BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alkalay I, Yaron A, Hatzubai A, Orian A, Ciechanover A, Ben-Neriah Y. Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 1995;92:10599-10603. [PMID: 7479848 DOI: 10.1073/pnas.92.23.10599] [Cited by in Crossref: 304] [Cited by in F6Publishing: 306] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Hellweg CE, Spitta LF, Henschenmacher B, Diegeler S, Baumstark-Khan C. Transcription Factors in the Cellular Response to Charged Particle Exposure. Front Oncol 2016;6:61. [PMID: 27047795 DOI: 10.3389/fonc.2016.00061] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
2 Kang JL, Pack IS, Hong SM, Lee HS, Castranova V. Silica Induces Nuclear Factor-κB Activation through Tyrosine Phosphorylation of IκB-α in RAW264.7 Macrophages. Toxicology and Applied Pharmacology 2000;169:59-65. [DOI: 10.1006/taap.2000.9039] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 1.4] [Reference Citation Analysis]
3 Stroka DM, Badrichani AZ, Bach FH, Ferran C. Overexpression of A1, an NF-κB–Inducible Anti-Apoptotic Bcl Gene, Inhibits Endothelial Cell Activation. Blood 1999;93:3803-10. [DOI: 10.1182/blood.v93.11.3803.411a27_3803_3810] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
4 Zhang T, Wang J, Wang S, Ma C. Timosaponin B-II inhibits lipopolysaccharide-induced acute lung toxicity via TLR/NF-κB pathway. Toxicol Mech Methods 2015;25:665-71. [PMID: 26540118 DOI: 10.3109/15376516.2015.1045652] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
5 Shang F, Gong X, Taylor A. Activity of Ubiquitin-dependent Pathway in Response to Oxidative Stress. Journal of Biological Chemistry 1997;272:23086-93. [DOI: 10.1074/jbc.272.37.23086] [Cited by in Crossref: 153] [Cited by in F6Publishing: 161] [Article Influence: 6.1] [Reference Citation Analysis]
6 Zou ZW, Liu T, Li Y, Chen P, Peng X, Ma C, Zhang WJ, Li PD. Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biol 2018;16:226-36. [PMID: 29525603 DOI: 10.1016/j.redox.2018.02.025] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
7 Deng YL, Ma YL, Zhang ZL, Zhang LX, Guo H, Qin P, Hou YS, Gao ZJ, Hou WG. Astrocytic N-Myc Downstream-regulated Gene-2 Is Involved in Nuclear Transcription Factor κB-mediated Inflammation Induced by Global Cerebral Ischemia. Anesthesiology 2018;128:574-86. [PMID: 29252510 DOI: 10.1097/ALN.0000000000002044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
8 Zarnack K, Balasubramanian S, Gantier MP, Kunetsky V, Kracht M, Schmitz ML, Sträßer K. Dynamic mRNP Remodeling in Response to Internal and External Stimuli. Biomolecules 2020;10:E1310. [PMID: 32932892 DOI: 10.3390/biom10091310] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
9 Hauf N, Goebel W, Fiedler F, Sokolovic Z, Kuhn M. Listeria monocytogenes infection of P388D1 macrophages results in a biphasic NF-kappaB (RelA/p50) activation induced by lipoteichoic acid and bacterial phospholipases and mediated by IkappaBalpha and IkappaBbeta degradation. Proc Natl Acad Sci U S A 1997;94:9394-9. [PMID: 9256493 DOI: 10.1073/pnas.94.17.9394] [Cited by in Crossref: 77] [Cited by in F6Publishing: 75] [Article Influence: 3.1] [Reference Citation Analysis]
10 Gonen H, Shkedy D, Barnoy S, Kosower NS, Ciechanover A. On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS Letters 1997;406:17-22. [DOI: 10.1016/s0014-5793(97)00225-1] [Cited by in Crossref: 58] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
11 Tsai K, Teng L, Shao Y, Chen Y, Lee Y, Li M, Hsiao N. The first pharmacophore model for potent NF-κB inhibitors. Bioorganic & Medicinal Chemistry Letters 2009;19:5665-9. [DOI: 10.1016/j.bmcl.2009.08.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
12 Zhang Y, Yang B, Zhao J, Li X, Zhang L, Zhai Z. Proteasome Inhibitor Carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal (MG132) Enhances Therapeutic Effect of Paclitaxel on Breast Cancer by Inhibiting Nuclear Factor (NF)-κB Signaling. Med Sci Monit 2018;24:294-304. [PMID: 29332931 DOI: 10.12659/msm.908139] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Snow EC. The role of c-myc during normal B cell proliferation, and as B cells undergo malignant transformation. Curr Top Microbiol Immunol 1997;224:211-20. [PMID: 9308244 DOI: 10.1007/978-3-642-60801-8_21] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-neriah Y. Identification of the receptor component of the IκBα–ubiquitin ligase. Nature 1998;396:590-4. [DOI: 10.1038/25159] [Cited by in Crossref: 478] [Cited by in F6Publishing: 479] [Article Influence: 19.9] [Reference Citation Analysis]
15 Matroule J, Piette J. Photosensitization and Redox Signaling. Antioxidants & Redox Signaling 2000;2:301-15. [DOI: 10.1089/ars.2000.2.2-301] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
16 Adachi M, Gazel A, Pintucci G, Shuck A, Shifteh S, Ginsburg D, Rao LS, Kaneko T, Freedberg IM, Tamaki K, Blumenberg M. Specificity in Stress Response: Epidermal Keratinocytes Exhibit Specialized UV-Responsive Signal Transduction Pathways. DNA and Cell Biology 2003;22:665-77. [DOI: 10.1089/104454903770238148] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 1.5] [Reference Citation Analysis]
17 Nagasaki K, Schem C, von Kaisenberg C, Biallek M, Rösel F, Jonat W, Maass N. Leucine-zipper protein, LDOC1, inhibits NF-κB activation and sensitizes pancreatic cancer cells to apoptosis: LDOC1 Inhibits NF-κB Activation. Int J Cancer 2003;105:454-8. [DOI: 10.1002/ijc.11122] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 2.9] [Reference Citation Analysis]
18 Muñoz E, Blázquez MV, Ortiz C, Gomez-Díaz C, Navas P. Role of ascorbate in the activation of NF-kappaB by tumour necrosis factor-alpha in T-cells. Biochem J 1997;325 ( Pt 1):23-8. [PMID: 9224625 DOI: 10.1042/bj3250023] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 1.4] [Reference Citation Analysis]
19 Amarilyo G, Verbovetski I, Atallah M, Grau A, Wiser G, Gil O, Ben-Neriah Y, Mevorach D. iC3b-opsonized apoptotic cells mediate a distinct anti-inflammatory response and transcriptional NF-kappaB-dependent blockade. Eur J Immunol 2010;40:699-709. [PMID: 20039295 DOI: 10.1002/eji.200838951] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 4.3] [Reference Citation Analysis]
20 Jensen LE, Whitehead AS. Regulation of serum amyloid A protein expression during the acute-phase response. Biochem J. 1998;334:489-503. [PMID: 9729453 DOI: 10.1042/bj3340489] [Cited by in Crossref: 270] [Cited by in F6Publishing: 265] [Article Influence: 11.3] [Reference Citation Analysis]
21 Li L, Liu Y, Chen HZ, Li FW, Wu JF, Zhang HK, He JP, Xing YZ, Chen Y, Wang WJ, Tian XY, Li AZ, Zhang Q, Huang PQ, Han J, Lin T, Wu Q. Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. Nat Chem Biol 2015;11:339-46. [PMID: 25822914 DOI: 10.1038/nchembio.1788] [Cited by in Crossref: 80] [Cited by in F6Publishing: 80] [Article Influence: 11.4] [Reference Citation Analysis]
22 Zmijewski JW, Zhao X, Xu Z, Abraham E. Exposure to hydrogen peroxide diminishes NF-kappaB activation, IkappaB-alpha degradation, and proteasome activity in neutrophils. Am J Physiol Cell Physiol 2007;293:C255-66. [PMID: 17392377 DOI: 10.1152/ajpcell.00618.2006] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 3.6] [Reference Citation Analysis]
23 Cox CJ, Dutta K, Petri ET, Hwang WC, Lin Y, Pascal SM, Basavappa R. The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are natively unfolded. FEBS Lett 2002;527:303-8. [PMID: 12220679 DOI: 10.1016/s0014-5793(02)03246-5] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
24 Manning AM. The NF-κB System and Drug Discovery. In: Collins T, editor. Leukocyte Recruitment, Endothelial Cell Adhesion Molecules, and Transcriptional Control. Boston: Springer US; 2001. pp. 303-21. [DOI: 10.1007/978-1-4615-1565-4_9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.0] [Reference Citation Analysis]
25 Rezzonico R, Imbert V, Chicheportiche R, Dayer JM. Ligation of CD11b and CD11c beta(2) integrins by antibodies or soluble CD23 induces macrophage inflammatory protein 1alpha (MIP-1alpha) and MIP-1beta production in primary human monocytes through a pathway dependent on nuclear factor-kappaB. Blood 2001;97:2932-40. [PMID: 11342414 DOI: 10.1182/blood.v97.10.2932] [Cited by in Crossref: 66] [Cited by in F6Publishing: 33] [Article Influence: 3.1] [Reference Citation Analysis]
26 Myung J, Kim KB, Crews CM. The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 2001;21:245-73. [DOI: 10.1002/med.1009] [Cited by in Crossref: 294] [Cited by in F6Publishing: 277] [Article Influence: 14.0] [Reference Citation Analysis]
27 Thomas JL. Helpful or Harmful? Potential Effects of Exercise on Select Inflammatory Conditions. The Physician and Sportsmedicine 2015;41:93-100. [DOI: 10.3810/psm.2013.11.2040] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
28 Han Y, Weinman S, Boldogh I, Walker RK, Brasier AR. Tumor necrosis factor-alpha-inducible IkappaBalpha proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kappab activation. J Biol Chem 1999;274:787-94. [PMID: 9873017 DOI: 10.1074/jbc.274.2.787] [Cited by in Crossref: 187] [Cited by in F6Publishing: 181] [Article Influence: 8.1] [Reference Citation Analysis]
29 Romero N, Van Waesberghe C, Favoreel HW. Pseudorabies Virus Infection of Epithelial Cells Leads to Persistent but Aberrant Activation of the NF-κB Pathway, Inhibiting Hallmark NF-κB-Induced Proinflammatory Gene Expression. J Virol 2020;94:e00196-20. [PMID: 32132236 DOI: 10.1128/JVI.00196-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020;213:107579. [PMID: 32442437 DOI: 10.1016/j.pharmthera.2020.107579] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
31 Hodgson A, Wier EM, Fu K, Sun X, Yu H, Zheng W, Sham HP, Johnson K, Bailey S, Vallance BA, Wan F. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog 2015;11:e1004705. [PMID: 25756944 DOI: 10.1371/journal.ppat.1004705] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 5.1] [Reference Citation Analysis]
32 Pru JK, Rueda BR, Austin KJ, Thatcher WW, Guzeloglu A, Hansen TR. Interferon-Tau Suppresses Prostaglandin F2α Secretion Independently of the Mitogen-Activated Protein Kinase and Nuclear Factor κ B Pathways1. Biology of Reproduction 2001;64:965-73. [DOI: 10.1095/biolreprod64.3.965] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 0.9] [Reference Citation Analysis]
33 Wu R, Anthes JC, Kreutner W, Harris AG, West Jr RE. Desloratadine Inhibits Constitutive and Histamine-Stimulated Nuclear Factor-κB Activity Consistent with Inverse Agonism at the Histamine H<sub>1</sub> Receptor. Int Arch Allergy Immunol 2004;135:313-8. [DOI: 10.1159/000082325] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 1.8] [Reference Citation Analysis]
34 Renard P, Percherancier Y, Kroll M, Thomas D, Virelizier J, Arenzana-seisdedos F, Bachelerie F. Inducible NF-κB Activation Is Permitted by Simultaneous Degradation of Nuclear IκBα. Journal of Biological Chemistry 2000;275:15193-9. [DOI: 10.1074/jbc.275.20.15193] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 2.0] [Reference Citation Analysis]
35 Fernandes AF, Guo W, Zhang X, Gallagher M, Ivan M, Taylor A, Pereira P, Shang F. Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells. Exp Eye Res 2006;83:1472-81. [PMID: 17027001 DOI: 10.1016/j.exer.2006.07.024] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 1.4] [Reference Citation Analysis]
36 Miyamoto S, Seufzer BJ, Shumway SD. Novel IkappaB alpha proteolytic pathway in WEHI231 immature B cells. Mol Cell Biol 1998;18:19-29. [PMID: 9418849 DOI: 10.1128/MCB.18.1.19] [Cited by in Crossref: 90] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
37 Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 1999;13:270-83. [PMID: 9990852 DOI: 10.1101/gad.13.3.270] [Cited by in F6Publishing: 665] [Reference Citation Analysis]
