Mo Y, He L. The role of HMGB1 in heart transplantation. Immunology Letters 2018;194:1-3. [DOI: 10.1016/j.imlet.2017.11.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
455 Hamada Y, Kitazawa S, Kitazawa R, Kono K, Goto S, Komaba H, Fujii H, Yamamoto Y, Yamamoto H, Usami M, Fukagawa M. The effects of the receptor for advanced glycation end products (RAGE) on bone metabolism under physiological and diabetic conditions. Endocr 2010;38:369-76. [DOI: 10.1007/s12020-010-9390-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
456 Lutterloh EC, Opal SM, Pittman DD, Keith JC Jr, Tan XY, Clancy BM, Palmer H, Milarski K, Sun Y, Palardy JE, Parejo NA, Kessimian N. Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit Care 2007;11:R122. [PMID: 18042296 DOI: 10.1186/cc6184] [Cited by in Crossref: 111] [Cited by in F6Publishing: 108] [Article Influence: 7.9] [Reference Citation Analysis]
457 Yan SS, Wu ZY, Zhang HP, Furtado G, Chen X, Yan SF, Schmidt AM, Brown C, Stern A, LaFaille J, Chess L, Stern DM, Jiang H. Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat Med 2003;9:287-93. [PMID: 12598893 DOI: 10.1038/nm831] [Cited by in Crossref: 131] [Cited by in F6Publishing: 132] [Article Influence: 6.9] [Reference Citation Analysis]
458 Kim J, Sohn E, Kim CS, Jo K, Kim JS. The role of high-mobility group box-1 protein in the development of diabetic nephropathy. Am J Nephrol. 2011;33:524-529. [PMID: 21606643 DOI: 10.1159/000327992] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 4.5] [Reference Citation Analysis]
459 Lutterloh EC, Opal SM. Antibodies against RAGE in sepsis and inflammation: implications for therapy. Expert Opinion on Pharmacotherapy 2007;8:1193-6. [DOI: 10.1517/14656566.8.9.1193] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
460 Shang G, Jia C, Tian H, Xiao W, Li Y, Wang A, Dong L, Lin D. Serum high mobility group box protein 1 as a clinical marker for non-small cell lung cancer. Respiratory Medicine 2009;103:1949-53. [DOI: 10.1016/j.rmed.2009.05.019] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 4.1] [Reference Citation Analysis]
461 Cao W, Chen J, Chen Y, Chen X, Liu P. Advanced Glycation End Products Promote Heart Failure Through Inducing the Immune Maturation of Dendritic Cells. Appl Biochem Biotechnol 2014;172:4062-77. [DOI: 10.1007/s12010-014-0804-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
462 Miyoshi A, Koyama S, Sasagawa-Monden M, Kadoya M, Konishi K, Shoji T, Inaba M, Yamamoto Y, Koyama H. JNK and ATF4 as two important platforms for tumor necrosis factor-α-stimulated shedding of receptor for advanced glycation end products. FASEB J 2019;33:3575-89. [PMID: 30452882 DOI: 10.1096/fj.201701553RR] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
463 Du Yan S, Zhu H, Fu J, Yan SF, Roher A, Tourtellotte WW, Rajavashisth T, Chen X, Godman GC, Stern D, Schmidt AM. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci U S A 1997;94:5296-301. [PMID: 9144231 DOI: 10.1073/pnas.94.10.5296] [Cited by in Crossref: 292] [Cited by in F6Publishing: 284] [Article Influence: 11.7] [Reference Citation Analysis]
464 Li YM, Mitsuhashi T, Wojciechowicz D, Shimizu N, Li J, Stitt A, He C, Banerjee D, Vlassara H. Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci USA. 1996;93:11047-11052. [PMID: 8855306 DOI: 10.1073/pnas.93.20.11047] [Cited by in Crossref: 236] [Cited by in F6Publishing: 208] [Article Influence: 9.1] [Reference Citation Analysis]
465 Riuzzi F, Sorci G, Donato R. S100B protein regulates myoblast proliferation and differentiation by activating FGFR1 in a bFGF-dependent manner. J Cell Sci. 2011;124:2389-2400. [PMID: 21693575 DOI: 10.1242/jcs.084491] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 3.3] [Reference Citation Analysis]
466 Fuentes MK, Nigavekar SS, Arumugam T, Logsdon CD, Schmidt AM, Park JC, Huang EH. RAGE activation by S100P in colon cancer stimulates growth, migration, and cell signaling pathways. Dis Colon Rectum. 2007;50:1230-1240. [PMID: 17587138 DOI: 10.1007/s10350-006-0850-5] [Cited by in Crossref: 106] [Cited by in F6Publishing: 101] [Article Influence: 7.1] [Reference Citation Analysis]
467 Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Markowicz Bastos DH, Medrano A, Menini T, Portero-Otin M, Rojas A, Sampaio GR, Wrobel K, Wrobel K, Garay-Sevilla ME. Dietary advanced glycation end products and their role in health and disease. Adv Nutr 2015;6:461-73. [PMID: 26178030 DOI: 10.3945/an.115.008433] [Cited by in Crossref: 140] [Cited by in F6Publishing: 128] [Article Influence: 20.0] [Reference Citation Analysis]
468 Haraba R, Uyy E, Suica VI, Ivan L, Antohe F. Fluvastatin reduces the high mobility group box 1 protein expression in hyperlipidemia. International Journal of Cardiology 2011;150:105-7. [DOI: 10.1016/j.ijcard.2011.04.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
469 Imuta N, Hori O, Kitao Y, Tabata Y, Yoshimoto T, Matsuyama T, Ogawa S. Hypoxia-mediated induction of heme oxygenase type I and carbon monoxide release from astrocytes protects nearby cerebral neurons from hypoxia-mediated apoptosis. Antioxid Redox Signal 2007;9:543-52. [PMID: 17330989 DOI: 10.1089/ars.2006.1519] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 2.6] [Reference Citation Analysis]
470 van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis. 2008;11:91-99. [PMID: 18264787 DOI: 10.1007/s10456-008-9093-5] [Cited by in Crossref: 315] [Cited by in F6Publishing: 331] [Article Influence: 22.5] [Reference Citation Analysis]
471 Manigrasso MB, Rabbani P, Egaña-Gorroño L, Quadri N, Frye L, Zhou B, Reverdatto S, Ramirez LS, Dansereau S, Pan J, Li H, D'Agati VD, Ramasamy R, DeVita RJ, Shekhtman A, Schmidt AM. Small-molecule antagonism of the interaction of the RAGE cytoplasmic domain with DIAPH1 reduces diabetic complications in mice. Sci Transl Med 2021;13:eabf7084. [PMID: 34818060 DOI: 10.1126/scitranslmed.abf7084] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
472 Herold K, Moser B, Chen Y, Zeng S, Yan SF, Ramasamy R, Emond J, Clynes R, Schmidt AM. Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J Leukoc Biol 2007;82:204-12. [PMID: 17513693 DOI: 10.1189/jlb.1206751] [Cited by in Crossref: 94] [Cited by in F6Publishing: 93] [Article Influence: 6.3] [Reference Citation Analysis]
473 Tiu SC, Chan WY, Heizmann CW, Schäfer BW, Shu SY, Yew DT. Differential expression of S100B and S100A6(1) in the human fetal and aged cerebral cortex. Brain Res Dev Brain Res 2000;119:159-68. [PMID: 10675765 DOI: 10.1016/s0165-3806(99)00151-0] [Cited by in Crossref: 49] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
474 Sakatani S, Yamada K, Homma C, Munesue S, Yamamoto Y, Yamamoto H, Hirase H. Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice. PLoS One 2009;4:e8309. [PMID: 20016851 DOI: 10.1371/journal.pone.0008309] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.8] [Reference Citation Analysis]
475 Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 2013;5:77-94. [PMID: 23641259 DOI: 10.1177/1759720X12467868] [Cited by in Crossref: 450] [Cited by in F6Publishing: 252] [Article Influence: 50.0] [Reference Citation Analysis]
476 Treutiger CJ, Mullins GE, Johansson AS, Rouhiainen A, Rauvala HM, Erlandsson-Harris H, Andersson U, Yang H, Tracey KJ, Andersson J, Palmblad JE. High mobility group 1 B-box mediates activation of human endothelium. J Intern Med 2003;254:375-85. [PMID: 12974876 DOI: 10.1046/j.1365-2796.2003.01204.x] [Cited by in Crossref: 233] [Cited by in F6Publishing: 236] [Article Influence: 12.3] [Reference Citation Analysis]
477 Ugrinova I, Pasheva E. HMGB1 Protein: A Therapeutic Target Inside and Outside the Cell. Adv Protein Chem Struct Biol 2017;107:37-76. [PMID: 28215228 DOI: 10.1016/bs.apcsb.2016.10.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
478 Busch M, Franke S, Rüster C, Wolf G. Advanced glycation end-products and the kidney. Eur J Clin Invest. 2010;40:742-755. [PMID: 20649640 DOI: 10.1111/j.1365-2362.2010.02317.x] [Cited by in Crossref: 142] [Cited by in F6Publishing: 129] [Article Influence: 12.9] [Reference Citation Analysis]
479 Coleman LG Jr, Zou J, Qin L, Crews FT. HMGB1/IL-1β complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun 2018;72:61-77. [PMID: 29102800 DOI: 10.1016/j.bbi.2017.10.027] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
