BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, Tattikota SG, Li F, Song W, Ho Sui S, Perrimon N. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A 2020;117:1514-23. [PMID: 31915294 DOI: 10.1073/pnas.1916820117] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 27.0] [Reference Citation Analysis]
Number Citing Articles
1 Sun X, Li L, Wu B, Ge J, Zheng Y, Yu T, Zhou L, Zhang T, Yang A, Liu Z. Cell type diversity in scallop adductor muscles revealed by single-cell RNA-Seq. Genomics 2021;113:3582-98. [PMID: 34425225 DOI: 10.1016/j.ygeno.2021.08.015] [Reference Citation Analysis]
2 Allen AM, B Sokolowski M. Expression of the foraging gene in adult Drosophila melanogaster. J Neurogenet 2021;:1-21. [PMID: 34382904 DOI: 10.1080/01677063.2021.1941946] [Reference Citation Analysis]
3 Godoy RSM, Barbosa RC, Procópio TF, Costa BA, Jacobs-Lorena M, Martins GF. FMRF-related peptides in Aedes aegypti midgut: neuromuscular connections and enteric nervous system. Cell Tissue Res 2021. [PMID: 33961128 DOI: 10.1007/s00441-021-03462-3] [Reference Citation Analysis]
4 Tauc HM, Rodriguez-Fernandez IA, Hackney JA, Pawlak M, Ronnen Oron T, Korzelius J, Moussa HF, Chaudhuri S, Modrusan Z, Edgar BA, Jasper H. Age-related changes in polycomb gene regulation disrupt lineage fidelity in intestinal stem cells. Elife 2021;10:e62250. [PMID: 33724181 DOI: 10.7554/eLife.62250] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Goto-Silva L, Junqueira M. Single-cell proteomics: A treasure trove in neurobiology. Biochim Biophys Acta Proteins Proteom 2021;1869:140658. [PMID: 33845200 DOI: 10.1016/j.bbapap.2021.140658] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021;13:37. [PMID: 34525941 DOI: 10.1186/s11689-021-09378-x] [Reference Citation Analysis]
7 Erez N, Israitel L, Bitman-Lotan E, Wong WH, Raz G, Cornelio-Parra DV, Danial S, Flint Brodsly N, Belova E, Maksimenko O, Georgiev P, Druley T, Mohan RD, Orian A. A Non-stop identity complex (NIC) supervises enterocyte identity and protects from premature aging. Elife 2021;10:e62312. [PMID: 33629655 DOI: 10.7554/eLife.62312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kim SK, Tsao DD, Suh GSB, Miguel-Aliaga I. Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metab 2021;33:1279-92. [PMID: 34139200 DOI: 10.1016/j.cmet.2021.05.018] [Reference Citation Analysis]
9 Joly A, Rousset R. Tissue Adaptation to Environmental Cues by Symmetric and Asymmetric Division Modes of Intestinal Stem Cells. Int J Mol Sci 2020;21:E6362. [PMID: 32887329 DOI: 10.3390/ijms21176362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Takemura M, Bowden N, Lu YS, Nakato E, O'Connor MB, Nakato H. Drosophila MOV10 regulates the termination of midgut regeneration. Genetics 2021;218:iyab031. [PMID: 33693718 DOI: 10.1093/genetics/iyab031] [Reference Citation Analysis]
11 Cui Y, Franz AWE. Heterogeneity of midgut cells and their differential responses to blood meal ingestion by the mosquito, Aedes aegypti. Insect Biochem Mol Biol 2020;127:103496. [PMID: 33188922 DOI: 10.1016/j.ibmb.2020.103496] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 David FPA, Litovchenko M, Deplancke B, Gardeux V. ASAP 2020 update: an open, scalable and interactive web-based portal for (single-cell) omics analyses. Nucleic Acids Res 2020;48:W403-14. [PMID: 32449934 DOI: 10.1093/nar/gkaa412] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Swevers L, Denecke S, Vogelsang K, Geibel S, Vontas J. Can the mammalian organoid technology be applied to the insect gut? Pest Manag Sci 2021;77:55-63. [PMID: 32865304 DOI: 10.1002/ps.6067] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Shen Y, Chen G, Zhao S, Wu X. Genome-wide identification of lipases in silkworm (Bombyx mori) and their spatio-temporal expression in larval midgut. Gene 2021;813:146121. [PMID: 34915049 DOI: 10.1016/j.gene.2021.146121] [Reference Citation Analysis]
15 Segrist E, Dittmar M, Gold B, Cherry S. Orally acquired cyclic dinucleotides drive dSTING-dependent antiviral immunity in enterocytes. Cell Rep 2021;37:110150. [PMID: 34965418 DOI: 10.1016/j.celrep.2021.110150] [Reference Citation Analysis]