38 Dumler JS, Lichay M, Chen WH, Rennoll-Bankert KE, Park JH. Anaplasma phagocytophilum Activates NF-κB Signaling via Redundant Pathways. Front Public Health 2020;8:558283. [PMID: 33194960 DOI: 10.3389/fpubh.2020.558283] [Reference Citation Analysis]
39 Jones JO, Arvin AM. Inhibition of the NF-kappaB pathway by varicella-zoster virus in vitro and in human epidermal cells in vivo. J Virol 2006;80:5113-24. [PMID: 16698992 DOI: 10.1128/JVI.01956-05] [Cited by in Crossref: 39] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
40 Tian B, Nowak DE, Jamaluddin M, Wang S, Brasier AR. Identification of direct genomic targets downstream of the nuclear factor-kappaB transcription factor mediating tumor necrosis factor signaling. J Biol Chem 2005;280:17435-48. [PMID: 15722553 DOI: 10.1074/jbc.M500437200] [Cited by in Crossref: 164] [Cited by in F6Publishing: 109] [Article Influence: 9.6] [Reference Citation Analysis]
41 Hutami IR, Tanaka E, Izawa T. Crosstalk between Fas and S1P1 signaling via NF-kB in osteoclasts controls bone destruction in the TMJ due to rheumatoid arthritis. Jpn Dent Sci Rev 2019;55:12-9. [PMID: 30733840 DOI: 10.1016/j.jdsr.2018.09.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
42 Ren Z, Cui J, Huo Z, Xue J, Cui H, Luo B, Jiang L, Yang R. Cordycepin suppresses TNF-α-induced NF-κB activation by reducing p65 transcriptional activity, inhibiting IκBα phosphorylation, and blocking IKKγ ubiquitination. International Immunopharmacology 2012;14:698-703. [DOI: 10.1016/j.intimp.2012.10.008] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
43 Takeuchi T, Kobayashi T, Tamura S, Yokosawa H. Negative regulation of protein phosphatase 2Cbeta by ISG15 conjugation. FEBS Lett 2006;580:4521-6. [PMID: 16872604 DOI: 10.1016/j.febslet.2006.07.032] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
44 Schwan WR, Kopecko DJ. Uptake of pathogenic intracellular bacteria into human and murine macrophages downregulates the eukaryotic 26S protease complex ATPase gene. Infect Immun 1997;65:4754-60. [PMID: 9353061 DOI: 10.1128/iai.65.11.4754-4760.1997] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
45 Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin Immunol 2014;26:253-66. [PMID: 24958609 DOI: 10.1016/j.smim.2014.05.004] [Cited by in Crossref: 351] [Cited by in F6Publishing: 349] [Article Influence: 43.9] [Reference Citation Analysis]
46 Kim SO, Ono K, Han J. Apoptosis by pan-caspase inhibitors in lipopolysaccharide-activated macrophages. American Journal of Physiology-Lung Cellular and Molecular Physiology 2001;281:L1095-105. [DOI: 10.1152/ajplung.2001.281.5.l1095] [Cited by in Crossref: 37] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
47 Uematsu A, Kido K, Manabe E, Takeda H, Takahashi H, Hayashi M, Imai Y, Sawasaki T. DANFIN functions as an inhibitor of transcription factor NF-κB and potentiates the antitumor effect of bortezomib in multiple myeloma. Biochem Biophys Res Commun 2018;495:2289-95. [PMID: 29284118 DOI: 10.1016/j.bbrc.2017.12.142] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
48 Gao N, Dai Y, Rahmani M, Dent P, Grant S. Contribution of disruption of the nuclear factor-kappaB pathway to induction of apoptosis in human leukemia cells by histone deacetylase inhibitors and flavopiridol. Mol Pharmacol 2004;66:956-63. [PMID: 15235103 DOI: 10.1124/mol.104.002014] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 2.2] [Reference Citation Analysis]
49 Trofimova M, Sprenkle AB, Green M, Sturgill TW, Goebl MG, Harrington MA. Developmental and Tissue-specific Expression of Mouse Pelle-like Protein Kinase. Journal of Biological Chemistry 1996;271:17609-12. [DOI: 10.1074/jbc.271.30.17609] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 1.2] [Reference Citation Analysis]
50 Zeng BY, Medhurst AD, Jackson M, Rose S, Jenner P. Proteasomal activity in brain differs between species and brain regions and changes with age. Mech Ageing Dev 2005;126:760-6. [PMID: 15888331 DOI: 10.1016/j.mad.2005.01.008] [Cited by in Crossref: 70] [Cited by in F6Publishing: 64] [Article Influence: 4.1] [Reference Citation Analysis]
51 Krachler AM, Woolery AR, Orth K. Manipulation of kinase signaling by bacterial pathogens. J Cell Biol. 2011;195:1083-1092. [PMID: 22123833 DOI: 10.1083/jcb.201107132] [Cited by in Crossref: 89] [Cited by in F6Publishing: 79] [Article Influence: 8.1] [Reference Citation Analysis]
52 Arenz A, Hellweg CE, Stojicic N, Baumstark-Khan C, Grotheer HH. Gene expression modulation in A549 human lung cells in response to combustion-generated nano-sized particles. Ann N Y Acad Sci 2006;1091:170-83. [PMID: 17341612 DOI: 10.1196/annals.1378.064] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
53 Wang Y, Qin ZH, Nakai M, Chen RW, Chuang DM, Chase TN. Co-stimulation of cyclic-AMP-linked metabotropic glutamate receptors in rat striatum attenuates excitotoxin-induced nuclear factor-kappaB activation and apoptosis. Neuroscience 1999;94:1153-62. [PMID: 10625054 DOI: 10.1016/s0306-4522(99)00264-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
54 Kravtsova-Ivantsiv Y, Ciechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 2012;125:539-48. [PMID: 22389393 DOI: 10.1242/jcs.093567] [Cited by in Crossref: 148] [Cited by in F6Publishing: 138] [Article Influence: 14.8] [Reference Citation Analysis]
55 Cohen-kaplan V, Livneh I, Avni N, Cohen-rosenzweig C, Ciechanover A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. The International Journal of Biochemistry & Cell Biology 2016;79:403-18. [DOI: 10.1016/j.biocel.2016.07.019] [Cited by in Crossref: 88] [Cited by in F6Publishing: 85] [Article Influence: 14.7] [Reference Citation Analysis]
56 Jordan ET, Marita JM, Clough RC, Vierstra RD. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity. Plant Physiol 1997;115:693-704. [PMID: 9342873 DOI: 10.1104/pp.115.2.693] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 1.4] [Reference Citation Analysis]
57 Bazan HE, Ottino P. The role of platelet-activating factor in the corneal response to injury. Progress in Retinal and Eye Research 2002;21:449-64. [DOI: 10.1016/s1350-9462(02)00011-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
58 Wulczyn FG, Krappmann D, Scheidereit C. Signal-dependent degradation of IkappaBalpha is mediated by an inducible destruction box that can be transferred to NF-kappaB, bcl-3 or p53. Nucleic Acids Res 1998;26:1724-30. [PMID: 9512545 DOI: 10.1093/nar/26.7.1724] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 0.6] [Reference Citation Analysis]
59 Baumann B, Kistler B, Kirillov A, Bergman Y, Wirth T. The Mutant Plasmacytoma Cell Line S107 Allows the Identification of Distinct Pathways Leading to NF-κB Activation. Journal of Biological Chemistry 1998;273:11448-55. [DOI: 10.1074/jbc.273.19.11448] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 0.9] [Reference Citation Analysis]
60 Jamaluddin M, Casola A, Garofalo RP, Han Y, Elliott T, Ogra PL, Brasier AR. The major component of IkappaBalpha proteolysis occurs independently of the proteasome pathway in respiratory syncytial virus-infected pulmonary epithelial cells. J Virol 1998;72:4849-57. [PMID: 9573251 DOI: 10.1128/JVI.72.6.4849-4857.1998] [Cited by in Crossref: 66] [Cited by in F6Publishing: 32] [Article Influence: 2.8] [Reference Citation Analysis]
61 Chakravarty AK, Mazumder T, Chatterjee SN. Anti-Inflammatory Potential of Ethanolic Leaf Extract of Eupatorium adenophorum Spreng. Through Alteration in Production of TNF-α, ROS and Expression of Certain Genes. Evid Based Complement Alternat Med 2011;2011:471074. [PMID: 21808653 DOI: 10.1093/ecam/neq033] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
62 Omoigui S. The Interleukin-6 inflammation pathway from cholesterol to aging--role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases. Immun Ageing. 2007;4:1. [PMID: 17374166 DOI: 10.1186/1742-4933-4-1] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 3.1] [Reference Citation Analysis]
63 Spencer E, Jiang J, Chen ZJ. Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP. Genes Dev 1999;13:284-94. [PMID: 9990853 DOI: 10.1101/gad.13.3.284] [Cited by in Crossref: 320] [Cited by in F6Publishing: 332] [Article Influence: 13.9] [Reference Citation Analysis]
64 Sahu I, Sangith N, Ramteke M, Gadre R, Venkatraman P. A novel role for the proteasomal chaperone PSMD9 and hnRNPA1 in enhancing IκBα degradation and NF-κB activation - functional relevance of predicted PDZ domain-motif interaction. FEBS J 2014;281:2688-709. [DOI: 10.1111/febs.12814] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
65 Wang L, Cao Y, Gorshkov B, Zhou Y, Yang Q, Xu J, Ma Q, Zhang X, Wang J, Mao X, Zeng X, Su Y, Verin AD, Hong M, Liu Z, Huo Y. Ablation of endothelial Pfkfb3 protects mice from acute lung injury in LPS-induced endotoxemia. Pharmacol Res 2019;146:104292. [PMID: 31167111 DOI: 10.1016/j.phrs.2019.104292] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
66 Yamamoto Y, Yin MJ, Lin KM, Gaynor RB. Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem. 1999;274:27307-27314. [PMID: 10480951 DOI: 10.1074/jbc.274.38.27307] [Cited by in Crossref: 356] [Cited by in F6Publishing: 324] [Article Influence: 15.5] [Reference Citation Analysis]
67 Rodrigo WW, Ortiz-Riaño E, Pythoud C, Kunz S, de la Torre JC, Martínez-Sobrido L. Arenavirus nucleoproteins prevent activation of nuclear factor kappa B. J Virol 2012;86:8185-97. [PMID: 22623788 DOI: 10.1128/JVI.07240-11] [Cited by in Crossref: 66] [Cited by in F6Publishing: 53] [Article Influence: 6.6] [Reference Citation Analysis]
68 Miyakoshi J, Yagi K. Inhibition of I kappaB-alpha phosphorylation at serine and tyrosine acts independently on sensitization to DNA damaging agents in human glioma cells. Br J Cancer 2000;82:28-33. [PMID: 10638962 DOI: 10.1054/bjoc.1999.0872] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 1.2] [Reference Citation Analysis]
69 Inoue S, Nakase H, Matsuura M, Mikami S, Ueno S, Uza N, Chiba T. The effect of proteasome inhibitor MG132 on experimental inflammatory bowel disease. Clin Exp Immunol 2009;156:172-82. [PMID: 19220323 DOI: 10.1111/j.1365-2249.2008.03872.x] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 2.9] [Reference Citation Analysis]
70 Liden J, Rafter I, Truss M, Gustafsson JA, Okret S. Glucocorticoid effects on NF-kappaB binding in the transcription of the ICAM-1 gene. Biochem Biophys Res Commun 2000;273:1008-14. [PMID: 10891363 DOI: 10.1006/bbrc.2000.3079] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 2.7] [Reference Citation Analysis]
71 McKay LI, Cidlowski JA. Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol 1998;12:45-56. [PMID: 9440809 DOI: 10.1210/mend.12.1.0044] [Cited by in Crossref: 193] [Cited by in F6Publishing: 216] [Article Influence: 8.0] [Reference Citation Analysis]
72 Wu BY, Woffendin C, Maclachlan I, Nabel GJ. Distinct domains of IkappaB-alpha inhibit human immunodeficiency virus type 1 replication through NF-kappaB and Rev. J Virol 1997;71:3161-7. [DOI: 10.1128/jvi.71.4.3161-3167.1997] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
73 MacPartlin M, Zeng SX, Lu H. Phosphorylation and stabilization of TAp63gamma by IkappaB kinase-beta. J Biol Chem 2008;283:15754-61. [PMID: 18411264 DOI: 10.1074/jbc.M801394200] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
74 Schenkein D. Proteasome inhibitors in the treatment of B-cell malignancies. Clin Lymphoma. 2002;3:49-55. [PMID: 12141956 DOI: 10.3816/clm.2002.n.011] [Cited by in Crossref: 50] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
75 Mercurio F, Manning AM. NF-kappaB as a primary regulator of the stress response. Oncogene. 1999;18:6163-6171. [PMID: 10557108 DOI: 10.1038/sj.onc.1203174] [Cited by in Crossref: 299] [Cited by in F6Publishing: 287] [Article Influence: 13.0] [Reference Citation Analysis]
76 Petroski MD. The ubiquitin system, disease, and drug discovery. BMC Biochem 2008;9 Suppl 1:S7. [PMID: 19007437 DOI: 10.1186/1471-2091-9-S1-S7] [Cited by in Crossref: 116] [Cited by in F6Publishing: 78] [Article Influence: 8.3] [Reference Citation Analysis]