480 Wu TL, Tsai CC, Wang YY, Ho KY, Wu YM, Hung HC, Lin YC. The association between the RAGE G82S polymorphism, sRAGE and chronic periodontitis in Taiwanese individuals with and without diabetes. J Periodontal Res 2015;50:881-9. [PMID: 25988707 DOI: 10.1111/jre.12282] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
481 Das N, Dewan V, Grace PM, Gunn RJ, Tamura R, Tzarum N, Watkins LR, Wilson IA, Yin H. HMGB1 Activates Proinflammatory Signaling via TLR5 Leading to Allodynia. Cell Rep 2016;17:1128-40. [PMID: 27760316 DOI: 10.1016/j.celrep.2016.09.076] [Cited by in Crossref: 71] [Cited by in F6Publishing: 71] [Article Influence: 14.2] [Reference Citation Analysis]
482 Iannacone M, Sitia G, Ruggeri ZM, Guidotti LG. HBV pathogenesis in animal models: recent advances on the role of platelets. J Hepatol. 2007;46:719-726. [PMID: 17316876 DOI: 10.1016/j.jhep.2007.01.007] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 4.1] [Reference Citation Analysis]
483 Venereau E, De Leo F, Mezzapelle R, Careccia G, Musco G, Bianchi ME. HMGB1 as biomarker and drug target. Pharmacol Res 2016;111:534-44. [PMID: 27378565 DOI: 10.1016/j.phrs.2016.06.031] [Cited by in Crossref: 124] [Cited by in F6Publishing: 121] [Article Influence: 20.7] [Reference Citation Analysis]
484 Allam MM, El Gazzar WB. Exendin-4, a glucagon-like peptide-1 receptor agonist downregulates hepatic receptor for advanced glycation end products in non-alcoholic steatohepatitis rat model. Arch Physiol Biochem. 2018;124:10-17. [PMID: 28696785 DOI: 10.1080/13813455.2017.1348362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
485 Sawa H, Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Nakajima T, Kuroda Y. Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis. World J Gastroenterol 2006; 12(47): 7666-7670 [PMID: 17171797 DOI: 10.3748/wjg.v12.i47.7666] [Cited by in CrossRef: 103] [Cited by in F6Publishing: 105] [Article Influence: 6.4] [Reference Citation Analysis]
486 Lekven A, Tepass U, Keshmeshian M, Hartenstein V. faint sausage encodes a novel extracellular protein of the immunoglobulin superfamily required for cell migration and the establishment of normal axonal pathways in the Drosophila nervous system. Development 1998;125:2747-58. [DOI: 10.1242/dev.125.14.2747] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 0.7] [Reference Citation Analysis]
487 Su Z, Sun C, Zhou C, Liu Y, Zhu H, Sandoghchian S, Zheng D, Peng T, Zhang Y, Jiao Z, Wang S, Xu H. HMGB1 blockade attenuates experimental autoimmune myocarditis and suppresses Th17-cell expansion. Eur J Immunol 2011;41:3586-95. [PMID: 21928275 DOI: 10.1002/eji.201141879] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 4.8] [Reference Citation Analysis]
488 Ostberg T, Kawane K, Nagata S, Yang H, Chavan S, Klevenvall L, Bianchi ME, Harris HE, Andersson U, Palmblad K. Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model. Arthritis Rheum. 2010;62:2963-2972. [PMID: 20533288 DOI: 10.1002/art.27590] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 3.3] [Reference Citation Analysis]
489 Jiang W, Pisetsky DS. Mechanisms of Disease: the role of high-mobility group protein 1 in the pathogenesis of inflammatory arthritis. Nat Clin Pract Rheumatol. 2007;3:52-58. [PMID: 17203009 DOI: 10.1038/ncprheum0379] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.3] [Reference Citation Analysis]
490 Sasahira T, Kirita T, Bhawal UK, Yamamoto K, Ohmori H, Fujii K, Kuniyasu H. Receptor for advanced glycation end products (RAGE) is important in the prediction of recurrence in human oral squamous cell carcinoma. Histopathology 2007;51:166-72. [PMID: 17593216 DOI: 10.1111/j.1365-2559.2007.02739.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 2.6] [Reference Citation Analysis]
491 Ohlmeier S, Mazur W, Salmenkivi K, Myllärniemi M, Bergmann U, Kinnula VL. Proteomic studies on receptor for advanced glycation end product variants in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. Prot Clin Appl 2010;4:97-105. [DOI: 10.1002/prca.200900128] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
492 Lin L, Park S, Lakatta EG. RAGE signaling in inflammation and arterial aging. Front Biosci (Landmark Ed) 2009;14:1403-13. [PMID: 19273137 DOI: 10.2741/3315] [Cited by in Crossref: 106] [Cited by in F6Publishing: 103] [Article Influence: 8.2] [Reference Citation Analysis]
493 Okuma Y, Liu K, Wake H, Zhang J, Maruo T, Date I, Yoshino T, Ohtsuka A, Otani N, Tomura S, Shima K, Yamamoto Y, Yamamoto H, Takahashi HK, Mori S, Nishibori M. Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol 2012;72:373-84. [PMID: 22915134 DOI: 10.1002/ana.23602] [Cited by in Crossref: 145] [Cited by in F6Publishing: 136] [Article Influence: 14.5] [Reference Citation Analysis]
494 Thornalley PJ. Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol 2002;50:37-57. [PMID: 12198817 DOI: 10.1016/s0074-7742(02)50072-6] [Cited by in Crossref: 153] [Cited by in F6Publishing: 37] [Article Influence: 8.1] [Reference Citation Analysis]
495 Pahwa R, Jialal I. The role of the high-mobility group box1 protein-Toll like receptor pathway in diabetic vascular disease. J Diabetes Complications 2016;30:1186-91. [PMID: 27037040 DOI: 10.1016/j.jdiacomp.2016.03.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
496 Ibrahim ZA, Armour CL, Phipps S, Sukkar MB. RAGE and TLRs: relatives, friends or neighbours? Mol Immunol. 2013;56:739-744. [PMID: 23954397 DOI: 10.1016/j.molimm.2013.07.008] [Cited by in Crossref: 158] [Cited by in F6Publishing: 158] [Article Influence: 17.6] [Reference Citation Analysis]
497 Kalea AZ, Reiniger N, Yang H, Arriero M, Schmidt AM, Hudson BI. Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene. FASEB J 2009;23:1766-74. [PMID: 19164451 DOI: 10.1096/fj.08-117739] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 5.3] [Reference Citation Analysis]
498 Deng Y, Yang Z, Gao Y, Xu H, Zheng B, Jiang M, Xu J, He Z, Wang X. Toll-like receptor 4 mediates acute lung injury induced by high mobility group box-1. PLoS One 2013;8:e64375. [PMID: 23691208 DOI: 10.1371/journal.pone.0064375] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 5.2] [Reference Citation Analysis]
499 Lin Q, Yang XP, Fang D, Ren X, Zhou H, Fang J, Liu X, Zhou S, Wen F, Yao X, Wang JM, Su SB. High-mobility group box-1 mediates toll-like receptor 4-dependent angiogenesis. Arterioscler Thromb Vasc Biol 2011;31:1024-32. [PMID: 21372296 DOI: 10.1161/ATVBAHA.111.224048] [Cited by in Crossref: 69] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
500 Pullerits R, Jonsson I, Verdrengh M, Bokarewa M, Andersson U, Erlandsson-harris H, Tarkowski A. High mobility group box chromosomal protein 1, a DNA binding cytokine, induces arthritis. Arthritis & Rheumatism 2003;48:1693-700. [DOI: 10.1002/art.11028] [Cited by in Crossref: 120] [Cited by in F6Publishing: 128] [Article Influence: 6.3] [Reference Citation Analysis]
501 Sadat-Hatamnezhad L, Tanomand A, Mahmoudi J, Sandoghchian Shotorbani S. Activation of Toll-Like Receptors 2 by High-Mobility Group Box 1 in Monocytes from Patients with Ischemic Stroke. Iran Biomed J 2016;20:223-8. [PMID: 27040385 DOI: 10.7508/ibj.2016.04.006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
502 Sugawa M, Ikeda S, Kushima Y, Takashima Y, Cynshi O. Oxidized low density lipoprotein caused CNS neuron cell death. Brain Research 1997;761:165-72. [DOI: 10.1016/s0006-8993(97)00468-x] [Cited by in Crossref: 38] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
503 Lee SY, Ju MK, Jeon HM, Jeong EK, Lee YJ, Kim CH, Park HG, Han SI, Kang HS. Regulation of Tumor Progression by Programmed Necrosis. Oxid Med Cell Longev 2018;2018:3537471. [PMID: 29636841 DOI: 10.1155/2018/3537471] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 12.3] [Reference Citation Analysis]
504 Ohnishi M, Katsuki H, Fukutomi C, Takahashi M, Motomura M, Fukunaga M, Matsuoka Y, Isohama Y, Izumi Y, Kume T, Inoue A, Akaike A. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology 2011;61:975-80. [DOI: 10.1016/j.neuropharm.2011.06.026] [Cited by in Crossref: 83] [Cited by in F6Publishing: 82] [Article Influence: 7.5] [Reference Citation Analysis]
505 Czura CJ, Yang H, Amella CA, Tracey KJ. HMGB1 in the Immunology of Sepsis (Not Septic Shock) and Arthritis. Elsevier; 2004. pp. 181-200. [DOI: 10.1016/s0065-2776(04)84005-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
506 Wyganowska-Swiatkowska M, Nohawica M, Grocholewicz K, Nowak G. Influence of Herbal Medicines on HMGB1 Release, SARS-CoV-2 Viral Attachment, Acute Respiratory Failure, and Sepsis. A Literature Review. Int J Mol Sci 2020;21:E4639. [PMID: 32629817 DOI: 10.3390/ijms21134639] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
507 Yang R, Harada T, Mollen KP, Prince JM, Levy RM, Englert JA, Gallowitsch-Puerta M, Yang L, Yang H, Tracey KJ, Harbrecht BG, Billiar TR, Fink MP. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med 2006;12:105-14. [PMID: 16953558 DOI: 10.2119/2006-00010.Yang] [Cited by in Crossref: 162] [Cited by in F6Publishing: 110] [Article Influence: 10.1] [Reference Citation Analysis]
508 Jules J, Maiguel D, Hudson BI. Alternative splicing of the RAGE cytoplasmic domain regulates cell signaling and function. PLoS One 2013;8:e78267. [PMID: 24260107 DOI: 10.1371/journal.pone.0078267] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
509 Haraba R, Suica VI, Uyy E, Ivan L, Antohe F. Hyperlipidemia stimulates the extracellular release of the nuclear high mobility group box 1 protein. Cell Tissue Res 2011;346:361-8. [PMID: 22113336 DOI: 10.1007/s00441-011-1277-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.4] [Reference Citation Analysis]
510 Sparatore B, Pedrazzi M, Passalacqua M, Gaggero D, Patrone M, Pontremoli S, Melloni E. Stimulation of erythroleukaemia cell differentiation by extracellular high-mobility group-box protein 1 is independent of the receptor for advanced glycation end-products. Biochem J 2002;363:529-35. [PMID: 11964153 DOI: 10.1042/0264-6021:3630529] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 0.5] [Reference Citation Analysis]
511 Fages C, Nolo R, Huttunen H, Eskelinen E, Rauvala H. Regulation of cell migration by amphoterin. Journal of Cell Science 2000;113:611-20. [DOI: 10.1242/jcs.113.4.611] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 2.3] [Reference Citation Analysis]
512 Liotta LA, Clair T. Cancer. Checkpoint for invasion. Nature 2000;405:287-8. [PMID: 10830943 DOI: 10.1038/35012728] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 1.0] [Reference Citation Analysis]
513 Kono H, Onda A, Yanagida T. Molecular determinants of sterile inflammation. Curr Opin Immunol. 2014;26:147-156. [PMID: 24556412 DOI: 10.1016/j.coi.2013.12.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
514 Xu J, Jiang Y, Wang J, Shi X, Liu Q, Liu Z, Li Y, Scott MJ, Xiao G, Li S, Fan L, Billiar TR, Wilson MA, Fan J. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ 2014;21:1229-39. [PMID: 24769733 DOI: 10.1038/cdd.2014.40] [Cited by in Crossref: 110] [Cited by in F6Publishing: 113] [Article Influence: 13.8] [Reference Citation Analysis]
515 Su Z, Ni P, She P, Liu Y, Richard SA, Xu W, Zhu H, Wang J. RETRACTED ARTICLE: Bio-HMGB1 from breast cancer contributes to M-MDSC differentiation from bone marrow progenitor cells and facilitates conversion of monocytes into MDSC-like cells. Cancer Immunol Immunother 2017;66:391-401. [DOI: 10.1007/s00262-016-1942-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
516 Allette YM, Due MR, Wilson SM, Feldman P, Ripsch MS, Khanna R, White FA. Identification of a functional interaction of HMGB1 with Receptor for Advanced Glycation End-products in a model of neuropathic pain. Brain Behav Immun 2014;42:169-77. [PMID: 25014009 DOI: 10.1016/j.bbi.2014.06.199] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 7.8] [Reference Citation Analysis]
517 Zampell JC, Yan A, Avraham T, Andrade V, Malliaris S, Aschen S, Rockson SG, Mehrara BJ. Temporal and spatial patterns of endogenous danger signal expression after wound healing and in response to lymphedema. Am J Physiol Cell Physiol 2011;300:C1107-21. [PMID: 21248077 DOI: 10.1152/ajpcell.00378.2010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 3.5] [Reference Citation Analysis]
518 Alleva LM, Budd AC, Clark IA. Systemic Release of High Mobility Group Box 1 Protein during Severe Murine Influenza. J Immunol 2008;181:1454-9. [DOI: 10.4049/jimmunol.181.2.1454] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
519 Liu P, Tsai J, Hwang J, Chou S, Cheng Y, Lin F, Chen Y, Hung C, Chen W, Chen Y, Chong I. High-Mobility Group Box 1–Mediated Matrix Metalloproteinase-9 Expression in Non–Small Cell Lung Cancer Contributes to Tumor Cell Invasiveness. Am J Respir Cell Mol Biol 2010;43:530-8. [DOI: 10.1165/rcmb.2009-0269oc] [Cited by in Crossref: 58] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
520 Yamamoto T, Tajima Y. HMGB1 is a promising therapeutic target for acute liver failure. Expert Rev Gastroenterol Hepatol 2017;11:673-82. [PMID: 28657371 DOI: 10.1080/17474124.2017.1345625] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
521 Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets 2018;22:263-77. [PMID: 29447008 DOI: 10.1080/14728222.2018.1439924] [Cited by in Crossref: 102] [Cited by in F6Publishing: 101] [Article Influence: 25.5] [Reference Citation Analysis]
522 Xu T, Jiang L, Wang Z. The progression of HMGB1-induced autophagy in cancer biology. Onco Targets Ther 2019;12:365-77. [PMID: 30643434 DOI: 10.2147/OTT.S185876] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
523 Chen G, Ward MF, Sama AE, Wang H. Extracellular HMGB1 as a proinflammatory cytokine. J Interferon Cytokine Res. 2004;24:329-333. [PMID: 15212706 DOI: 10.1089/107999004323142187] [Cited by in Crossref: 81] [Cited by in F6Publishing: 78] [Article Influence: 4.8] [Reference Citation Analysis]
524 Miyata T, Hori O, Zhang J, Yan SD, Ferran L, Iida Y, Schmidt AM. The receptor for advanced glycation end products (RAGE) is a central mediator of the interaction of AGE-beta2microglobulin with human mononuclear phagocytes via an oxidant-sensitive pathway. Implications for the pathogenesis of dialysis-related amyloidosis. J Clin Invest. 1996;98:1088-1094. [PMID: 8787669 DOI: 10.1172/jci118889] [Cited by in Crossref: 226] [Cited by in F6Publishing: 43] [Article Influence: 8.7] [Reference Citation Analysis]
525 Gąsiorowski K, Brokos B, Echeverria V, Barreto GE, Leszek J. RAGE-TLR Crosstalk Sustains Chronic Inflammation in Neurodegeneration. Mol Neurobiol 2018;55:1463-76. [PMID: 28168427 DOI: 10.1007/s12035-017-0419-4] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 8.4] [Reference Citation Analysis]
526 McKeon RJ, Jurynec MJ, Buck CR. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 1999;19:10778-88. [PMID: 10594061 [PMID: 10594061 DOI: 10.1523/jneurosci.19-24-10778.1999] [Cited by in Crossref: 320] [Article Influence: 14.5] [Reference Citation Analysis]
527 Liu Z, Chang Y, Zhang J, Huang X, Jiang J, Li S, Wang Z. Magnesium deficiency promotes secretion of high-mobility group box 1 protein from lipopolysaccharide-activated macrophages in vitro. Journal of Surgical Research 2013;180:310-6. [DOI: 10.1016/j.jss.2012.04.045] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
528 Sousa MM, Du Yan S, Fernandes R, Guimaraes A, Stern D, Saraiva MJ. Familial amyloid polyneuropathy: receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J Neurosci 2001;21:7576-86. [PMID: 11567048 [PMID: 11567048 DOI: 10.1523/jneurosci.21-19-07576.2001] [Cited by in Crossref: 139] [Article Influence: 6.6] [Reference Citation Analysis]
529 Kalea AZ, See F, Harja E, Arriero M, Schmidt AM, Hudson BI. Alternatively spliced RAGEv1 inhibits tumorigenesis through suppression of JNK signaling. Cancer Res 2010;70:5628-38. [PMID: 20570900 DOI: 10.1158/0008-5472.CAN-10-0595] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
530 Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I. S100B's double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 2009;1793:1008-22. [PMID: 19110011 DOI: 10.1016/j.bbamcr.2008.11.009] [Cited by in Crossref: 404] [Cited by in F6Publishing: 401] [Article Influence: 28.9] [Reference Citation Analysis]
531 Ditsworth D, Zong WX, Thompson CB. Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 2007;282:17845-54. [PMID: 17430886 DOI: 10.1074/jbc.M701465200] [Cited by in Crossref: 134] [Cited by in F6Publishing: 82] [Article Influence: 8.9] [Reference Citation Analysis]
532 Varga G, Gattorno M, Foell D, Rubartelli A. Redox distress and genetic defects conspire in systemic autoinflammatory diseases. Nat Rev Rheumatol 2015;11:670-80. [PMID: 26241183 DOI: 10.1038/nrrheum.2015.105] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
533 Klune JR, Tsung A. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements. Surg Clin North Am. 2010;90:665-677. [PMID: 20637940 DOI: 10.1016/j.suc.2010.04.003] [Cited by in Crossref: 130] [Cited by in F6Publishing: 130] [Article Influence: 10.8] [Reference Citation Analysis]