77 Shtil AA, Azare J. Redundancy of biological regulation as the basis of emergence of multidrug resistance. Int Rev Cytol 2005;246:1-29. [PMID: 16164965 DOI: 10.1016/S0074-7696(05)46001-5] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
78 Liden J, Delaunay F, Rafter I, Gustafsson J, Okret S. A New Function for the C-terminal Zinc Finger of the Glucocorticoid Receptor. Journal of Biological Chemistry 1997;272:21467-72. [DOI: 10.1074/jbc.272.34.21467] [Cited by in Crossref: 107] [Cited by in F6Publishing: 113] [Article Influence: 4.3] [Reference Citation Analysis]
79 Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ, Yaron A, Bauskin A, Mercurio F, Mann M, Ben-Neriah Y. Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev 2002;16:439-51. [PMID: 11850407 DOI: 10.1101/gad.218702] [Cited by in Crossref: 88] [Cited by in F6Publishing: 86] [Article Influence: 4.4] [Reference Citation Analysis]
80 Anrather J, Csizmadia V, Brostjan C, Soares MP, Bach FH, Winkler H. Inhibition of bovine endothelial cell activation in vitro by regulated expression of a transdominant inhibitor of NF-kappa B. J Clin Invest. 1997;99:763-772. [PMID: 9045881 DOI: 10.1172/jci119222] [Cited by in Crossref: 63] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
81 Tashiro K, Pando MP, Kanegae Y, Wamsley PM, Inoue S, Verma IM. Direct involvement of the ubiquitin-conjugating enzyme Ubc9/Hus5 in the degradation of IkappaBalpha. Proc Natl Acad Sci U S A 1997;94:7862-7. [PMID: 9223278 DOI: 10.1073/pnas.94.15.7862] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 1.6] [Reference Citation Analysis]
82 Ruediger R, Brewis N, Ohst K, Walter G. Increasing the ratio of PP2A core enzyme to holoenzyme inhibits Tat-stimulated HIV-1 transcription and virus production. Virology 1997;238:432-43. [PMID: 9400615 DOI: 10.1006/viro.1997.8873] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 1.5] [Reference Citation Analysis]
83 Shim DJ, Yang L, Reed JG, Noebels JL, Chiao PJ, Zheng H. Disruption of the NF-κB/IκBα Autoinhibitory Loop Improves Cognitive Performance and Promotes Hyperexcitability of Hippocampal Neurons. Mol Neurodegener 2011;6:42. [PMID: 21663635 DOI: 10.1186/1750-1326-6-42] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
84 Mercurio F, Manning AM. Multiple signals converging on NF-kappaB. Curr Opin Cell Biol 1999;11:226-32. [PMID: 10209157 DOI: 10.1016/s0955-0674(99)80030-1] [Cited by in Crossref: 373] [Cited by in F6Publishing: 76] [Article Influence: 16.2] [Reference Citation Analysis]
85 Kwak YT, Guo J, Shen J, Gaynor RB. Analysis of domains in the IKKalpha and IKKbeta proteins that regulate their kinase activity. J Biol Chem 2000;275:14752-9. [PMID: 10747982 DOI: 10.1074/jbc.m001039200] [Cited by in Crossref: 36] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
86 McAllister CS, Taghavi N, Samuel CE. Protein kinase PKR amplification of interferon β induction occurs through initiation factor eIF-2α-mediated translational control. J Biol Chem 2012;287:36384-92. [PMID: 22948139 DOI: 10.1074/jbc.M112.390039] [Cited by in Crossref: 52] [Cited by in F6Publishing: 39] [Article Influence: 5.2] [Reference Citation Analysis]
87 Jouda J, Mfotie Njoya E, Mbazoa CD, Zhou Z, Meli Lannang A, Wandji J, Shiono Y, Wang F. Lambertellin from Pycnoporus sanguineus MUCL 51321 and its anti-inflammatory effect via modulation of MAPK and NF-κB signaling pathways. Bioorganic Chemistry 2018;80:216-22. [DOI: 10.1016/j.bioorg.2018.06.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
88 Bulteau A, Lundberg KC, Humphries KM, Sadek HA, Szweda PA, Friguet B, Szweda LI. Oxidative Modification and Inactivation of the Proteasome during Coronary Occlusion/Reperfusion. Journal of Biological Chemistry 2001;276:30057-63. [DOI: 10.1074/jbc.m100142200] [Cited by in Crossref: 282] [Cited by in F6Publishing: 109] [Article Influence: 13.4] [Reference Citation Analysis]
89 Lewis JB, Wataha JC, Randol TM, Mccloud VV, Lockwood PE. Metal ions alter lipopolysaccharide-induced NFκB binding in monocytes. J Biomed Mater Res 2003;67A:868-75. [DOI: 10.1002/jbm.a.10169] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 0.7] [Reference Citation Analysis]
90 Amit S, Ben-Neriah Y. NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach. Semin Cancer Biol 2003;13:15-28. [PMID: 12507553 DOI: 10.1016/s1044-579x(02)00096-2] [Cited by in Crossref: 96] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
91 Uematsu A, Kido K, Takahashi H, Takahashi C, Yanagihara Y, Saeki N, Yoshida S, Maekawa M, Honda M, Kai T, Shimizu K, Higashiyama S, Imai Y, Tokunaga F, Sawasaki T. The E3 ubiquitin ligase MIB2 enhances inflammation by degrading the deubiquitinating enzyme CYLD. J Biol Chem 2019;294:14135-48. [PMID: 31366726 DOI: 10.1074/jbc.RA119.010119] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
92 Chen ZJ, Parent L, Maniatis T. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell. 1996;84:853-862. [PMID: 8601309 DOI: 10.1016/s0092-8674(00)81064-8] [Cited by in Crossref: 711] [Cited by in F6Publishing: 254] [Article Influence: 27.3] [Reference Citation Analysis]
93 Yang S, Wang J, Guo S, Huang D, Lorigados IB, Nie X, Lou D, Li Y, Liu M, Kang Y, Zhou W, Song W. Transcriptional activation of USP16 gene expression by NFκB signaling. Mol Brain 2019;12:120. [PMID: 31888715 DOI: 10.1186/s13041-019-0535-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
94 Yuan CW, Sun XL, Qiao LC, Xu HX, Zhu P, Chen HJ, Yang BL. Non-SMC condensin I complex subunit D2 and non-SMC condensin II complex subunit D3 induces inflammation via the IKK/NF-κB pathway in ulcerative colitis. World J Gastroenterol 2019; 25(47): 6813-6822 [PMID: 31885422 DOI: 10.3748/wjg.v25.i47.6813] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
95 Lan C, Yu H, Wu C, Kuo H, Chai C, Chen G. FK506 inhibits tumour necrosis factor-alpha secretion in human keratinocytes via regulation of nuclear factor-kappaB. Br J Dermatol 2005;153:725-32. [DOI: 10.1111/j.1365-2133.2005.06779.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 2.3] [Reference Citation Analysis]
96 Dejardin E, Deregowski V, Chapelier M, Jacobs N, Gielen J, Merville MP, Bours V. Regulation of NF-kappaB activity by I kappaB-related proteins in adenocarcinoma cells. Oncogene. 1999;18:2567-2577. [PMID: 10353600 DOI: 10.1038/sj.onc.1202599] [Cited by in Crossref: 71] [Cited by in F6Publishing: 78] [Article Influence: 3.1] [Reference Citation Analysis]
97 Lecker SH, Solomon V, Mitch WE, Goldberg AL. Muscle Protein Breakdown and the Critical Role of the Ubiquitin-Proteasome Pathway in Normal and Disease States. The Journal of Nutrition 1999;129:227S-37S. [DOI: 10.1093/jn/129.1.227s] [Cited by in Crossref: 482] [Cited by in F6Publishing: 161] [Article Influence: 21.0] [Reference Citation Analysis]
98 Kim EK, Kim E, Moon P, Um J, Kim H, Lee H, Sohn Y, Park SK, Jung H, Sohn N. Lithospermi radix Extract Inhibits Histamine Release and Production of Inflammatory Cytokine in Mast Cells. Bioscience, Biotechnology, and Biochemistry 2014;71:2886-92. [DOI: 10.1271/bbb.70208] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
99 Engelhardt JF. Redox-mediated gene therapies for environmental injury: approaches and concepts. Antioxid Redox Signal. 1999;1:5-27. [PMID: 11225732 DOI: 10.1089/ars.1999.1.1-5] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 2.5] [Reference Citation Analysis]
100 DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012;246:379-400. [PMID: 22435567 DOI: 10.1111/j.1600-065x.2012.01099.x] [Cited by in Crossref: 914] [Cited by in F6Publishing: 537] [Article Influence: 91.4] [Reference Citation Analysis]
101 Collard CD, Agah A, Stahl GL. Complement activation following reoxygenation of hypoxic human endothelial cells: role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis. Immunopharmacology 1998;39:39-50. [PMID: 9667422 DOI: 10.1016/s0162-3109(97)00096-9] [Cited by in Crossref: 45] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
102 Martens CR, Bansal SS, Accornero F. Cardiovascular inflammation: RNA takes the lead. J Mol Cell Cardiol 2019;129:247-56. [PMID: 30880251 DOI: 10.1016/j.yjmcc.2019.03.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
103 Shtil AA. Emergence of Multidrug Resistance in Leukemia Cells During Chemotherapy: Mechanisms and Prevention. Journal of Hematotherapy & Stem Cell Research 2002;11:231-41. [DOI: 10.1089/152581602753658439] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
104 Brown K, Franzoso G, Baldi L, Carlson L, Mills L, Lin YC, Gerstberger S, Siebenlist U. The signal response of IkappaB alpha is regulated by transferable N- and C-terminal domains. Mol Cell Biol 1997;17:3021-7. [PMID: 9154800 DOI: 10.1128/MCB.17.6.3021] [Cited by in Crossref: 35] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
105 Cardoso F, Ross JS, Picart MJ, Sotiriou C, Durbecq V. Targeting the ubiquitin-proteasome pathway in breast cancer. Clin Breast Cancer 2004;5:148-57. [PMID: 15245620 DOI: 10.3816/cbc.2004.n.020] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
106 Hellweg CE, Baumstark-khan C, Schmitz C, Lau P, Meier MM, Testard I, Berger T, Reitz G. Activation of the Nuclear Factor κB pathway by heavy ion beams of different linear energy transfer. International Journal of Radiation Biology 2011;87:954-63. [DOI: 10.3109/09553002.2011.584942] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
107 Deriziotis P, André R, Smith DM, Goold R, Kinghorn KJ, Kristiansen M, Nathan JA, Rosenzweig R, Krutauz D, Glickman MH, Collinge J, Goldberg AL, Tabrizi SJ. Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. EMBO J 2011;30:3065-77. [PMID: 21743439 DOI: 10.1038/emboj.2011.224] [Cited by in Crossref: 78] [Cited by in F6Publishing: 74] [Article Influence: 7.1] [Reference Citation Analysis]
108 Mansur DS, Maluquer de Motes C, Unterholzner L, Sumner RP, Ferguson BJ, Ren H, Strnadova P, Bowie AG, Smith GL. Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. PLoS Pathog. 2013;9:e1003183. [PMID: 23468625 DOI: 10.1371/journal.ppat.1003183] [Cited by in Crossref: 72] [Cited by in F6Publishing: 66] [Article Influence: 8.0] [Reference Citation Analysis]
109 Patel H, McIntire J, Ryan S, Dunah A, Loring R. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway. J Neuroinflammation 2017;14:192. [PMID: 28950908 DOI: 10.1186/s12974-017-0967-6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
110 Singh S, Darnay BG, Aggarwal BB. Site-specific Tyrosine Phosphorylation of IκBα Negatively Regulates Its Inducible Phosphorylation and Degradation. Journal of Biological Chemistry 1996;271:31049-54. [DOI: 10.1074/jbc.271.49.31049] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 3.7] [Reference Citation Analysis]
111 Jacobs AT, Ignarro LJ. Nuclear Factor-κB and Mitogen-activated Protein Kinases Mediate Nitric Oxide-enhanced Transcriptional Expression of Interferon-β. Journal of Biological Chemistry 2003;278:8018-27. [DOI: 10.1074/jbc.m211642200] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
112 Pervan M, Pajonk F, Sun JR, Withers HR, McBride WH. Molecular pathways that modify tumor radiation response. Am J Clin Oncol. 2001;24:481-485. [PMID: 11586100 DOI: 10.1097/00000421-200110000-00013] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 2.2] [Reference Citation Analysis]
113 Mukhopadhyay A, Manna SK, Aggarwal BB. Pervanadate-induced nuclear factor-kappaB activation requires tyrosine phosphorylation and degradation of IkappaBalpha. Comparison with tumor necrosis factor-alpha. J Biol Chem 2000;275:8549-55. [PMID: 10722693 DOI: 10.1074/jbc.275.12.8549] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 2.5] [Reference Citation Analysis]