534 Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1-5. [PMID: 17032697 DOI: 10.1189/jlb.0306164] [Cited by in Crossref: 1816] [Cited by in F6Publishing: 1725] [Article Influence: 113.5] [Reference Citation Analysis]
535 Suda K, Takeuchi H, Ishizaka A, Kitagawa Y. High-mobility-group box chromosomal protein 1 as a new target for modulating stress response. Surg Today 2010;40:592-601. [DOI: 10.1007/s00595-009-4232-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
536 Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. 2010;1799:149-156. [PMID: 19948257 DOI: 10.1016/j.bbagrm.2009.11. 019] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
537 Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 2006;26:174-9. [PMID: 16878026 DOI: 10.1097/01.shk.0000225404.51320.82] [Cited by in Crossref: 552] [Cited by in F6Publishing: 551] [Article Influence: 34.5] [Reference Citation Analysis]
538 Zhu X, Yao Y, Liang H, Xu S, Dong N, Yu Y, Sheng Z. The Effect of High Mobility Group Box-1 Protein on Splenic Dendritic Cell Maturation in Rats. Journal of Interferon & Cytokine Research 2009;29:677-86. [DOI: 10.1089/jir.2008.0104] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.2] [Reference Citation Analysis]
539 Czura CJ, Yang H, Tracey KJ. High mobility group box-1 as a therapeutic target downstream of tumor necrosis factor. J Infect Dis. 2003;187 Suppl 2:S391-396. [PMID: 12792856 DOI: 10.1086/374753] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 1.4] [Reference Citation Analysis]
540 Mazzone SB, Yang SK, Keller JA, Simanauskaite J, Arikkatt J, Fogarty MJ, Moe AAK, Chen C, Trewella MW, Tian L, Ritchie ME, Chua BY, Phipps S, Short KR, McGovern AE. Modulation of Vagal Sensory Neurons via High Mobility Group Box-1 and Receptor for Advanced Glycation End Products: Implications for Respiratory Viral Infections. Front Physiol 2021;12:744812. [PMID: 34621188 DOI: 10.3389/fphys.2021.744812] [Reference Citation Analysis]
541 Saleh A, Smith DR, Tessler L, Mateo AR, Martens C, Schartner E, Van der Ploeg R, Toth C, Zochodne DW, Fernyhough P. Receptor for advanced glycation end-products (RAGE) activates divergent signaling pathways to augment neurite outgrowth of adult sensory neurons. Experimental Neurology 2013;249:149-59. [DOI: 10.1016/j.expneurol.2013.08.018] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 4.4] [Reference Citation Analysis]
542 Yoo H, Ku SK, Baek YD, Bae JS. Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm Res 2014;63:197-206. [PMID: 24292859 DOI: 10.1007/s00011-013-0689-x] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 5.2] [Reference Citation Analysis]
543 Dumitriu IE, Baruah P, Valentinis B, Voll RE, Herrmann M, Nawroth PP, Arnold B, Bianchi ME, Manfredi AA, Rovere-Querini P. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol 2005;174:7506-15. [PMID: 15944249 DOI: 10.4049/jimmunol.174.12.7506] [Cited by in Crossref: 356] [Cited by in F6Publishing: 356] [Article Influence: 20.9] [Reference Citation Analysis]
544 Rojas A, Figueroa H, Morales E. Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis. 2010;31:334-341. [PMID: 20028726 DOI: 10.1093/carcin/bgp322] [Cited by in Crossref: 91] [Cited by in F6Publishing: 97] [Article Influence: 7.0] [Reference Citation Analysis]
545 Lee SA, Kwak MS, Kim S, Shin JS. The role of high mobility group box 1 in innate immunity. Yonsei Med J 2014;55:1165-76. [PMID: 25048472 DOI: 10.3349/ymj.2014.55.5.1165] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 8.6] [Reference Citation Analysis]
546 Zhang W, Zhang Y, Guo X, Zeng Z, Wu J, Liu Y, He J, Wang R, Huang Q, Chen Z. Sirt1 Protects Endothelial Cells against LPS-Induced Barrier Dysfunction. Oxid Med Cell Longev 2017;2017:4082102. [PMID: 29209448 DOI: 10.1155/2017/4082102] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
547 Kim TH, Ku SK, Bae JS. Inhibitory effects of kaempferol-3-O-sophoroside on HMGB1-mediated proinflammatory responses. Food Chem Toxicol. 2012;50:1118-1123. [PMID: 22178603 DOI: 10.1016/j.fct.2011.12.004] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 3.6] [Reference Citation Analysis]
548 Fang P, Schachner M, Shen YQ. HMGB1 in development and diseases of the central nervous system. Mol Neurobiol 2012;45:499-506. [PMID: 22580958 DOI: 10.1007/s12035-012-8264-y] [Cited by in Crossref: 118] [Cited by in F6Publishing: 116] [Article Influence: 11.8] [Reference Citation Analysis]
549 Okazaki K, Kondo M, Kato M, Kakinuma R, Nishida A, Noda M, Kimura H. Elevation of high-mobility group box 1 concentration in asphyxiated neonates. Neonatology 2008;94:105-9. [PMID: 18277058 DOI: 10.1159/000116635] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
550 Biscetti F, Flex A, Alivernini S, Tolusso B, Gremese E, Ferraccioli G. The Role of High-Mobility Group Box-1 and Its Crosstalk with Microbiome in Rheumatoid Arthritis. Mediators Inflamm 2017;2017:5230374. [PMID: 29200665 DOI: 10.1155/2017/5230374] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
551 Jing R, Cui M, Sun B, Yu J, Wang H. Tissue-Specific Expression Profiling of Receptor for Advanced Glycation End Products and Its Soluble Forms in Esophageal and Lung Cancer. Genetic Testing and Molecular Biomarkers 2010;14:355-61. [DOI: 10.1089/gtmb.2009.0064] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
552 dell'Omo R, Semeraro F, Bamonte G, Cifariello F, Romano MR, Costagliola C. Vitreous mediators in retinal hypoxic diseases. Mediators Inflamm 2013;2013:935301. [PMID: 23365490 DOI: 10.1155/2013/935301] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
553 Park JS, Svetkauskaite D, He Q, Kim J, Strassheim D, Ishizaka A, Abraham E. Involvement of Toll-like Receptors 2 and 4 in Cellular Activation by High Mobility Group Box 1 Protein. Journal of Biological Chemistry 2004;279:7370-7. [DOI: 10.1074/jbc.m306793200] [Cited by in Crossref: 1111] [Cited by in F6Publishing: 589] [Article Influence: 61.7] [Reference Citation Analysis]
554 Katsuoka F, Kawakami Y, Arai T, Imuta H, Fujiwara M, Kanma H, Yamashita K. Type II alveolar epithelial cells in lung express receptor for advanced glycation end products (RAGE) gene. Biochem Biophys Res Commun. 1997;238:512-516. [PMID: 9299542 DOI: 10.1006/bbrc.1997.7263] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 2.6] [Reference Citation Analysis]
555 Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010;10:826-37. [PMID: 21088683 DOI: 10.1038/nri2873] [Cited by in Crossref: 1708] [Cited by in F6Publishing: 1648] [Article Influence: 142.3] [Reference Citation Analysis]
556 Choi HW, Klessig DF. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 2016;16:232. [PMID: 27782807 DOI: 10.1186/s12870-016-0921-2] [Cited by in Crossref: 140] [Cited by in F6Publishing: 103] [Article Influence: 23.3] [Reference Citation Analysis]
557 Nowotny K, Jung T, Grune T, Höhn A. Reprint of "accumulation of modified proteins and aggregate formation in aging". Exp Gerontol 2014;59:3-12. [PMID: 25308087 DOI: 10.1016/j.exger.2014.10.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
558 Raman KG, Sappington PL, Yang R, Levy RM, Prince JM, Liu S, Watkins SK, Schmidt AM, Billiar TR, Fink MP. The role of RAGE in the pathogenesis of intestinal barrier dysfunction after hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol 2006;291:G556-65. [PMID: 16751175 DOI: 10.1152/ajpgi.00055.2006] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 2.7] [Reference Citation Analysis]
559 Kuniyasu H, Chihara Y, Kondo H. Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int J Cancer 2003;104:722-7. [DOI: 10.1002/ijc.11016] [Cited by in Crossref: 87] [Cited by in F6Publishing: 82] [Article Influence: 4.6] [Reference Citation Analysis]
560 Bopp C, Bierhaus A, Hofer S, Bouchon A, Nawroth PP, Martin E, Weigand MA. Bench-to-bedside review: The inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Crit Care 2008;12:201. [PMID: 18226173 DOI: 10.1186/cc6164] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 5.8] [Reference Citation Analysis]
561 Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776-787. [PMID: 18802444 DOI: 10.1038/nri2402] [Cited by in Crossref: 731] [Cited by in F6Publishing: 718] [Article Influence: 52.2] [Reference Citation Analysis]
562 Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation. 2008;117:3216-3226. [PMID: 18574060 DOI: 10.1161/circulationaha.108.769331] [Cited by in Crossref: 437] [Cited by in F6Publishing: 231] [Article Influence: 31.2] [Reference Citation Analysis]