114 De Vry CG, Prasad S, Komuves L, Lorenzana C, Parham C, Le T, Adda S, Hoffman J, Kahoud N, Garlapati R. Non-viral delivery of nuclear factor-kappaB decoy ameliorates murine inflammatory bowel disease and restores tissue homeostasis. Gut. 2007;56:524-533. [PMID: 16950831 DOI: 10.1136/gut.2006.096487] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 2.4] [Reference Citation Analysis]
115 Qiu JF, Ma N, He ZY, Zhong XN, Zhang JQ, Bai J, Deng JM, Tang XJ, Luo ZL, Huang M, Liang Q, Wei YL, Tang MJ, Li MH. Erythromycin inhibits cigarette smoke-induced inflammation through regulating the PPARγ/NF-κB signaling pathway in macrophages. Int Immunopharmacol 2021;96:107775. [PMID: 34162143 DOI: 10.1016/j.intimp.2021.107775] [Reference Citation Analysis]
116 Stewart D, Killeen E, Naquin R, Alam S, Alam J. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem. 2003;278:2396-2402. [PMID: 12441344 DOI: 10.1074/jbc.M209195200] [Cited by in Crossref: 323] [Cited by in F6Publishing: 138] [Article Influence: 16.2] [Reference Citation Analysis]
117 Lewis JB, Randol TM, Lockwood PE, Wataha JC. Effect of subtoxic concentrations of metal ions on NF?B activation in THP-1 human monocytes. J Biomed Mater Res 2003;64A:217-24. [DOI: 10.1002/jbm.a.10352] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 1.5] [Reference Citation Analysis]
118 Ginn-Pease ME, Whisler RL. Redox signals and NF-kappaB activation in T cells. Free Radic Biol Med 1998;25:346-61. [PMID: 9680181 DOI: 10.1016/s0891-5849(98)00067-7] [Cited by in Crossref: 166] [Cited by in F6Publishing: 26] [Article Influence: 6.9] [Reference Citation Analysis]
119 Taylor C, Jobin C. Ubiquitin Protein Modification and Signal Transduction: Implications for Inflammatory Bowel Diseases: . Inflammatory Bowel Diseases 2005;11:1097-107. [DOI: 10.1097/01.mib.0000187577.26043.e5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
120 Liu Z, Jing Q, Wang Y, Li Y, Mi F, Xiang C, Fu R. The short-term effect of histone deacetylase inhibitors, chidamide and valproic acid, on the NF‑κB pathway in multiple myeloma cells. Int J Mol Med 2019;43:285-93. [PMID: 30387821 DOI: 10.3892/ijmm.2018.3963] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
121 Paolini R, Serra A, Molfetta R, Piccoli M, Frati L, Santoni A. Tyrosine kinase-dependent ubiquitination of CD16 zeta subunit in human NK cells following receptor engagement. Eur J Immunol 1999;29:3179-87. [PMID: 10540329 DOI: 10.1002/(SICI)1521-4141(199910)29:10<3179::AID-IMMU3179>3.0.CO;2-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
122 Marquardt DL, Walker LL. Dependence of mast cell IgE-mediated cytokine production on nuclear factor-kappaB activity. J Allergy Clin Immunol 2000;105:500-5. [PMID: 10719300 DOI: 10.1067/mai.2000.104942] [Cited by in Crossref: 110] [Cited by in F6Publishing: 104] [Article Influence: 5.0] [Reference Citation Analysis]
123 Miyamoto S, Huang TT, Wuerzberger-davis S, Bornmann WG, Pink JJ, Tagliarino C, Kinsella TJ, Boothman DA. Cellular and Molecular Responses to Topoisomerase I Poisons: Exploiting Synergy for Improved Radiotherapy. Annals of the New York Academy of Sciences 2000;922:274-92. [DOI: 10.1111/j.1749-6632.2000.tb07045.x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
124 Sheppard PW, Sun X, Emery JF, Giffard RG, Khammash M. Quantitative characterization and analysis of the dynamic NF-κB response in microglia. BMC Bioinformatics 2011;12:276. [PMID: 21729324 DOI: 10.1186/1471-2105-12-276] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
125 Huang TT, Wuerzberger-Davis SM, Seufzer BJ, Shumway SD, Kurama T, Boothman DA, Miyamoto S. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J Biol Chem. 2000;275:9501-9509. [PMID: 10734098 DOI: 10.1074/jbc.275.13.9501] [Cited by in Crossref: 110] [Cited by in F6Publishing: 108] [Article Influence: 5.0] [Reference Citation Analysis]
126 Didcock L, Young DF, Goodbourn S, Randall RE. The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 1999;73:9928-33. [PMID: 10559305 DOI: 10.1128/JVI.73.12.9928-9933.1999] [Cited by in Crossref: 346] [Cited by in F6Publishing: 208] [Article Influence: 15.0] [Reference Citation Analysis]
127 Feinstein DL, Galea E, Reis DJ. Suppression of glial nitric oxide synthase induction by heat shock: effects on proteolytic degradation of IkappaB-alpha. Nitric Oxide 1997;1:167-76. [PMID: 9701055 DOI: 10.1006/niox.1997.0117] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 1.8] [Reference Citation Analysis]
128 Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26:203-234. [PMID: 22302935 DOI: 10.1101/gad.183434.111] [Cited by in Crossref: 1034] [Cited by in F6Publishing: 1003] [Article Influence: 103.4] [Reference Citation Analysis]
129 Kaur S, Lyte P, Garay M, Liebel F, Sun Y, Liu J, Southall MD. Galvanic zinc–copper microparticles produce electrical stimulation that reduces the inflammatory and immune responses in skin. Arch Dermatol Res 2011;303:551-62. [DOI: 10.1007/s00403-011-1145-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
130 Ciraci C, Tuggle CK, Wannemuehler MJ, Nettleton D, Lamont SJ. Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin. BMC Genomics 2010;11:545. [PMID: 20929591 DOI: 10.1186/1471-2164-11-545] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 4.2] [Reference Citation Analysis]
131 Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V, Palombella VJ. Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol Cell Biol 2000;20:2326-33. [PMID: 10713156 DOI: 10.1128/MCB.20.7.2326-2333.2000] [Cited by in Crossref: 268] [Cited by in F6Publishing: 149] [Article Influence: 12.2] [Reference Citation Analysis]
132 Rasid O, Meulenbroeks C, Gröne A, Zaiss D, Sijts A. Enhanced inflammatory potential of CD4+ T-cells that lack proteasome immunosubunit expression, in a T-cell transfer-based colitis model. PLoS One 2014;9:e95378. [PMID: 24740379 DOI: 10.1371/journal.pone.0095378] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
133 Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005;7:758-65. [PMID: 16056267 DOI: 10.1038/ncb0805-758] [Cited by in Crossref: 847] [Cited by in F6Publishing: 832] [Article Influence: 49.8] [Reference Citation Analysis]
134 Hinoi E, Balcar VJ, Kuramoto N, Nakamichi N, Yoneda Y. Nuclear transcription factors in the hippocampus. Prog Neurobiol 2002;68:145-65. [PMID: 12450491 DOI: 10.1016/s0301-0082(02)00078-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
135 Adams J. Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Curr Opin Chem Biol. 2002;6:493-500. [PMID: 12133726 DOI: 10.1016/s1367-5931(02)00343-5] [Cited by in Crossref: 105] [Cited by in F6Publishing: 28] [Article Influence: 5.5] [Reference Citation Analysis]
136 Yamin T, Miller DK. The Interleukin-1 Receptor-associated Kinase Is Degraded by Proteasomes following Its Phosphorylation. Journal of Biological Chemistry 1997;272:21540-7. [DOI: 10.1074/jbc.272.34.21540] [Cited by in Crossref: 207] [Cited by in F6Publishing: 206] [Article Influence: 8.3] [Reference Citation Analysis]
137 Pérez L, Sinn AL, Sandusky GE, Pollok KE, Blum JS. Melanoma LAMP-2C Modulates Tumor Growth and Autophagy. Front Cell Dev Biol 2018;6:101. [PMID: 30211163 DOI: 10.3389/fcell.2018.00101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
138 Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med 2016;8:227-41. [PMID: 26990581 DOI: 10.1002/wsbm.1331] [Cited by in Crossref: 306] [Cited by in F6Publishing: 293] [Article Influence: 51.0] [Reference Citation Analysis]
139 Majdalawieh A, Zhang L, Ro HS. Adipocyte enhancer-binding protein-1 promotes macrophage inflammatory responsiveness by up-regulating NF-kappaB via IkappaBalpha negative regulation. Mol Biol Cell 2007;18:930-42. [PMID: 17202411 DOI: 10.1091/mbc.e06-03-0217] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
140 Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Cells 2021;10:2374. [PMID: 34572023 DOI: 10.3390/cells10092374] [Reference Citation Analysis]
141 Melchionna T, Cattaneo A. A protein silencing switch by ligand-induced proteasome-targeting intrabodies. J Mol Biol 2007;374:641-54. [PMID: 17950312 DOI: 10.1016/j.jmb.2007.09.053] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
142 Canu N, Calissano P. Role of the Ubiquitin Proteasome System During Neuronal Cell Death. In: Stefanis L, Keller JN, editors. The Proteasome in Neurodegeneration. Boston: Springer US; 2006. pp. 133-48. [DOI: 10.1007/0-387-28500-8_8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
143 Wu ZH, Shi Y. When ubiquitin meets NF-κB: a trove for anti-cancer drug development. Curr Pharm Des 2013;19:3263-75. [PMID: 23151140 DOI: 10.2174/1381612811319180010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
144 Luque I, Gélinas C. Distinct domains of IkappaBalpha regulate c-Rel in the cytoplasm and in the nucleus. Mol Cell Biol 1998;18:1213-24. [PMID: 9488436 DOI: 10.1128/MCB.18.3.1213] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
145 Adams J. Development of the proteasome inhibitor PS-341. Oncologist. 2002;7:9-16. [PMID: 11854543 DOI: 10.1634/theoncologist.7-1-9] [Cited by in Crossref: 256] [Cited by in F6Publishing: 231] [Article Influence: 12.8] [Reference Citation Analysis]
146 Sears C, Olesen J, Rubin D, Finley D, Maniatis T. NF-κB p105 Processing via the Ubiquitin-Proteasome Pathway. Journal of Biological Chemistry 1998;273:1409-19. [DOI: 10.1074/jbc.273.3.1409] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 2.7] [Reference Citation Analysis]
147 Nakai M, Qin Z, Chen J, Wang Y, Chase TN. Kainic Acid-Induced Apoptosis in Rat Striatum Is Associated with Nuclear Factor-κB Activation. Journal of Neurochemistry 2000;74:647-58. [DOI: 10.1046/j.1471-4159.2000.740647.x] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 3.8] [Reference Citation Analysis]
148 Yang L, Chen H, Qwarnstrom E. Degradation of IkappaBalpha is limited by a postphosphorylation/ubiquitination event. Biochem Biophys Res Commun. 2001;285:603-608. [PMID: 11453635 DOI: 10.1006/bbrc.2001.5205] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.4] [Reference Citation Analysis]
149 Yang H, Zonder JA, Dou QP. Clinical development of novel proteasome inhibitors for cancer treatment. Expert Opin Investig Drugs 2009;18:957-71. [PMID: 19505187 DOI: 10.1517/13543780903002074] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 5.0] [Reference Citation Analysis]
150 Kim KI, Baek SH, Chung CH. Versatile protein tag, SUMO: Its enzymology and biological function. J Cell Physiol 2002;191:257-68. [DOI: 10.1002/jcp.10100] [Cited by in Crossref: 115] [Cited by in F6Publishing: 105] [Article Influence: 5.8] [Reference Citation Analysis]
151 Sur R, Nigam A, Grote D, Liebel F, Southall MD. Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res 2008;300:569-74. [PMID: 18461339 DOI: 10.1007/s00403-008-0858-x] [Cited by in Crossref: 133] [Cited by in F6Publishing: 100] [Article Influence: 9.5] [Reference Citation Analysis]
152 Szczepanowski RH, Filipek R, Bochtler M. Crystal Structure of a Fragment of Mouse Ubiquitin-activating Enzyme. Journal of Biological Chemistry 2005;280:22006-11. [DOI: 10.1074/jbc.m502583200] [Cited by in Crossref: 33] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
153 Deaton MK, Spear A, Faaberg KS, Pegan SD. The vOTU domain of highly-pathogenic porcine reproductive and respiratory syndrome virus displays a differential substrate preference. Virology 2014;454-455:247-53. [PMID: 24725951 DOI: 10.1016/j.virol.2014.02.026] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
154 Rahimova N, Babazada H, Higuchi Y, Yamashita F, Hashida M. Development of mKO2 fusion proteins for real-time imaging and mechanistic investigation of the degradation kinetics of human IκBα in living cells. Biochim Biophys Acta Mol Cell Res 2019;1866:190-8. [PMID: 30391277 DOI: 10.1016/j.bbamcr.2018.10.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
155 Shan S, Liu R, Feng H, Zhang Y, Zhang F, Lv C, Yang G. Identification and functional characterization of the transcription factor NF-κB subunit p65 in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 2019;95:25-34. [PMID: 31610289 DOI: 10.1016/j.fsi.2019.10.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
156 Didelot C, Barberi-heyob M, Bianchi A, Becuwe P, Mirjolet J, Dauça M, Merlin J. Constitutive NF-κB activity influences basal apoptosis and radiosensitivity of head-and-neck carcinoma cell lines. International Journal of Radiation Oncology*Biology*Physics 2001;51:1354-60. [DOI: 10.1016/s0360-3016(01)02608-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
157 Zwacka RM, Zhou W, Zhang Y, Darby CJ, Dudus L, Halldorson J, Oberley L, Engelhardt JF. Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-κB activation. Nat Med 1998;4:698-704. [DOI: 10.1038/nm0698-698] [Cited by in Crossref: 208] [Cited by in F6Publishing: 201] [Article Influence: 8.7] [Reference Citation Analysis]
158 Zhou-Stache J, Buettner R, Artmann G, Mittermayer C, Bosserhoff AK. Inhibition of TNF-alpha induced cell death in human umbilical vein endothelial cells and Jurkat cells by protocatechuic acid. Med Biol Eng Comput. 2002;40:698-703. [PMID: 12507320 DOI: 10.1007/bf02345308] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
159 Dil N, Qureshi MA. Involvement of lipopolysaccharide related receptors and nuclear factor kappa B in differential expression of inducible nitric oxide synthase in chicken macrophages from different genetic backgrounds. Vet Immunol Immunopathol 2002;88:149-61. [PMID: 12127413 DOI: 10.1016/s0165-2427(02)00153-8] [Cited by in Crossref: 62] [Cited by in F6Publishing: 9] [Article Influence: 3.1] [Reference Citation Analysis]
160 Wang X, Adhikari N, Li Q, Guan Z, Hall JL. The role of [beta]-transducin repeat-containing protein ([beta]-TrCP) in the regulation of NF-[kappa]B in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2004;24:85-90. [PMID: 14592850 DOI: 10.1161/01.ATV.0000104012.40720.c4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
161 Lian H, Shim DJ, Gaddam SS, Rodriguez-Rivera J, Bitner BR, Pautler RG, Robertson CS, Zheng H. IκBα deficiency in brain leads to elevated basal neuroinflammation and attenuated response following traumatic brain injury: implications for functional recovery. Mol Neurodegener 2012;7:47. [PMID: 22992283 DOI: 10.1186/1750-1326-7-47] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
162 Parmentier Y, Bouchez D, Fleck J, Genschik P. The 20S proteasome gene family in Arabidopsis thaliana. FEBS Letters 1997;416:281-5. [DOI: 10.1016/s0014-5793(97)01228-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
163 Stroka DM, Badrichani AZ, Bach FH, Ferran C. Overexpression of A1, an NF-κB–Inducible Anti-Apoptotic Bcl Gene, Inhibits Endothelial Cell Activation. Blood 1999;93:3803-10. [DOI: 10.1182/blood.v93.11.3803] [Cited by in Crossref: 47] [Article Influence: 2.0] [Reference Citation Analysis]
164 Maluquer de Motes C, Smith GL. Vaccinia virus protein A49 activates Wnt signalling by targetting the E3 ligase β-TrCP. J Gen Virol 2017;98:3086-92. [PMID: 29058646 DOI: 10.1099/jgv.0.000946] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
165 Dai Y, Rahmani M, Grant S. Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-κB-dependent process. Oncogene 2003;22:7108-22. [DOI: 10.1038/sj.onc.1206863] [Cited by in Crossref: 101] [Cited by in F6Publishing: 91] [Article Influence: 5.3] [Reference Citation Analysis]
166 Wu M, Bian Q, Liu Y, Fernandes AF, Taylor A, Pereira P, Shang F. Sustained oxidative stress inhibits NF-kappaB activation partially via inactivating the proteasome. Free Radic Biol Med 2009;46:62-9. [PMID: 18948189 DOI: 10.1016/j.freeradbiomed.2008.09.021] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 4.1] [Reference Citation Analysis]
167 Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. Int Rev Cytol 1998;184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Cited by in Crossref: 62] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
168 Ghosh G, Wang VY. Origin of the Functional Distinctiveness of NF-κB/p52. Front Cell Dev Biol 2021;9:764164. [PMID: 34888310 DOI: 10.3389/fcell.2021.764164] [Reference Citation Analysis]
169 Bebington C, Bell S, Doherty F, Fazleabas A, Fleming S. Localization of Ubiquitin and Ubiquitin Cross-Reactive Protein in Human and Baboon Endometrium and Decidua during the Menstrual Cycle and Early Pregnancy1. Biology of Reproduction 1999;60:920-8. [DOI: 10.1095/biolreprod60.4.920] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 2.0] [Reference Citation Analysis]
170 Haim K, Weitzenfeld P, Meshel T, Ben-Baruch A. Epidermal growth factor and estrogen act by independent pathways to additively promote the release of the angiogenic chemokine CXCL8 by breast tumor cells. Neoplasia 2011;13:230-43. [PMID: 21390186 DOI: 10.1593/neo.101340] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
171 Giles FJ, Kantarjian H, Cortes J. Novel therapies for patients with chronic myeloid leukemia. Expert Review of Anticancer Therapy 2014;4:271-82. [DOI: 10.1586/14737140.4.2.271] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
172 Costa VM, Silva R, Ferreira R, Amado F, Carvalho F, de Lourdes Bastos M, Carvalho RA, Carvalho M, Remião F. Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytes. Toxicology 2009;257:70-9. [DOI: 10.1016/j.tox.2008.12.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
173 Baptista MS, Melo CV, Armelão M, Herrmann D, Pimentel DO, Leal G, Caldeira MV, Bahr BA, Bengtson M, Almeida RD, Duarte CB. Role of the proteasome in excitotoxicity-induced cleavage of glutamic acid decarboxylase in cultured hippocampal neurons. PLoS One 2010;5:e10139. [PMID: 20405034 DOI: 10.1371/journal.pone.0010139] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
174 Davis KA, Morelli M, Patton JT. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases. mBio 2017;8:e01213-17. [PMID: 28851847 DOI: 10.1128/mBio.01213-17] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
175 Hryniewicz-Jankowska A, Wierzbicki J, Tabola R, Stach K, Sossey-Alaoui K, Augoff K. The Effect of Neddylation Inhibition on Inflammation-Induced MMP9 Gene Expression in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2021;22:1716. [PMID: 33572115 DOI: 10.3390/ijms22041716] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
176 Huber N, Sakai N, Eismann T, Shin T, Kuboki S, Blanchard J, Schuster R, Edwards MJ, Wong HR, Lentsch AB. Age-related decrease in proteasome expression contributes to defective nuclear factor-kappaB activation during hepatic ischemia/reperfusion. Hepatology. 2009;49:1718-1728. [PMID: 19206148 DOI: 10.1002/hep.22840] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 2.2] [Reference Citation Analysis]
177 Lai JF, Cheng HY, Cheng TL, Lin YY, Chen LC, Lin MT, Jou TS. Doxycycline- and tetracycline-regulated transcriptional silencer enhance the expression level and transactivating performance of rtTA. J Gene Med 2004;6:1403-13. [PMID: 15523716 DOI: 10.1002/jgm.614] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
178 Won M, Byun HS, Park KA, Hur GM. Post-translational control of NF-κB signaling by ubiquitination. Arch Pharm Res 2016;39:1075-84. [PMID: 27287455 DOI: 10.1007/s12272-016-0772-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
179 Ak P, Levine AJ. p53 and NF-κB: different strategies for responding to stress lead to a functional antagonism. FASEB J 2010;24:3643-52. [PMID: 20530750 DOI: 10.1096/fj.10-160549] [Cited by in Crossref: 121] [Cited by in F6Publishing: 127] [Article Influence: 10.1] [Reference Citation Analysis]
180 Sharipo A, Imreh M, Leonchiks A, Imreh S, Masucci MG. A minimal glycine-alanine repeat prevents the interaction of ubiquitinated I kappaB alpha with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat Med 1998;4:939-44. [PMID: 9701247 DOI: 10.1038/nm0898-939] [Cited by in Crossref: 107] [Cited by in F6Publishing: 95] [Article Influence: 4.5] [Reference Citation Analysis]
181 Kanarek N, Ben-Neriah Y. Regulation of NF-κB by ubiquitination and degradation of the IκBs. Immunol Rev 2012;246:77-94. [PMID: 22435548 DOI: 10.1111/j.1600-065X.2012.01098.x] [Cited by in Crossref: 202] [Cited by in F6Publishing: 111] [Article Influence: 20.2] [Reference Citation Analysis]
182 Wu X, Fukushima H, North BJ, Nagaoka Y, Nagashima K, Deng F, Okabe K, Inuzuka H, Wei W. SCFβ-TRCP regulates osteoclastogenesis via promoting CYLD ubiquitination. Oncotarget 2014;5:4211-21. [PMID: 24961988 DOI: 10.18632/oncotarget.1971] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
183 Amoui M, Suhr SM, Baylink DJ, Lau KH. An osteoclastic protein-tyrosine phosphatase may play a role in differentiation and activity of human monocytic U-937 cell-derived, osteoclast-like cells. Am J Physiol Cell Physiol 2004;287:C874-84. [PMID: 15355856 DOI: 10.1152/ajpcell.00294.2003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 1.4] [Reference Citation Analysis]
184 Ma L, Chen L, Li H, Ge L, Wang S, Zhang Z, Huang H, Shi L, Li T, Gu H, Lyu J, He L. Primaquine phosphate induces the apoptosis of ATRA-resistant acute promyelocytic leukemia cells by inhibition of the NF-κB pathway. J Leukoc Biol 2020;107:685-93. [PMID: 32125014 DOI: 10.1002/JLB.3A0120-061RR] [Reference Citation Analysis]
185 de Oliveira DP, Garcia EF, de Oliveira MA, Candido LCM, Coelho FM, Costa VV, Batista NV, Queiroz-Junior CM, Brito LF, Sousa LP, Souza DG, Amaral FA, de Pádua RM, Teixeira MM, Braga FC. cis-Aconitic Acid, a Constituent of Echinodorus grandiflorus Leaves, Inhibits Antigen-Induced Arthritis and Gout in Mice. Planta Med 2021. [PMID: 34763354 DOI: 10.1055/a-1676-4371] [Reference Citation Analysis]
186 Park KJ, Gaynor RB, Kwak YT. Heat shock protein 27 association with the I kappa B kinase complex regulates tumor necrosis factor alpha-induced NF-kappa B activation. J Biol Chem 2003;278:35272-8. [PMID: 12829720 DOI: 10.1074/jbc.M305095200] [Cited by in Crossref: 147] [Cited by in F6Publishing: 61] [Article Influence: 7.7] [Reference Citation Analysis]
187 Bosman MCJ, Schuringa JJ, Vellenga E. Constitutive NF-κB activation in AML: Causes and treatment strategies. Critical Reviews in Oncology/Hematology 2016;98:35-44. [DOI: 10.1016/j.critrevonc.2015.10.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
188 Qvit N, Hatzubai A, Shalev DE, Friedler A, Ben-Neriah Y, Gilon C. Design and synthesis of backbone cyclic phosphorylated peptides: The IkappaB model. Biopolymers 2009;91:157-68. [PMID: 19025995 DOI: 10.1002/bip.21098] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
189 Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 2014;5:7988-8013. [PMID: 25237759 DOI: 10.18632/oncotarget.2431] [Cited by in Crossref: 61] [Cited by in F6Publishing: 67] [Article Influence: 8.7] [Reference Citation Analysis]
190 Kanarek N, London N, Schueler-Furman O, Ben-Neriah Y. Ubiquitination and degradation of the inhibitors of NF-kappaB. Cold Spring Harb Perspect Biol 2010;2:a000166. [PMID: 20182612 DOI: 10.1101/cshperspect.a000166] [Cited by in Crossref: 72] [Cited by in F6Publishing: 73] [Article Influence: 6.0] [Reference Citation Analysis]
191 Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012;246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065X.2012.01102.x] [Cited by in Crossref: 104] [Cited by in F6Publishing: 52] [Article Influence: 10.4] [Reference Citation Analysis]
192 Baumann P, Müller K, Mandl-weber S, Leban J, Doblhofer R, Ammendola A, Baumgartner R, Oduncu F, Schmidmaier R. The peptide-semicarbazone S-2209, a representative of a new class of proteasome inhibitors, induces apoptosis and cell growth arrest in multiple myeloma cells. British Journal of Haematology 2009;144:875-86. [DOI: 10.1111/j.1365-2141.2008.07570.x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