563 Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Liao Y, Liu QF, Tong GZ, Ding C, Fan HJ, Wu JQ, Mao X. Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-β. Oncotarget 2016;7:75064-80. [PMID: 27634894 DOI: 10.18632/oncotarget.11991] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
564 Goldstein RS, Gallowitsch-puerta M, Yang L, Rosas-ballina M, Huston JM, Czura CJ, Lee DC, Ward MF, Bruchfeld AN, Wang H, Lesser ML, Church AL, Litroff AH, Sama AE, Tracey KJ. ELEVATED HIGH-MOBILITY GROUP BOX 1 LEVELS IN PATIENTS WITH CEREBRAL AND MYOCARDIAL ISCHEMIA: . SHOCK 2006;25:571-4. [DOI: 10.1097/01.shk.0000209540.99176.72] [Cited by in Crossref: 168] [Cited by in F6Publishing: 172] [Article Influence: 10.5] [Reference Citation Analysis]
565 Rong J, Ye S, Liang M, Chen G, Liu H, Zhang J, Wu Z. Receptor for Advanced Glycation End Products Involved in Lung Ischemia Reperfusion Injury in Cardiopulmonary Bypass Attenuated by Controlled Oxygen Reperfusion in a Canine Model. ASAIO Journal 2013;59:302-8. [DOI: 10.1097/mat.0b013e318290504e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
566 Andersson U, Erlandsson-harris H. HMGB1 is a potent trigger of arthritis. J Intern Med 2004;255:344-50. [DOI: 10.1111/j.1365-2796.2003.01303.x] [Cited by in Crossref: 105] [Cited by in F6Publishing: 103] [Article Influence: 5.8] [Reference Citation Analysis]
567 Takata K, Kitamura Y, Tsuchiya D, Kawasaki T, Taniguchi T, Shimohama S. High mobility group box protein-1 inhibits microglial A? clearance and enhances A? neurotoxicity. J Neurosci Res 2004;78:880-91. [DOI: 10.1002/jnr.20340] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 3.0] [Reference Citation Analysis]
568 Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, Takeuchi M, Watanabe T, Yamagishi S, Sakurai S, Takasawa S, Okamoto H, Yamamoto H. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 2001;108:261-8. [PMID: 11457879 DOI: 10.1172/JCI11771] [Cited by in Crossref: 293] [Cited by in F6Publishing: 106] [Article Influence: 14.0] [Reference Citation Analysis]
569 Salomonsson S, Lundberg IE. Cytokines in idiopathic inflammatory myopathies: REVIEW. Autoimmunity 2009;39:177-90. [DOI: 10.1080/08916930600622256] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
570 Lee W, Ku SK, Bae JW, Bae JS. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food Chem Toxicol 2012;50:1826-33. [PMID: 22429818 DOI: 10.1016/j.fct.2012.03.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
571 Chen CY, Ueha S, Ishiwata Y, Yokochi S, Yang, Oppenheim JJ, Ogiwara H, Shichino S, Deshimaru S, Shand FHW, Shibayama S, Matsushima K. Combined treatment with HMGN1 and anti-CD4 depleting antibody reverses T cell exhaustion and exerts robust anti-tumor effects in mice. J Immunother Cancer 2019;7:21. [PMID: 30696484 DOI: 10.1186/s40425-019-0503-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
572 Antoine DJ, Mercer AE, Williams DP, Park BK. Mechanism-based bioanalysis and biomarkers for hepatic chemical stress. Xenobiotica. 2009;39:565-577. [PMID: 19621999 DOI: 10.1080/00498250903046993] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 2.9] [Reference Citation Analysis]
573 De Mori R, Straino S, Di Carlo A, Mangoni A, Pompilio G, Palumbo R, Bianchi ME, Capogrossi MC, Germani A. Multiple effects of high mobility group box protein 1 in skeletal muscle regeneration. Arterioscler Thromb Vasc Biol 2007;27:2377-83. [PMID: 17872450 DOI: 10.1161/ATVBAHA.107.153429] [Cited by in Crossref: 67] [Cited by in F6Publishing: 38] [Article Influence: 4.5] [Reference Citation Analysis]
574 Mullins GE, Sunden-Cullberg J, Johansson AS, Rouhiainen A, Erlandsson-Harris H, Yang H, Tracey KJ, Rauvala H, Palmblad J, Andersson J. Activation of human umbilical vein endothelial cells leads to relocation and release of high-mobility group box chromosomal protein 1. Scand J Immunol. 2004;60:566-573. [PMID: 15584967 DOI: 10.1111/j.0300-9475.2004.01518.x] [Cited by in Crossref: 119] [Cited by in F6Publishing: 110] [Article Influence: 7.0] [Reference Citation Analysis]
575 Rauvala H. Interview with Dr. Heikki Rauvala regarding pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). Interview by Marco E Bianchi. J Leukoc Biol 2007;81:46-8. [PMID: 17038581 DOI: 10.1189/jlb.1306200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
576 Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. 2010;1799:149-156. [PMID: 19948257 DOI: 10.1016/j.bbagrm.2009.11.019] [Cited by in Crossref: 224] [Cited by in F6Publishing: 231] [Article Influence: 17.2] [Reference Citation Analysis]
577 Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med. 2016;37:99-107. [PMID: 26719855 DOI: 10.3892/ijmm.2016.2707] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
578 Manivannan S, Marei O, Elalfy O, Zaben M. Neurogenesis after traumatic brain injury - The complex role of HMGB1 and neuroinflammation. Neuropharmacology 2021;183:108400. [PMID: 33189765 DOI: 10.1016/j.neuropharm.2020.108400] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
579 Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME, Vajkoczy P, Zeiher AM, Chavakis T, Dimmeler S. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res. 2007;100:204-212. [PMID: 17218606 DOI: 10.1161/01.res.0000257774.55970.f4] [Cited by in Crossref: 227] [Cited by in F6Publishing: 113] [Article Influence: 15.1] [Reference Citation Analysis]
580 Willingham SB, Bergstralh DT, O'Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M, Hoffman HM, Ting JP. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2007;2:147-59. [PMID: 18005730 DOI: 10.1016/j.chom.2007.07.009] [Cited by in Crossref: 225] [Cited by in F6Publishing: 208] [Article Influence: 15.0] [Reference Citation Analysis]
581 Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y, Kitagawa K, Imuta N, Kinoshita T, Stern DM, Yanagi H, Kamada T. Purification and Characterization of a Novel Stress Protein, the 150-kDa Oxygen-regulated Protein (ORP150), from Cultured Rat Astrocytes and Its Expression in Ischemic Mouse Brain. Journal of Biological Chemistry 1996;271:5025-32. [DOI: 10.1074/jbc.271.9.5025] [Cited by in Crossref: 149] [Cited by in F6Publishing: 137] [Article Influence: 5.7] [Reference Citation Analysis]
582 Zhu X, Yao Y, Liang H, Liu F, Dong N, Yu Y, Sheng Z. Effect of high mobility group box-1 protein on apoptosis of peritoneal macrophages. Archives of Biochemistry and Biophysics 2009;492:54-61. [DOI: 10.1016/j.abb.2009.09.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
583 Holmlund U, Wähämaa H, Bachmayer N, Bremme K, Sverremark-Ekström E, Palmblad K. The novel inflammatory cytokine high mobility group box protein 1 (HMGB1) is expressed by human term placenta. Immunology 2007;122:430-7. [PMID: 17617154 DOI: 10.1111/j.1365-2567.2007.02662.x] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 4.0] [Reference Citation Analysis]
584 Hiramoto K, Yamate Y, Goto K, Ohnishi S, Morita A, Yoshikawa N, Kawanishi S. Glycyrrhizin ameliorates melanoma cell extravasation into mouse lungs by regulating signal transduction through HMGB1 and its receptors. J Clin Biochem Nutr 2021;69:52-60. [PMID: 34376914 DOI: 10.3164/jcbn.20-125] [Reference Citation Analysis]
585 Kim I, Lee KO, Yun YJ, Jeong JY, Kim EH, Cheong H, Ryu KS, Kim NK, Suh JY. Biophysical characterization of Ca2+-binding of S100A5 and Ca2+-induced interaction with RAGE. Biochem Biophys Res Commun 2017;483:332-8. [PMID: 28017722 DOI: 10.1016/j.bbrc.2016.12.143] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
586 Stephenson HN, Herzig A, Zychlinsky A. Beyond the grave: When is cell death critical for immunity to infection? Curr Opin Immunol 2016;38:59-66. [PMID: 26682763 DOI: 10.1016/j.coi.2015.11.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
587 Holtzman DM, Zlokovic B. Role of A β Transport and Clearance in the Pathogenesis and Treatment of Alzheimer’s Disease. In: Sisodia SS, Tanzi RE, editors. Alzheimer’s Disease. Boston: Springer US; 2007. pp. 179-98. [DOI: 10.1007/978-0-387-35135-3_11] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
588 Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL. Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol 2010;7:239-54. [PMID: 20586583 DOI: 10.3109/1547691X.2010.492254] [Cited by in Crossref: 69] [Cited by in F6Publishing: 41] [Article Influence: 5.8] [Reference Citation Analysis]