193 Bulteau AL, Moreau M, Nizard C, Friguet B. Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes. Free Radic Biol Med 2002;32:1157-70. [PMID: 12031900 DOI: 10.1016/s0891-5849(02)00816-x] [Cited by in Crossref: 63] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
194 Fuchs SY, Spiegelman VS, Suresh Kumar KG. The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 2004;23:2028-36. [DOI: 10.1038/sj.onc.1207389] [Cited by in Crossref: 230] [Cited by in F6Publishing: 239] [Article Influence: 12.8] [Reference Citation Analysis]
195 Shou J, Rim PC, Calof AL. BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor. Nat Neurosci 1999;2:339-45. [DOI: 10.1038/7251] [Cited by in Crossref: 108] [Cited by in F6Publishing: 106] [Article Influence: 4.7] [Reference Citation Analysis]
196 Yang M, Jinpeng C, Wang Y, Wang Q, Wang S, Wei S, Qin Q. Nuclear factor kappa B/p65 plays a positive role in peroxisome proliferator-activated receptor δ expression in orange-spotted grouper Epinephelus coioides. Fish Shellfish Immunol 2020;102:101-7. [PMID: 32259581 DOI: 10.1016/j.fsi.2020.03.060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
197 Bose R, Manku G, Culty M, Wing SS. Ubiquitin-proteasome system in spermatogenesis. Adv Exp Med Biol 2014;759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
198 Durie IA, Dzimianski JV, Daczkowski CM, McGuire J, Faaberg K, Pegan SD. Structural insights into the interaction of papain-like protease 2 from the alphacoronavirus porcine epidemic diarrhea virus and ubiquitin. Acta Crystallogr D Struct Biol 2021;77:943-53. [PMID: 34196620 DOI: 10.1107/S205979832100509X] [Reference Citation Analysis]
199 Ausseil F, Samson A, Aussagues Y, Vandenberghe I, Creancier L, Pouny I, Kruczynski A, Massiot G, Bailly C. High-Throughput Bioluminescence Screening of Ubiquitin-Proteasome Pathway Inhibitors from Chemical and Natural Sources. J Biomol Screen 2007;12:106-16. [DOI: 10.1177/1087057106296494] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
200 Swinney DC, Xu YZ, Scarafia LE, Lee I, Mak AY, Gan QF, Ramesha CS, Mulkins MA, Dunn J, So OY, Biegel T, Dinh M, Volkel P, Barnett J, Dalrymple SA, Lee S, Huber M. A small molecule ubiquitination inhibitor blocks NF-kappa B-dependent cytokine expression in cells and rats. J Biol Chem 2002;277:23573-81. [PMID: 11950839 DOI: 10.1074/jbc.M200842200] [Cited by in Crossref: 64] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
201 McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev 1999;20:435-59. [PMID: 10453354 DOI: 10.1210/edrv.20.4.0375] [Cited by in Crossref: 26] [Cited by in F6Publishing: 195] [Article Influence: 1.1] [Reference Citation Analysis]
202 Zen K, Karsan A, Stempien-otero A, Yee E, Tupper J, Li X, Eunson T, Kay MA, Wilson CB, Winn RK, Harlan JM. NF-κB Activation Is Required for Human Endothelial Survival during Exposure to Tumor Necrosis Factor-α but Not to Interleukin-1β or Lipopolysaccharide. Journal of Biological Chemistry 1999;274:28808-15. [DOI: 10.1074/jbc.274.40.28808] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 2.8] [Reference Citation Analysis]
203 Weil R, Laurent-Winter C, Israël A. Regulation of IkappaBbeta degradation. Similarities to and differences from IkappaBalpha. J Biol Chem 1997;272:9942-9. [PMID: 9092533 DOI: 10.1074/jbc.272.15.9942] [Cited by in Crossref: 91] [Cited by in F6Publishing: 92] [Article Influence: 3.6] [Reference Citation Analysis]
204 Ji C, Kozak KR, Marnett LJ. IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J Biol Chem 2001;276:18223-8. [PMID: 11359792 DOI: 10.1074/jbc.M101266200] [Cited by in Crossref: 146] [Cited by in F6Publishing: 62] [Article Influence: 7.0] [Reference Citation Analysis]
205 Bulteau AL, Szweda LI, Friguet B. Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys 2002;397:298-304. [PMID: 11795886 DOI: 10.1006/abbi.2001.2663] [Cited by in Crossref: 166] [Cited by in F6Publishing: 158] [Article Influence: 8.3] [Reference Citation Analysis]
206 Wu M, Hardwidge PR. Hsp90 Interacts with the Bacterial Effector NleH1. Pathogens 2018;7:E87. [PMID: 30428538 DOI: 10.3390/pathogens7040087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
207 Sur R, Lyte PA, Southall MD. Hsp27 regulates pro-inflammatory mediator release in keratinocytes by modulating NF-kappaB signaling. J Invest Dermatol 2008;128:1116-22. [PMID: 18007587 DOI: 10.1038/sj.jid.5701157] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 3.1] [Reference Citation Analysis]
208 Rothwarf DM, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE 1999;1999:RE1. [PMID: 11865184 DOI: 10.1126/stke.1999.5.re1] [Cited by in Crossref: 103] [Cited by in F6Publishing: 213] [Article Influence: 4.5] [Reference Citation Analysis]
209 Adams J, Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 2004;22:304-11. [PMID: 15199612 DOI: 10.1081/cnv-120030218] [Cited by in Crossref: 450] [Cited by in F6Publishing: 195] [Article Influence: 25.0] [Reference Citation Analysis]
210 Zhao L, Liu Y, Wang X. TNF-α promotes insulin resistance in obstructive sleep apnea-hypopnea syndrome. Exp Ther Med 2021;21:568. [PMID: 33850540 DOI: 10.3892/etm.2021.10000] [Reference Citation Analysis]
211 Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A. Identification of the Ubiquitin Carrier Proteins, E2s, Involved in Signal-induced Conjugation and Subsequent Degradation of IκBα. Journal of Biological Chemistry 1999;274:14823-30. [DOI: 10.1074/jbc.274.21.14823] [Cited by in Crossref: 91] [Cited by in F6Publishing: 90] [Article Influence: 4.0] [Reference Citation Analysis]
212 Shang F, Taylor A. Role of the ubiquitin-proteasome in protein quality control and signaling: implication in the pathogenesis of eye diseases. Prog Mol Biol Transl Sci 2012;109:347-96. [PMID: 22727427 DOI: 10.1016/B978-0-12-397863-9.00010-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
213 Sundaramoorthy S, Ryu MS, Lim IK. B-cell translocation gene 2 mediates crosstalk between PI3K/Akt1 and NFκB pathways which enhances transcription of MnSOD by accelerating IκBα degradation in normal and cancer cells. Cell Commun Signal 2013;11:69. [PMID: 24047462 DOI: 10.1186/1478-811X-11-69] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
214 Craig KL, Tyers M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Progress in Biophysics and Molecular Biology 1999;72:299-328. [DOI: 10.1016/s0079-6107(99)00010-3] [Cited by in Crossref: 201] [Cited by in F6Publishing: 93] [Article Influence: 8.7] [Reference Citation Analysis]
215 Zhang X, Zhou J, Fernandes AF, Sparrow JR, Pereira P, Taylor A, Shang F. The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells. Invest Ophthalmol Vis Sci 2008;49:3622-30. [PMID: 18408178 DOI: 10.1167/iovs.07-1559] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 3.4] [Reference Citation Analysis]
216 Iturrioz X, Parker PJ. PKCzetaII is a target for degradation through the tumour suppressor protein pVHL. FEBS Lett 2007;581:1397-402. [PMID: 17350623 DOI: 10.1016/j.febslet.2007.02.059] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
217 Collins PE, Mitxitorena I, Carmody RJ. The Ubiquitination of NF-κB Subunits in the Control of Transcription. Cells 2016;5:E23. [PMID: 27187478 DOI: 10.3390/cells5020023] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
218 Roscoe BP, Thayer KM, Zeldovich KB, Fushman D, Bolon DN. Analyses of the effects of all ubiquitin point mutants on yeast growth rate. J Mol Biol 2013;425:1363-77. [PMID: 23376099 DOI: 10.1016/j.jmb.2013.01.032] [Cited by in Crossref: 150] [Cited by in F6Publishing: 120] [Article Influence: 16.7] [Reference Citation Analysis]
219 Wang Y, Pearce MM, Sliter DA, Olzmann JA, Christianson JC, Kopito RR, Boeckmann S, Gagen C, Leichner GS, Roitelman J, Wojcikiewicz RJ. SPFH1 and SPFH2 mediate the ubiquitination and degradation of inositol 1,4,5-trisphosphate receptors in muscarinic receptor-expressing HeLa cells. Biochim Biophys Acta 2009;1793:1710-8. [PMID: 19751772 DOI: 10.1016/j.bbamcr.2009.09.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
220 Cenciarelli C, Wilhelm KG Jr, Guo A, Weissman AM. T cell antigen receptor ubiquitination is a consequence of receptor-mediated tyrosine kinase activation. J Biol Chem 1996;271:8709-13. [PMID: 8621503 DOI: 10.1074/jbc.271.15.8709] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 2.3] [Reference Citation Analysis]
221 Natarajan R, Fisher BJ, Jones DG, Fowler AA. Atypical mechanism of NF-kappaB activation during reoxygenation stress in microvascular endothelium: a role for tyrosine kinases. Free Radic Biol Med. 2002;33:962. [PMID: 12361806 DOI: 10.1016/S0891-5849(02)00990-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
222 Szweda PA, Friguet B, Szweda LI. Proteolysis, free radicals, and aging1,2 1Guest Editor: Earl Stadtman 2This article is part of a series of reviews on “Oxidatively Modified Proteins in Aging and Disease.” The full list of papers may be found on the homepage of the journal. Free Radical Biology and Medicine 2002;33:29-36. [DOI: 10.1016/s0891-5849(02)00837-7] [Cited by in Crossref: 87] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
223 He Y, Huang J, Wang P, Shen X, Li S, Yang L, Liu W, Suksamrarn A, Zhang G, Wang F. Emodin potentiates the antiproliferative effect of interferon α/β by activation of JAK/STAT pathway signaling through inhibition of the 26S proteasome. Oncotarget 2016;7:4664-79. [PMID: 26683360 DOI: 10.18632/oncotarget.6616] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
224 Bonnet MC, Weil R, Dam E, Hovanessian AG, Meurs EF. PKR stimulates NF-kappaB irrespective of its kinase function by interacting with the IkappaB kinase complex. Mol Cell Biol. 2000;20:4532-4542. [PMID: 10848580 DOI: 10.1128/MCB.20.13.4532-4542.2000] [Cited by in Crossref: 145] [Cited by in F6Publishing: 72] [Article Influence: 6.6] [Reference Citation Analysis]
225 Jin C, Fu W, Xie L, Qian X, Chen W. SDF-1α production is negatively regulated by mouse estrogen enhanced transcript in a mouse thymus epithelial cell line. Cellular Immunology 2003;223:26-34. [DOI: 10.1016/s0008-8749(03)00152-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
226 Lin YC, Chen HM, Chou IM, Chen AN, Chen CP, Young GH, Lin CT, Cheng CH, Chang SC, Juang RH. Plastidial starch phosphorylase in sweet potato roots is proteolytically modified by protein-protein interaction with the 20S proteasome. PLoS One 2012;7:e35336. [PMID: 22506077 DOI: 10.1371/journal.pone.0035336] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
227 Das T, Chen Z, Hendriks RW, Kool M. A20/Tumor Necrosis Factor α-Induced Protein 3 in Immune Cells Controls Development of Autoinflammation and Autoimmunity: Lessons from Mouse Models. Front Immunol 2018;9:104. [PMID: 29515565 DOI: 10.3389/fimmu.2018.00104] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 15.5] [Reference Citation Analysis]
228 Jung M, Dritschilo A. NF-kappa B signaling pathway as a target for human tumor radiosensitization. Semin Radiat Oncol 2001;11:346-51. [PMID: 11677659 DOI: 10.1053/srao.2001.26034] [Cited by in Crossref: 67] [Cited by in F6Publishing: 56] [Article Influence: 3.2] [Reference Citation Analysis]
229 Balasubramanian A, Ganju RK, Groopman JE. Hepatitis C virus and HIV envelope proteins collaboratively mediate interleukin-8 secretion through activation of p38 MAP kinase and SHP2 in hepatocytes. J Biol Chem 2003;278:35755-66. [PMID: 12824191 DOI: 10.1074/jbc.M302889200] [Cited by in Crossref: 70] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
230 Yamamoto Y, Yin MJ, Gaynor RB. IkappaB kinase alpha (IKKalpha) regulation of IKKbeta kinase activity. Mol Cell Biol 2000;20:3655-66. [PMID: 10779355 DOI: 10.1128/MCB.20.10.3655-3666.2000] [Cited by in Crossref: 44] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
231 Sachdev S, Hannink M. Loss of IkappaB alpha-mediated control over nuclear import and DNA binding enables oncogenic activation of c-Rel. Mol Cell Biol. 1998;18:5445-5456. [PMID: 9710628 DOI: 10.1128/mcb.18.9.5445] [Cited by in Crossref: 36] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
232 Kracht M, Müller-Ladner U, Schmitz ML. Mutual regulation of metabolic processes and proinflammatory NF-κB signaling. J Allergy Clin Immunol 2020;146:694-705. [PMID: 32771559 DOI: 10.1016/j.jaci.2020.07.027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
233 Roussel RR, Barchowsky A. Arsenic inhibits NF-kappaB-mediated gene transcription by blocking IkappaB kinase activity and IkappaBalpha phosphorylation and degradation. Arch Biochem Biophys. 2000;377:204-212. [PMID: 10775461 DOI: 10.1006/abbi.2000.1770] [Cited by in Crossref: 87] [Cited by in F6Publishing: 83] [Article Influence: 4.0] [Reference Citation Analysis]
234 Chu ZL, McKinsey TA, Liu L, Qi X, Ballard DW. Basal phosphorylation of the PEST domain in the I(kappa)B(beta) regulates its functional interaction with the c-rel proto-oncogene product. Mol Cell Biol 1996;16:5974-84. [PMID: 8887627 DOI: 10.1128/MCB.16.11.5974] [Cited by in Crossref: 64] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
235 Farias R, Rousseau S. The TAK1→IKKβ→TPL2→MKK1/MKK2 Signaling Cascade Regulates IL-33 Expression in Cystic Fibrosis Airway Epithelial Cells Following Infection by Pseudomonas aeruginosa. Front Cell Dev Biol 2015;3:87. [PMID: 26793709 DOI: 10.3389/fcell.2015.00087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
236 Majdalawieh A, Ro HS. Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010;2010:823821. [PMID: 20396415 DOI: 10.1155/2010/823821] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 4.3] [Reference Citation Analysis]
237 Wang Y, Wang P, Liu M, Zhang X, Si Q, Yang T, Ye H, Song C, Shi J, Wang K, Wang X, Zhang J, Dai L. Identification of tumor-associated antigens of lung cancer: SEREX combined with bioinformatics analysis. J Immunol Methods 2021;492:112991. [PMID: 33587914 DOI: 10.1016/j.jim.2021.112991] [Reference Citation Analysis]
238 McAllister CS, Samuel CE. The RNA-activated protein kinase enhances the induction of interferon-beta and apoptosis mediated by cytoplasmic RNA sensors. J Biol Chem. 2009;284:1644-1651. [PMID: 19028691 DOI: 10.1074/jbc.m807888200] [Cited by in Crossref: 79] [Cited by in F6Publishing: 61] [Article Influence: 5.6] [Reference Citation Analysis]
239 Yang L, Yan Y. Protein kinases are potential targets to treat inflammatory bowel disease. World J Gastrointest Pharmacol Ther 2014; 5(4): 209-217 [PMID: 25374761 DOI: 10.4292/wjgpt.v5.i4.209] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
240 Enesa K, Ito K, Luong LA, Thorbjornsen I, Phua C, To Y, Dean J, Haskard DO, Boyle J, Adcock I, Evans PC. Hydrogen Peroxide Prolongs Nuclear Localization of NF-κB in Activated Cells by Suppressing Negative Regulatory Mechanisms. Journal of Biological Chemistry 2008;283:18582-90. [DOI: 10.1074/jbc.m801312200] [Cited by in Crossref: 47] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
241 Nagai K, Takahashi Y, Mikami I, Fukusima T, Oike H, Kobori M. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes. Br J Pharmacol 2009;158:907-19. [PMID: 19702784 DOI: 10.1111/j.1476-5381.2009.00365.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
242 Visekruna A, Joeris T, Seidel D, Kroesen A, Loddenkemper C, Zeitz M, Kaufmann SH, Schmidt-Ullrich R, Steinhoff U. Proteasome-mediated degradation of IkappaBalpha and processing of p105 in Crohn disease and ulcerative colitis. J Clin Invest. 2006;116:3195-3203. [PMID: 17124531 DOI: 10.1172/jci28804] [Cited by in Crossref: 114] [Cited by in F6Publishing: 69] [Article Influence: 7.1] [Reference Citation Analysis]
243 Wang Y, Zhang G, Jin J, Degan S, Tameze Y, Zhang JY. MALT1 promotes melanoma progression through JNK/c-Jun signaling. Oncogenesis 2017;6:e365. [PMID: 28759024 DOI: 10.1038/oncsis.2017.68] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
244 Piret B, Schoonbroodt S, Piette J. The ATM protein is required for sustained activation of NF-κB following DNA damage. Oncogene 1999;18:2261-71. [DOI: 10.1038/sj.onc.1202541] [Cited by in Crossref: 113] [Cited by in F6Publishing: 111] [Article Influence: 4.9] [Reference Citation Analysis]
245 Hay DC, Beers C, Cameron V, Thomson L, Flitney FW, Hay RT. Activation of NF-κB nuclear transcription factor by flow in human endothelial cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2003;1642:33-44. [DOI: 10.1016/s0167-4889(03)00084-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
246 Zhang J, Li B, Wu H, Ou J, Wei R, Liu J, Cai W, Liu X, Zhao S, Yang J, Zhou L, Liu S, Liang A. Synergistic action of 5Z-7-oxozeaenol and bortezomib in inducing apoptosis of Burkitt lymphoma cell line Daudi. Tumour Biol 2016;37:531-9. [PMID: 26227222 DOI: 10.1007/s13277-015-3832-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
247 Firestein GS, Manning AM. Signal transduction and transcription factors in rheumatic disease. Arthritis Rheum 1999;42:609-21. [PMID: 10211874 DOI: 10.1002/1529-0131(199904)42:4<609::AID-ANR3>3.0.CO;2-I] [Cited by in Crossref: 138] [Cited by in F6Publishing: 45] [Article Influence: 6.0] [Reference Citation Analysis]
248 Zhou H, Monack DM, Kayagaki N, Wertz I, Yin J, Wolf B, Dixit VM. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation. J Exp Med 2005;202:1327-32. [PMID: 16301742 DOI: 10.1084/jem.20051194] [Cited by in Crossref: 161] [Cited by in F6Publishing: 171] [Article Influence: 10.1] [Reference Citation Analysis]
249 Cuervo AM, Hu W, Lim B, Dice JF. IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol Biol Cell 1998;9:1995-2010. [PMID: 9693362 DOI: 10.1091/mbc.9.8.1995] [Cited by in Crossref: 109] [Cited by in F6Publishing: 105] [Article Influence: 4.5] [Reference Citation Analysis]
250 Riedlinger T, Liefke R, Meier-Soelch J, Jurida L, Nist A, Stiewe T, Kracht M, Schmitz ML. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression. FASEB J 2019;33:4188-202. [PMID: 30526044 DOI: 10.1096/fj.201801638R] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
251 Bender K, Göttlicher M, Whiteside S, Rahmsdorf HJ, Herrlich P. Sequential DNA damage-independent and -dependent activation of NF-kappaB by UV. EMBO J 1998;17:5170-81. [PMID: 9724653 DOI: 10.1093/emboj/17.17.5170] [Cited by in Crossref: 181] [Cited by in F6Publishing: 170] [Article Influence: 7.5] [Reference Citation Analysis]
252 Whiteside ST, Epinat JC, Rice NR, Israël A. I kappa B epsilon, a novel member of the I kappa B family, controls RelA and cRel NF-kappa B activity. EMBO J 1997;16:1413-26. [PMID: 9135156 DOI: 10.1093/emboj/16.6.1413] [Cited by in Crossref: 287] [Cited by in F6Publishing: 283] [Article Influence: 11.5] [Reference Citation Analysis]
253 Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949-1971. [PMID: 16084198 DOI: 10.1016/j.jbiomech.2004.09.030] [Cited by in Crossref: 557] [Cited by in F6Publishing: 505] [Article Influence: 32.8] [Reference Citation Analysis]
254 Hou S, Guan H, Ricciardi RP. Phosphorylation of Serine 337 of NF-κB p50 Is Critical for DNA Binding. Journal of Biological Chemistry 2003;278:45994-8. [DOI: 10.1074/jbc.m307971200] [Cited by in Crossref: 62] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
255 Kumar D, Ambasta RK, Kumar P. Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Research Reviews 2020;61:101078. [DOI: 10.1016/j.arr.2020.101078] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
256 Zemse SM, Chiao CW, Hilgers RH, Webb RC. Interleukin-10 inhibits the in vivo and in vitro adverse effects of TNF-alpha on the endothelium of murine aorta. Am J Physiol Heart Circ Physiol 2010;299:H1160-7. [PMID: 20639218 DOI: 10.1152/ajpheart.00763.2009] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 3.3] [Reference Citation Analysis]
257 Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med 2007;37:737-63. [PMID: 17722947 DOI: 10.2165/00007256-200737090-00001] [Cited by in Crossref: 387] [Cited by in F6Publishing: 323] [Article Influence: 25.8] [Reference Citation Analysis]
258 Ye Y, Tan S, Zhou X, Li X, Jundt MC, Lichter N, Hidebrand A, Dhasarathy A, Wu M. Inhibition of p-IκBα Ubiquitylation by Autophagy-Related Gene 7 to Regulate Inflammatory Responses to Bacterial Infection. J Infect Dis 2015;212:1816-26. [PMID: 26022442 DOI: 10.1093/infdis/jiv301] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
259 Hellweg CE. The Nuclear Factor κB pathway: A link to the immune system in the radiation response. Cancer Letters 2015;368:275-89. [DOI: 10.1016/j.canlet.2015.02.019] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 11.3] [Reference Citation Analysis]
260 Harari-Steinberg O, Cantera R, Denti S, Bianchi E, Oron E, Segal D, Chamovitz DA. COP9 signalosome subunit 5 (CSN5/Jab1) regulates the development of the Drosophila immune system: effects on Cactus, Dorsal and hematopoiesis. Genes Cells 2007;12:183-95. [PMID: 17295838 DOI: 10.1111/j.1365-2443.2007.01049.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 1.9] [Reference Citation Analysis]
261 Qin Z, Wang Y, Chasea TN. A caspase-3-like protease is involved in NF-κB activation induced by stimulation of N-methyl-d-aspartate receptors in rat striatum. Molecular Brain Research 2000;80:111-22. [DOI: 10.1016/s0169-328x(00)00147-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
262 Goetzke CC, Ebstein F, Kallinich T. Role of Proteasomes in Inflammation. J Clin Med 2021;10:1783. [PMID: 33923887 DOI: 10.3390/jcm10081783] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
263 Zhang R, Li R, Liu Y, Li L, Tang Y. The Glycolytic Enzyme PFKFB3 Controls TNF-α-Induced Endothelial Proinflammatory Responses. Inflammation 2019;42:146-55. [PMID: 30171427 DOI: 10.1007/s10753-018-0880-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
264 Govers R, van Kerkhof P, Schwartz AL, Strous GJ. Di-leucine-mediated Internalization of Ligand by a Truncated Growth Hormone Receptor Is Independent of the Ubiquitin Conjugation System. Journal of Biological Chemistry 1998;273:16426-33. [DOI: 10.1074/jbc.273.26.16426] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 1.3] [Reference Citation Analysis]
265 Amoui M, Sheng MH, Chen S, Baylink DJ, Lau KW. A transmembrane osteoclastic protein-tyrosine phosphatase regulates osteoclast activity in part by promoting osteoclast survival through c-Src-dependent activation of NFκB and JNK2. Archives of Biochemistry and Biophysics 2007;463:47-59. [DOI: 10.1016/j.abb.2007.02.025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
266 Van Antwerp DJ, Verma IM. Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required. Mol Cell Biol 1996;16:6037-45. [PMID: 8887633 DOI: 10.1128/MCB.16.11.6037] [Cited by in Crossref: 73] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
267 Wu M, El Qaidi S, Hardwidge PR. SseL Deubiquitinates RPS3 to Inhibit Its Nuclear Translocation. Pathogens 2018;7:E86. [PMID: 30405005 DOI: 10.3390/pathogens7040086] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
268 Stasiolek M, Gavrilyuk V, Sharp A, Horvath P, Selmaj K, Feinstein DL. Inhibitory and Stimulatory Effects of Lactacystin on Expression of Nitric Oxide Synthase Type 2 in Brain Glial Cells. Journal of Biological Chemistry 2000;275:24847-56. [DOI: 10.1074/jbc.m910284199] [Cited by in Crossref: 28] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
269 Ding Q, Keller JN. Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med 2001;31:574-84. [PMID: 11522442 DOI: 10.1016/s0891-5849(01)00635-9] [Cited by in Crossref: 79] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
270 Vuillard L, Nicholson J, Hay RT. A complex containing βTrCP recruits Ccd34 to catalyse ubiquitination of IκBα. FEBS Letters 1999;455:311-4. [DOI: 10.1016/s0014-5793(99)00895-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