589 Zhu CS, Wang W, Qiang X, Chen W, Lan X, Li J, Wang H. Endogenous Regulation and Pharmacological Modulation of Sepsis-Induced HMGB1 Release and Action: An Updated Review. Cells 2021;10:2220. [PMID: 34571869 DOI: 10.3390/cells10092220] [Reference Citation Analysis]
590 Elangovan I, Thirugnanam S, Chen A, Zheng G, Bosland MC, Kajdacsy-balla A, Gnanasekar M. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth. Biochemical and Biophysical Research Communications 2012;417:1133-8. [DOI: 10.1016/j.bbrc.2011.12.060] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 4.0] [Reference Citation Analysis]
591 Travers AA, Thomas JO. Chromosomal HMG-box proteins. Chromatin Structure and Dynamics: State-of-the-Art. Elsevier; 2004. pp. 103-34. [DOI: 10.1016/s0167-7306(03)39005-2] [Cited by in Crossref: 6] [Article Influence: 0.3] [Reference Citation Analysis]
592 Gong Q, Zhang H, Li J, Duan L, Zhong S, Kong X, Zheng F, Tan Z, Xiong P, Chen G, Fang M, Gong F. High-mobility group box 1 exacerbates concanavalin A-induced hepatic injury in mice. J Mol Med 2010;88:1289-98. [DOI: 10.1007/s00109-010-0681-7] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 3.5] [Reference Citation Analysis]
593 Chandna AR, Kuhlmann N, Bryce CA, Greba Q, Campanucci VA, Howland JG. Chronic maternal hyperglycemia induced during mid-pregnancy in rats increases RAGE expression, augments hippocampal excitability, and alters behavior of the offspring. Neuroscience 2015;303:241-60. [PMID: 26151680 DOI: 10.1016/j.neuroscience.2015.06.063] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
594 López-Díez R, Rastrojo A, Villate O, Aguado B. Complex tissue-specific patterns and distribution of multiple RAGE splice variants in different mammals. Genome Biol Evol 2013;5:2420-35. [PMID: 24273313 DOI: 10.1093/gbe/evt188] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
595 Ruan Y, Wang L, Zhao Y, Yao Y, Chen S, Li J, Guo H, Ming C, Chen S, Gong F, Chen G. Carbon monoxide potently prevents ischemia-induced high-mobility group box 1 translocation and release and protects against lethal renal ischemia-reperfusion injury. Kidney Int 2014;86:525-37. [PMID: 24694987 DOI: 10.1038/ki.2014.80] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
596 Loeser RF, Yammani RR, Carlson CS, Chen H, Cole A, Im HJ, Bursch LS, Yan SD. Articular chondrocytes express the receptor for advanced glycation end products: Potential role in osteoarthritis. Arthritis Rheum 2005;52:2376-85. [PMID: 16052547 DOI: 10.1002/art.21199] [Cited by in Crossref: 152] [Cited by in F6Publishing: 150] [Article Influence: 8.9] [Reference Citation Analysis]
597 Bauer EM, Shapiro R, Billiar TR, Bauer PM. High mobility group Box 1 inhibits human pulmonary artery endothelial cell migration via a Toll-like receptor 4- and interferon response factor 3-dependent mechanism(s). J Biol Chem 2013;288:1365-73. [PMID: 23148224 DOI: 10.1074/jbc.M112.434142] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
598 Kim J, Kim CS, Sohn E, Kim JS. Cytoplasmic translocation of high-mobility group box-1 protein is induced by diabetes and high glucose in retinal pericytes. Mol Med Rep 2016;14:3655-61. [PMID: 27599553 DOI: 10.3892/mmr.2016.5702] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
599 Nair SM, Zhao Z, Chou DK, Tobet SA, Jungalwala FB. Expression of HNK-1 carbohydrate and its binding protein, SBP-1, in apposing cell surfaces in cerebral cortex and cerebellum. Neuroscience 1998;85:759-71. [PMID: 9639270 DOI: 10.1016/s0306-4522(97)00666-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
600 Munesue S, Yamamoto Y, Urushihara R, Inomata K, Saito H, Motoyoshi S, Watanabe T, Yonekura H, Yamamoto H. Low-molecular weight fractions of Japanese soy sauce act as a RAGE antagonist via inhibition of RAGE trafficking to lipid rafts. Food Funct 2013;4:1835-42. [PMID: 24191276 DOI: 10.1039/c2fo30359k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
601 Kalinina N, Agrotis A, Antropova Y, DiVitto G, Kanellakis P, Kostolias G, Ilyinskaya O, Tararak E, Bobik A. Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines. Arterioscler Thromb Vasc Biol 2004;24:2320-5. [PMID: 15374849 DOI: 10.1161/01.ATV.0000145573.36113.8a] [Cited by in Crossref: 190] [Cited by in F6Publishing: 77] [Article Influence: 10.6] [Reference Citation Analysis]
602 Vicentino ARR, Carneiro VC, Allonso D, Guilherme RF, Benjamim CF, Dos Santos HAM, Xavier F, Pyrrho ADS, Gomes JAS, Fonseca MC, de Oliveira RC, Pereira TA, Ladislau L, Lambertucci JR, Fantappié MR. Emerging Role of HMGB1 in the Pathogenesis of Schistosomiasis Liver Fibrosis. Front Immunol 2018;9:1979. [PMID: 30258438 DOI: 10.3389/fimmu.2018.01979] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
603 Nigro F, Gagliardi L, Ciotti S, Galvano F, Pietri A, Tina GL, Cavallaro D, La Fauci L, Iacopino L, Bognanno M, Li Volti G, Scacco A, Michetti F, Gazzolo D. S100B Protein concentration in milk-formulas for preterm and term infants Correlation with industrial preparation procedures. Mol Nutr Food Res 2008;52:609-13. [DOI: 10.1002/mnfr.200700312] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
604 Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology 2019;20:279-301. [PMID: 30968282 DOI: 10.1007/s10522-019-09808-3] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
605 Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280:E685-E694. [PMID: 11287350 DOI: 10.1152/ajpendo.2001.280.5.e685] [Cited by in Crossref: 610] [Cited by in F6Publishing: 278] [Article Influence: 29.0] [Reference Citation Analysis]
606 Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, Suffredini AF. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652-2660. [PMID: 12456506 DOI: 10.1182/blood-2002-05-1300] [Cited by in Crossref: 511] [Cited by in F6Publishing: 508] [Article Influence: 25.6] [Reference Citation Analysis]
607 Kim WK, Kwon Y, Park M, Yun S, Kwon JY, Kim H. Identification of specifically activated angiogenic molecules in HMGB-1-induced angiogenesis. BMB Rep 2017;50:590-5. [PMID: 29065965 DOI: 10.5483/bmbrep.2017.50.11.129] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
608 Lu W, Feng B, Xie G, Liu F. Association of AGER gene G82S polymorphism with the severity of coronary artery disease in Chinese Han population. Clinical Endocrinology 2011;75:470-4. [DOI: 10.1111/j.1365-2265.2011.04079.x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
609 Anggayasti WL, Mancera RL, Bottomley S, Helmerhorst E. Optimization of surface plasmon resonance experiments: Case of high mobility group box 1 (HMGB1) interactions. Anal Biochem 2016;499:43-50. [PMID: 26869083 DOI: 10.1016/j.ab.2015.12.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
610 Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020;46:751-75. [PMID: 31612270 DOI: 10.1007/s00068-019-01235-w] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]
611 Min HJ, Kim JH, Yoo JE, Oh JH, Kim KS, Yoon JH, Kim CH. ROS-dependent HMGB1 secretion upregulates IL-8 in upper airway epithelial cells under hypoxic condition. Mucosal Immunol 2017;10:685-94. [PMID: 27624778 DOI: 10.1038/mi.2016.82] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
612 Kalea A, Schmidt A, Hudson B. RAGE: a novel biological and genetic marker for vascular disease. Clinical Science 2009;116:621-37. [DOI: 10.1042/cs20080494] [Cited by in Crossref: 116] [Cited by in F6Publishing: 63] [Article Influence: 8.9] [Reference Citation Analysis]
613 Heizmann C, Ackermann G, Galichet A. Pathologies Involving the S100 Proteins and Rage. In: Carafoli E, Brini M, editors. Calcium Signalling and Disease. Dordrecht: Springer Netherlands; 2007. pp. 93-138. [DOI: 10.1007/978-1-4020-6191-2_5] [Cited by in Crossref: 104] [Cited by in F6Publishing: 106] [Reference Citation Analysis]
614 Wang H, Mei X, Cao Y, Liu C, Zhao Z, Guo Z, Bi Y, Shen Z, Yuan Y, Guo Y, Song C, Bai L, Wang Y, Yu D. HMGB1/Advanced Glycation End Products (RAGE) does not aggravate inflammation but promote endogenous neural stem cells differentiation in spinal cord injury. Sci Rep 2017;7:10332. [PMID: 28871209 DOI: 10.1038/s41598-017-10611-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
615 Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis 2019;10:367-82. [PMID: 31011483 DOI: 10.14336/AD.2018.0324] [Cited by in Crossref: 118] [Cited by in F6Publishing: 75] [Article Influence: 39.3] [Reference Citation Analysis]
616 Raghavan CT, Nagaraj RH. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells. Glycoconj J 2016;33:631-43. [PMID: 27263094 DOI: 10.1007/s10719-016-9686-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
617 Biscetti F, Straface G, De Cristofaro R, Lancellotti S, Rizzo P, Arena V, Stigliano E, Pecorini G, Egashira K, De Angelis G, Ghirlanda G, Flex A. High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes 2010;59:1496-505. [PMID: 20200317 DOI: 10.2337/db09-1507] [Cited by in Crossref: 77] [Cited by in F6Publishing: 75] [Article Influence: 6.4] [Reference Citation Analysis]
618 Palumbo R, Sampaolesi M, De Marchis F, Tonlorenzi R, Colombetti S, Mondino A, Cossu G, Bianchi ME. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol. 2004;164:441-449. [PMID: 14744997 DOI: 10.1083/jcb.200304135] [Cited by in Crossref: 330] [Cited by in F6Publishing: 330] [Article Influence: 18.3] [Reference Citation Analysis]
619 Yan B, Ren J, Zhang Q, Gao R, Zhao F, Wu J, Yang J. Antioxidative Effects of Natural Products on Diabetic Cardiomyopathy. J Diabetes Res 2017;2017:2070178. [PMID: 29181412 DOI: 10.1155/2017/2070178] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
620 Romero R, Chaiworapongsa T, Alpay Savasan Z, Xu Y, Hussein Y, Dong Z, Kusanovic JP, Kim CJ, Hassan SS. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med 2011;24:1444-55. [PMID: 21958433 DOI: 10.3109/14767058.2011.591460] [Cited by in Crossref: 139] [Cited by in F6Publishing: 148] [Article Influence: 12.6] [Reference Citation Analysis]
621 Wang H, Yang H, Tracey KJ. Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med. 2004;255:320-331. [PMID: 14871456 DOI: 10.1111/j.1365-2796.2003.01302.x] [Cited by in Crossref: 323] [Cited by in F6Publishing: 316] [Article Influence: 17.9] [Reference Citation Analysis]
622 Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, Hissar S, Kornfeld H, Babu S. Systemic RAGE ligands are upregulated in tuberculosis individuals with diabetes co-morbidity and modulated by anti-tuberculosis treatment and metformin therapy. BMC Infect Dis. 2019;19:1039. [PMID: 31818258 DOI: 10.1186/s12879-019-4648-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
623 Takahashi H, Sadamori H, Teshigawara K, Niwa A, Liu K, Wake H, Mori S, Yoshino T, Nishibori M. Histamine inhibits high mobility group box 1-induced adhesion molecule expression on human monocytes. Eur J Pharmacol 2013;718:305-13. [PMID: 24012904 DOI: 10.1016/j.ejphar.2013.08.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
624 Hudson BI, Kalea AZ, Del Mar Arriero M, Harja E, Boulanger E, D'Agati V, Schmidt AM. Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 2008;283:34457-68. [PMID: 18922799 DOI: 10.1074/jbc.M801465200] [Cited by in Crossref: 211] [Cited by in F6Publishing: 129] [Article Influence: 15.1] [Reference Citation Analysis]
625 Sukkar MB, Ullah MA, Gan WJ, Wark PA, Chung KF, Hughes JM, Armour CL, Phipps S. RAGE: a new frontier in chronic airways disease. Br J Pharmacol 2012;167:1161-76. [PMID: 22506507 DOI: 10.1111/j.1476-5381.2012.01984.x] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 6.6] [Reference Citation Analysis]
626 Ishiguro H, Nakaigawa N, Miyoshi Y, Fujinami K, Kubota Y, Uemura H. Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate. 2005;64:92-100. [PMID: 15666359 DOI: 10.1002/pros.20219] [Cited by in Crossref: 127] [Cited by in F6Publishing: 129] [Article Influence: 7.5] [Reference Citation Analysis]
627 Tsuji Y, Kuramochi M, Golbar HM, Izawa T, Kuwamura M, Yamate J. Acetaminophen-Induced Rat Hepatotoxicity Based on M1/M2-Macrophage Polarization, in Possible Relation to Damage-Associated Molecular Patterns and Autophagy. Int J Mol Sci 2020;21:E8998. [PMID: 33256230 DOI: 10.3390/ijms21238998] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
628 Tsung A, Tohme S, Billiar TR. High-mobility group box-1 in sterile inflammation. J Intern Med. 2014;276:425-443. [PMID: 24935761 DOI: 10.1111/joim.12276] [Cited by in Crossref: 134] [Cited by in F6Publishing: 130] [Article Influence: 16.8] [Reference Citation Analysis]
629 Zhao X, Rouhiainen A, Li Z, Guo S, Rauvala H. Regulation of Neurogenesis in Mouse Brain by HMGB1. Cells 2020;9:E1714. [PMID: 32708917 DOI: 10.3390/cells9071714] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
630 Li J, Bao G, Wang H. Time to Develop Therapeutic Antibodies Against Harmless Proteins Colluding with Sepsis Mediators? Immunotargets Ther 2020;9:157-66. [PMID: 33117741 DOI: 10.2147/ITT.S262605] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
631 Bartling B, Demling N, Silber RE, Simm A. Proliferative stimulus of lung fibroblasts on lung cancer cells is impaired by the receptor for advanced glycation end-products. Am J Respir Cell Mol Biol 2006;34:83-91. [PMID: 16166741 DOI: 10.1165/rcmb.2005-0194OC] [Cited by in Crossref: 32] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
632 Kikuchi K, Uchikado H, Miura N, Morimoto Y, Ito T, Tancharoen S, Miyata K, Sakamoto R, Kikuchi C, Iida N, Shiomi N, Kuramoto T, Miyagi N, Kawahara KI. HMGB1 as a therapeutic target in spinal cord injury: A hypothesis for novel therapy development. Exp Ther Med 2011;2:767-70. [PMID: 22977572 DOI: 10.3892/etm.2011.310] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
633 Abouzied MM, El-Tahir HM, Gieselmann V, Franken S. Hepatoma-derived growth factor-related protein-3: a new neurotrophic and neurite outgrowth-promoting factor for cortical neurons. J Neurosci Res 2010;88:3610-20. [PMID: 20890995 DOI: 10.1002/jnr.22507] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
634 Wang Y, Zhong J, Zhang X, Liu Z, Yang Y, Gong Q, Ren B. The Role of HMGB1 in the Pathogenesis of Type 2 Diabetes. J Diabetes Res 2016;2016:2543268. [PMID: 28101517 DOI: 10.1155/2016/2543268] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
635 Lee W, Ku SK, Kim JA, Lee T, Bae JS. Inhibitory effects of epi-sesamin on HMGB1-induced vascular barrier disruptive responses in vitro and in vivo. Toxicol Appl Pharmacol 2013;267:201-8. [PMID: 23352503 DOI: 10.1016/j.taap.2013.01.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
636 Hsieh H, Schäfer BW, Weigle B, Heizmann CW. S100 protein translocation in response to extracellular S100 is mediated by receptor for advanced glycation endproducts in human endothelial cells. Biochemical and Biophysical Research Communications 2004;316:949-59. [DOI: 10.1016/j.bbrc.2004.02.135] [Cited by in Crossref: 75] [Cited by in F6Publishing: 72] [Article Influence: 4.2] [Reference Citation Analysis]
637 Song JS, Kang CM, Park CK, Yoon HK, Lee SY, Ahn JH, Moon HS. Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF-β-induced alveolar epithelial to mesenchymal transition. Exp Mol Med 2011;43:517-24. [PMID: 21743278 DOI: 10.3858/emm.2011.43.9.059] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
638 Cox KH, Cox ME, Woo-Rasberry V, Hasty DL. Pathways involved in the synergistic activation of macrophages by lipoteichoic acid and hemoglobin. PLoS One 2012;7:e47333. [PMID: 23071790 DOI: 10.1371/journal.pone.0047333] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
639 Kong X, Yuan H, Wu X, Zhang J, Zhou H, Wang M, Liu Y, Jin X. High-mobility-group box protein 1A box reduces development of sodium laurate-induced thromboangiitis obliterans in rats. J Vasc Surg 2013;57:194-204. [PMID: 23069071 DOI: 10.1016/j.jvs.2012.06.083] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
640 Thierry S, Gozlan J, Jaulmes A, Boniface R, Nasreddine N, Strauss F, Maréchal V. High-mobility group box 1 protein induces HIV-1 expression from persistently infected cells. AIDS 2007;21:283-92. [DOI: 10.1097/qad.0b013e3280115b50] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
641 Buyannemekh D, Nham SU. Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE). Mol Cells 2017;40:355-62. [PMID: 28535664 DOI: 10.14348/molcells.2017.0021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
642 Yang D, Tewary P, de la Rosa G, Wei F, Oppenheim JJ. The alarmin functions of high-mobility group proteins. Biochim Biophys Acta 2010;1799:157-63. [PMID: 20123077 DOI: 10.1016/j.bbagrm.2009.11.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
643 Huang W, Liu Y, Li L, Zhang R, Liu W, Wu J, Mao E, Tang Y. HMGB1 Increases Permeability of the Endothelial Cell Monolayer via RAGE and Src Family Tyrosine Kinase Pathways. Inflammation 2012;35:350-62. [DOI: 10.1007/s10753-011-9325-5] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 5.5] [Reference Citation Analysis]
644 Milne R, Brownstein S. Advanced glycation end products and diabetic retinopathy. Amino Acids 2013;44:1397-407. [DOI: 10.1007/s00726-011-1071-3] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 4.6] [Reference Citation Analysis]