271 Orian A, Schwartz AL, Israël A, Whiteside S, Kahana C, Ciechanover A. Structural motifs involved in ubiquitin-mediated processing of the NF-kappaB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol Cell Biol 1999;19:3664-73. [PMID: 10207090 DOI: 10.1128/MCB.19.5.3664] [Cited by in Crossref: 91] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
272 Smith N, Wei W, Zhao M, Qin X, Seravalli J, Kim H, Lee J. Cadmium and Secondary Structure-dependent Function of a Degron in the Pca1p Cadmium Exporter. J Biol Chem 2016;291:12420-31. [PMID: 27059957 DOI: 10.1074/jbc.M116.724930] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
273 DiDonato J, Mercurio F, Rosette C, Wu-Li J, Suyang H, Ghosh S, Karin M. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol 1996;16:1295-304. [PMID: 8657102 DOI: 10.1128/MCB.16.4.1295] [Cited by in Crossref: 555] [Cited by in F6Publishing: 186] [Article Influence: 21.3] [Reference Citation Analysis]
274 Aupperle KR, Yamanishi Y, Bennett BL, Mercurio F, Boyle DL, Firestein GS. Expression and Regulation of Inducible IκB Kinase (IKK-i) in Human Fibroblast-like Synoviocytes. Cellular Immunology 2001;214:54-9. [DOI: 10.1006/cimm.2002.1885] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 1.4] [Reference Citation Analysis]
275 Guan G, Su H, Wei X, Zheng Y, Jin X. The promotion of tetrabromobisphenol A exposure on Ishikawa cells proliferation and pivotal role of ubiquitin-mediated IκB' degradation. Ecotoxicol Environ Saf 2021;207:111254. [PMID: 32890954 DOI: 10.1016/j.ecoenv.2020.111254] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
276 Sakurai H, Shigemori N, Hasegawa K, Sugita T. TGF-β-Activated Kinase 1 Stimulates NF-κB Activation by an NF-κB-Inducing Kinase-Independent Mechanism. Biochemical and Biophysical Research Communications 1998;243:545-9. [DOI: 10.1006/bbrc.1998.8124] [Cited by in Crossref: 78] [Cited by in F6Publishing: 74] [Article Influence: 3.3] [Reference Citation Analysis]
277 Ponnappan S, Cullen SJ, Ponnappan U. Constitutive degradation of IkappaBalpha in human T lymphocytes is mediated by calpain. Immun Ageing. 2005;2:15. [PMID: 16271147 DOI: 10.1186/1742-4933-2-15] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.6] [Reference Citation Analysis]
278 Bester SM, Daczkowski CM, Faaberg KS, Pegan SD. Insights into the Porcine Reproductive and Respiratory Syndrome Virus Viral Ovarian Tumor Domain Protease Specificity for Ubiquitin and Interferon Stimulated Gene Product 15. ACS Infect Dis 2018;4:1316-26. [PMID: 29856201 DOI: 10.1021/acsinfecdis.8b00068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
279 Adelaja A, Hoffmann A. Signaling Crosstalk Mechanisms That May Fine-Tune Pathogen-Responsive NFκB. Front Immunol 2019;10:433. [PMID: 31312197 DOI: 10.3389/fimmu.2019.00433] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
280 Francis SE, Banerjee R, Goldberg DE. Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II. J Biol Chem 1997;272:14961-8. [PMID: 9169469 DOI: 10.1074/jbc.272.23.14961] [Cited by in Crossref: 96] [Cited by in F6Publishing: 84] [Article Influence: 3.8] [Reference Citation Analysis]
281 Vodanovic-Jankovic S, Hari P, Jacobs P, Komorowski R, Drobyski WR. NF-kappaB as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood 2006;107:827-34. [PMID: 16174760 DOI: 10.1182/blood-2005-05-1820] [Cited by in Crossref: 89] [Cited by in F6Publishing: 88] [Article Influence: 5.2] [Reference Citation Analysis]
282 Chen ZJ, Maniatis T. Role of the Ubiquitin—Proteasome Pathway in NF-κB Activation. In: Peters J, Harris JR, Finley D, editors. Ubiquitin and the Biology of the Cell. Boston: Springer US; 1998. pp. 303-22. [DOI: 10.1007/978-1-4899-1922-9_10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
283 Brasier AR, Jamaluddin M, Casola A, Duan W, Shen Q, Garofalo RP. A promoter recruitment mechanism for tumor necrosis factor-alpha-induced interleukin-8 transcription in type II pulmonary epithelial cells. Dependence on nuclear abundance of Rel A, NF-kappaB1, and c-Rel transcription factors. J Biol Chem 1998;273:3551-61. [PMID: 9452482 DOI: 10.1074/jbc.273.6.3551] [Cited by in Crossref: 128] [Cited by in F6Publishing: 131] [Article Influence: 5.3] [Reference Citation Analysis]
284 Lakshmi SP, Reddy AT, Zhang Y, Sciurba FC, Mallampalli RK, Duncan SR, Reddy RC. Down-regulated peroxisome proliferator-activated receptor γ (PPARγ) in lung epithelial cells promotes a PPARγ agonist-reversible proinflammatory phenotype in chronic obstructive pulmonary disease (COPD). J Biol Chem 2014;289:6383-93. [PMID: 24368768 DOI: 10.1074/jbc.M113.536805] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
285 Kroll M, Margottin F, Kohl A, Renard P, Durand H, Concordet JP, Bachelerie F, Arenzana-Seisdedos F, Benarous R. Inducible degradation of IkappaBalpha by the proteasome requires interaction with the F-box protein h-betaTrCP. J Biol Chem 1999;274:7941-5. [PMID: 10075690 DOI: 10.1074/jbc.274.12.7941] [Cited by in Crossref: 88] [Cited by in F6Publishing: 95] [Article Influence: 3.8] [Reference Citation Analysis]
286 Nakai M, Qin Z, Wang Y, Chase TN. NMDA and non-NMDA receptor-stimulated IκB-α degradation: differential effects of the caspase-3 inhibitor DEVD·CHO, ethanol and free radical scavenger OPC-14117. Brain Research 2000;859:207-16. [DOI: 10.1016/s0006-8993(00)01959-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
287 Swinney DC. Targeting protein ubiquitination for drug discovery. What is in the drug discovery toolbox? Drug Discovery Today 2001;6:244-50. [DOI: 10.1016/s1359-6446(00)01650-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
288 Orian A, Gonen H, Bercovich B, Fajerman I, Eytan E, Israël A, Mercurio F, Iwai K, Schwartz AL, Ciechanover A. SCF(beta)(-TrCP) ubiquitin ligase-mediated processing of NF-kappaB p105 requires phosphorylation of its C-terminus by IkappaB kinase. EMBO J 2000;19:2580-91. [PMID: 10835356 DOI: 10.1093/emboj/19.11.2580] [Cited by in Crossref: 122] [Cited by in F6Publishing: 118] [Article Influence: 5.5] [Reference Citation Analysis]
289 Szweda PA, Camouse M, Lundberg KC, Oberley TD, Szweda LI. Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res Rev 2003;2:383-405. [PMID: 14522242 DOI: 10.1016/s1568-1637(03)00028-x] [Cited by in Crossref: 79] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
290 Bogner C, Peschel C, Decker T. Targeting the proteasome in mantle cell lymphoma: A promising therapeutic approach. Leukemia & Lymphoma 2009;47:195-205. [DOI: 10.1080/10428190500144490] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
291 Liu L, Kwak YT, Bex F, García-Martínez LF, Li XH, Meek K, Lane WS, Gaynor RB. DNA-dependent protein kinase phosphorylation of IkappaB alpha and IkappaB beta regulates NF-kappaB DNA binding properties. Mol Cell Biol 1998;18:4221-34. [PMID: 9632806 DOI: 10.1128/MCB.18.7.4221] [Cited by in Crossref: 60] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
292 Huang W, Ghisletti S, Perissi V, Rosenfeld MG, Glass CK. Transcriptional integration of TLR2 and TLR4 signaling at the NCoR derepression checkpoint. Mol Cell 2009;35:48-57. [PMID: 19595715 DOI: 10.1016/j.molcel.2009.05.023] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 5.8] [Reference Citation Analysis]
293 Dieguez-Acuña FJ, Ellis ME, Kushleika J, Woods JS. Mercuric ion attenuates nuclear factor-kappaB activation and DNA binding in normal rat kidney epithelial cells: implications for mercury-induced nephrotoxicity. Toxicol Appl Pharmacol 2001;173:176-87. [PMID: 11437639 DOI: 10.1006/taap.2001.9195] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 1.0] [Reference Citation Analysis]
294 Chain DG, Schwartz JH, Hegde AN. Ubiquitin-mediated proteolysis in learning and memory. Mol Neurobiol 1999;20:125-42. [DOI: 10.1007/bf02742438] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
295 Xu J, Wang L, Yang Q, Ma Q, Zhou Y, Cai Y, Mao X, Da Q, Lu T, Su Y, Bagi Z, Lucas R, Liu Z, Hong M, Ouyang K, Huo Y. Deficiency of Myeloid Pfkfb3 Protects Mice From Lung Edema and Cardiac Dysfunction in LPS-Induced Endotoxemia. Front Cardiovasc Med 2021;8:745810. [PMID: 34660743 DOI: 10.3389/fcvm.2021.745810] [Reference Citation Analysis]
296 Lee R, Beauparlant P, Elford H, Ponka P, Hiscott J. Selective Inhibition of IκBα Phosphorylation and HIV-1 LTR-Directed Gene Expression by Novel Antioxidant Compounds. Virology 1997;234:277-90. [DOI: 10.1006/viro.1997.8642] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 1.6] [Reference Citation Analysis]
297 Schmitz ML, de la Vega L. A Bacterial Small Molecule Undermining Immune Response Signaling. ChemBioChem 2008;9:2575-7. [DOI: 10.1002/cbic.200800562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
298 Lidén J, Ek A, Palmberg L, Okret S, Larsson K. Organic dust activates NF-κB in lung epithelial cells. Respiratory Medicine 2003;97:882-92. [DOI: 10.1016/s0954-6111(03)00111-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
299 Yaron A, Gonen H, Alkalay I, Hatzubai A, Jung S, Beyth S, Mercurio F, Manning AM, Ciechanover A, Ben-Neriah Y. Inhibition of NF-kappa-B cellular function via specific targeting of the I-kappa-B-ubiquitin ligase. EMBO J 1997;16:6486-94. [PMID: 9351830 DOI: 10.1093/emboj/16.21.6486] [Cited by in Crossref: 178] [Cited by in F6Publishing: 170] [Article Influence: 7.4] [Reference Citation Analysis]
300 Schwartz SA, Hernandez A, Mark Evers B. The role of NF-kappaB/IkappaB proteins in cancer: implications for novel treatment strategies. Surg Oncol. 1999;8:143-153. [PMID: 11113665 DOI: 10.1016/s0960-7404(00)00012-8] [Cited by in Crossref: 101] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
301 Han EH, Park JH, Kim JY, Chung YC, Jeong HG. Inhibitory mechanism of saponins derived from roots of Platycodon grandiflorum on anaphylactic reaction and IgE-mediated allergic response in mast cells. Food and Chemical Toxicology 2009;47:1069-75. [DOI: 10.1016/j.fct.2009.01.041] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 3.7] [Reference Citation Analysis]
302 Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med. 2000;28:463-499. [PMID: 10699758 DOI: 10.1016/s0891-5849(99)00242-7] [Cited by in Crossref: 887] [Cited by in F6Publishing: 223] [Article Influence: 40.3] [Reference Citation Analysis]
303 Mercurio F, Murray BW, Shevchenko A, Bennett BL, Young DB, Li JW, Pascual G, Motiwala A, Zhu H, Mann M, Manning AM. IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol Cell Biol 1999;19:1526-38. [PMID: 9891086 DOI: 10.1128/MCB.19.2.1526] [Cited by in Crossref: 251] [Cited by in F6Publishing: 81] [Article Influence: 10.9] [Reference Citation Analysis]
304 Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm (Lond) 2014;11:23. [PMID: 25152696 DOI: 10.1186/1476-9255-11-23] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 8.8] [Reference Citation Analysis]
305 Shang F, Taylor A. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: implications in the pathogenesis of age-related macular degeneration. Mol Aspects Med 2012;33:446-66. [PMID: 22521794 DOI: 10.1016/j.mam.2012.04.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
306 Dreyfus DH, Nagasawa M, Gelfand EW, Ghoda LY. Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors. BMC Immunol 2005;6:12. [PMID: 15969767 DOI: 10.1186/1471-2172-6-12] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 1.9] [Reference Citation Analysis]
307 Huong PT, Moon DO, Kim SO, Kim KE, Jeong SJ, Lee KW, Lee KS, Jang JH, Erikson RL, Ahn JS, Kim BY. Proteasome inhibitor-I enhances tunicamycin-induced chemosensitization of prostate cancer cells through regulation of NF-κB and CHOP expression. Cell Signal 2011;23:857-65. [PMID: 21276850 DOI: 10.1016/j.cellsig.2011.01.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
308 Hochstrasser M, Kornitzer D. Ubiquitin-Dependent Degradation of Transcription Regulators. In: Peters J, Harris JR, Finley D, editors. Ubiquitin and the Biology of the Cell. Boston: Springer US; 1998. pp. 279-302. [DOI: 10.1007/978-1-4899-1922-9_9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]