645 Buhimschi CS, Baumbusch MA, Dulay AT, Oliver EA, Lee S, Zhao G, Bhandari V, Ehrenkranz RA, Weiner CP, Madri JA, Buhimschi IA. Characterization of RAGE, HMGB1, and S100beta in inflammation-induced preterm birth and fetal tissue injury. Am J Pathol 2009;175:958-75. [PMID: 19679874 DOI: 10.2353/ajpath.2009.090156] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 4.8] [Reference Citation Analysis]
646 Wu L, Yang L. The function and mechanism of HMGB1 in lung cancer and its potential therapeutic implications. Oncol Lett 2018;15:6799-805. [PMID: 29725415 DOI: 10.3892/ol.2018.8215] [Cited by in Crossref: 8] [Cited by in F6Publishing: 30] [Article Influence: 2.0] [Reference Citation Analysis]
647 Gerö D, Szoleczky P, Módis K, Pribis JP, Al-Abed Y, Yang H, Chevan S, Billiar TR, Tracey KJ, Szabo C. Identification of pharmacological modulators of HMGB1-induced inflammatory response by cell-based screening. PLoS One 2013;8:e65994. [PMID: 23799067 DOI: 10.1371/journal.pone.0065994] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
648 Lue LF, Walker DG, Brachova L, Beach TG, Rogers J, Schmidt AM, Stern DM, Yan SD. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp Neurol 2001;171:29-45. [PMID: 11520119 DOI: 10.1006/exnr.2001.7732] [Cited by in Crossref: 276] [Cited by in F6Publishing: 269] [Article Influence: 13.1] [Reference Citation Analysis]
649 Yan SF, Ramasamy R, Schmidt AM. Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. J Mol Med (Berl) 2009;87:235-47. [PMID: 19189073 DOI: 10.1007/s00109-009-0439-2] [Cited by in Crossref: 157] [Cited by in F6Publishing: 144] [Article Influence: 12.1] [Reference Citation Analysis]
650 Kim HJ, Jeong MS, Jang SB. Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021;22:6904. [PMID: 34199060 DOI: 10.3390/ijms22136904] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
651 Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15:16R-28R. [PMID: 15764591 DOI: 10.1093/glycob/cwi053] [Cited by in Crossref: 495] [Cited by in F6Publishing: 454] [Article Influence: 29.1] [Reference Citation Analysis]
652 Blum R, Kloog Y. Metabolism addiction in pancreatic cancer. Cell Death Dis 2014;5:e1065. [PMID: 24556680 DOI: 10.1038/cddis.2014.38] [Cited by in Crossref: 88] [Cited by in F6Publishing: 82] [Article Influence: 11.0] [Reference Citation Analysis]
653 Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I, Pass HI, Gaudino G, Carbone M, Yang H. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res 2012;72:3290-301. [PMID: 22552293 DOI: 10.1158/0008-5472.CAN-11-3481] [Cited by in Crossref: 155] [Cited by in F6Publishing: 104] [Article Influence: 15.5] [Reference Citation Analysis]
654 Anfinogenova ND, Quinn MT, Schepetkin IA, Atochin DN. Alarmins and c-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells 2020;9:E2350. [PMID: 33114371 DOI: 10.3390/cells9112350] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
655 Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 2007;282:31317-31. [PMID: 17726019 DOI: 10.1074/jbc.M703951200] [Cited by in Crossref: 180] [Cited by in F6Publishing: 87] [Article Influence: 12.0] [Reference Citation Analysis]
656 Ramsgaard L, Englert JM, Manni ML, Milutinovic PS, Gefter J, Tobolewski J, Crum L, Coudriet GM, Piganelli J, Zamora R, Vodovotz Y, Enghild JJ, Oury TD. Lack of the receptor for advanced glycation end-products attenuates E. coli pneumonia in mice. PLoS One 2011;6:e20132. [PMID: 21629785 DOI: 10.1371/journal.pone.0020132] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
657 Nawroth PP, Bierhaus A, Vogel GE, Hofmann MA, Zumbach M, Wahl P, Ziegler R. Nichtenzymatische Glykierung und oxidativer Streß bei chronischen Erkrankungen und Diabetes mellitus. Med Klin 1999;94:29-38. [DOI: 10.1007/bf03044692] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
658 Dattilo BM, Fritz G, Leclerc E, Kooi CW, Heizmann CW, Chazin WJ. The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry 2007;46:6957-70. [PMID: 17508727 DOI: 10.1021/bi7003735] [Cited by in Crossref: 118] [Cited by in F6Publishing: 119] [Article Influence: 7.9] [Reference Citation Analysis]
659 Briquet S, Lawson-Hogban N, Boisson B, Soares MP, Péronet R, Smith L, Ménard R, Huerre M, Mécheri S, Vaquero C. Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity. Infect Immun 2015;83:2771-84. [PMID: 25916985 DOI: 10.1128/IAI.03129-14] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
660 Song J, Lee WT, Park KA, Lee JE. Receptor for advanced glycation end products (RAGE) and its ligands: focus on spinal cord injury. Int J Mol Sci 2014;15:13172-91. [PMID: 25068700 DOI: 10.3390/ijms150813172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
661 Son M, Porat A, He M, Suurmond J, Santiago-Schwarz F, Andersson U, Coleman TR, Volpe BT, Tracey KJ, Al-Abed Y, Diamond B. C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 2016;128:2218-28. [PMID: 27683415 DOI: 10.1182/blood-2016-05-719757] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 10.7] [Reference Citation Analysis]
662 Luan ZG, Zhang H, Yang PT, Ma XC, Zhang C, Guo RX. HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells. Immunobiology 2010;215:956-62. [PMID: 20163887 DOI: 10.1016/j.imbio.2009.11.001] [Cited by in Crossref: 90] [Cited by in F6Publishing: 88] [Article Influence: 7.5] [Reference Citation Analysis]
663 van Beijnum JR, Nowak-Sliwinska P, van den Boezem E, Hautvast P, Buurman WA, Griffioen AW. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene. 2013;32:363-374. [PMID: 22391561 DOI: 10.1038/onc.2012.49] [Cited by in Crossref: 104] [Cited by in F6Publishing: 96] [Article Influence: 10.4] [Reference Citation Analysis]
664 Sterenczak KA, Nolte I, Murua Escobar H. RAGE splicing variants in mammals. Methods Mol Biol. 2013;963:265-276. [PMID: 23296616 DOI: 10.1007/978-1-62703-230-8_16] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
665 Hadding A, Kaltschmidt B, Kaltschmidt C. Overexpression of receptor of advanced glycation end products hypersensitizes cells for amyloid beta peptide-induced cell death. Biochim Biophys Acta 2004;1691:67-72. [PMID: 15053925 DOI: 10.1016/j.bbamcr.2004.01.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 0.7] [Reference Citation Analysis]
666 Kajander T, Kuja-panula J, Rauvala H, Goldman A. Crystal Structure and Role of Glycans and Dimerization in Folding of Neuronal Leucine-Rich Repeat Protein AMIGO-1. Journal of Molecular Biology 2011;413:1001-15. [DOI: 10.1016/j.jmb.2011.09.032] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
667 Liu Q, Hua B, Su W, Di B, Yu S, Gao S, Liu H, Zhao X, Li W, Li H. AGEs impair Kv channel-mediated vasodilation of coronary arteries by activating the NF-κB signaling pathway in ZDF rats. Biomed Pharmacother 2019;120:109527. [PMID: 31629953 DOI: 10.1016/j.biopha.2019.109527] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
668 Schmidt AM, Wautier J, Stern D, Yan SD. RAGE. Hormones and Signaling. Elsevier; 1998. pp. 41-63. [DOI: 10.1016/b978-012312411-1/50003-2] [Cited by in Crossref: 3] [Article Influence: 0.1] [Reference Citation Analysis]
669 Oczypok EA, Perkins TN, Oury TD. All the "RAGE" in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev 2017;23:40-9. [PMID: 28416135 DOI: 10.1016/j.prrv.2017.03.012] [Cited by in Crossref: 52] [Cited by in F6Publishing: 65] [Article Influence: 10.4] [Reference Citation Analysis]
670 Kamitani W, Shoya Y, Kobayashi T, Watanabe M, Lee BJ, Zhang G, Tomonaga K, Ikuta K. Borna disease virus phosphoprotein binds a neurite outgrowth factor, amphoterin/HMG-1. J Virol 2001;75:8742-51. [PMID: 11507219 DOI: 10.1128/jvi.75.18.8742-8751.2001] [Cited by in Crossref: 46] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]
671 Kim J, Wan CK, J O'Carroll S, Shaikh SB, Nicholson LF. The role of receptor for advanced glycation end products (RAGE) in neuronal differentiation. J Neurosci Res 2012;90:1136-47. [PMID: 22344976 DOI: 10.1002/jnr.23014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
672 Sakaguchi M, Huh NH. S100A11, a dual growth regulator of epidermal keratinocytes. Amino Acids 2011;41:797-807. [PMID: 20872027 DOI: 10.1007/s00726-010-0747-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.4] [Reference Citation Analysis]
673 Swami P, O'Connell KA, Thiyagarajan S, Crawford A, Patil P, Radhakrishnan P, Shin S, Caffrey TC, Grunkemeyer J, Neville T, Vetter SW, Hollingsworth MA, Leclerc E