16 Buddika K, Xu J, Ariyapala IS, Sokol NS. I-KCKT allows dissection-free RNA profiling of adult Drosophila intestinal progenitor cells. Development 2021;148:dev196568. [PMID: 33246929 DOI: 10.1242/dev.196568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Lim SY, You H, Lee J, Lee J, Lee Y, Lee KA, Kim B, Lee JH, Jeong J, Jang S, Kim B, Choi H, Hwang G, Choi MS, Yoon SE, Kwon JY, Lee WJ, Kim YJ, Suh GSB. Identification and characterization of GAL4 drivers that mark distinct cell types and regions in the Drosophila adult gut. J Neurogenet 2021;35:33-44. [PMID: 33326321 DOI: 10.1080/01677063.2020.1853722] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Mohr SE, Tattikota SG, Xu J, Zirin J, Hu Y, Perrimon N. Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila. Genetics 2021;217:iyab019. [PMID: 33713129 DOI: 10.1093/genetics/iyab019] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Hung RJ, Li JSS, Liu Y, Perrimon N. Defining cell types and lineage in the Drosophila midgut using single cell transcriptomics. Curr Opin Insect Sci 2021;47:12-7. [PMID: 33609768 DOI: 10.1016/j.cois.2021.02.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Ariyapala IS, Holsopple JM, Popodi EM, Hartwick DG, Kahsai L, Cook KR, Sokol NS. Identification of Split-GAL4 Drivers and Enhancers That Allow Regional Cell Type Manipulations of the Drosophila melanogaster Intestine. Genetics 2020;216:891-903. [PMID: 32988987 DOI: 10.1534/genetics.120.303625] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Hu Y, Comjean A, Rodiger J, Liu Y, Gao Y, Chung V, Zirin J, Perrimon N, Mohr SE. FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2021 update. Nucleic Acids Res 2021;49:D908-15. [PMID: 33104800 DOI: 10.1093/nar/gkaa936] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
22 Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020;77:4523-51. [PMID: 32448994 DOI: 10.1007/s00018-020-03547-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
23 Zipper L, Jassmann D, Burgmer S, Görlich B, Reiff T. Ecdysone steroid hormone remote controls intestinal stem cell fate decisions via the PPARγ-homolog Eip75B in Drosophila. Elife 2020;9:e55795. [PMID: 32773037 DOI: 10.7554/eLife.55795] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
24 Zhou Y, Liu J, Zhang Y, Liu JL. Drosophila intestinal homeostasis requires CTP synthase. Exp Cell Res 2021;408:112838. [PMID: 34560103 DOI: 10.1016/j.yexcr.2021.112838] [Reference Citation Analysis]
25 Ramond E, Jamet A, Ding X, Euphrasie D, Bouvier C, Lallemant L, He X, Arbibe L, Coureuil M, Charbit A. Reactive Oxygen Species-Dependent Innate Immune Mechanisms Control Methicillin-Resistant Staphylococcus aureus Virulence in the Drosophila Larval Model. mBio 2021;12:e0027621. [PMID: 34126772 DOI: 10.1128/mBio.00276-21] [Reference Citation Analysis]
26 Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021;31:485-99. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Rosenthal JS, Yuan Q. Constructing and Tuning Excitatory Cholinergic Synapses: The Multifaceted Functions of Nicotinic Acetylcholine Receptors in Drosophila Neural Development and Physiology. Front Cell Neurosci 2021;15:720560. [PMID: 34650404 DOI: 10.3389/fncel.2021.720560] [Reference Citation Analysis]
28 Bonfini A, Dobson AJ, Duneau D, Revah J, Liu X, Houtz P, Buchon N. Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. Elife 2021;10:e64125. [PMID: 34553686 DOI: 10.7554/eLife.64125] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
29 Li Y, Wang W, Lim HY. Drosophila Solute Carrier 5A5 Regulates Systemic Glucose Homeostasis by Mediating Glucose Absorption in the Midgut. Int J Mol Sci 2021;22:12424. [PMID: 34830305 DOI: 10.3390/ijms222212424] [Reference Citation Analysis]
30 Guo X, Lv J, Xi R. The specification and function of enteroendocrine cells in Drosophila and mammals: a comparative review. FEBS J 2021. [PMID: 34115929 DOI: 10.1111/febs.16067] [Reference Citation Analysis]
31 Hu Y, Tattikota SG, Liu Y, Comjean A, Gao Y, Forman C, Kim G, Rodiger J, Papatheodorou I, Dos Santos G, Mohr SE, Perrimon N. DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species. Comput Struct Biotechnol J 2021;19:2018-26. [PMID: 33995899 DOI: 10.1016/j.csbj.2021.04.021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Boumard B, Bardin AJ. An amuse-bouche of stem cell regulation: Underlying principles and mechanisms from adult Drosophila intestinal stem cells. Curr Opin Cell Biol 2021;73:58-68. [PMID: 34217969 DOI: 10.1016/j.ceb.2021.05.007] [Reference Citation Analysis]
33 Li H. Single-cell RNA sequencing in Drosophila: Technologies and applications. Wiley Interdiscip Rev Dev Biol 2021;10:e396. [PMID: 32940008 DOI: 10.1002/wdev.396] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
34 Terra WR, Ferreira C. Evolutionary trends of digestion and absorption in the major insect orders. Arthropod Struct Dev 2020;56:100931. [PMID: 32203883 DOI: 10.1016/j.asd.2020.100931] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
35 Zhao X, Karpac J. The Drosophila midgut and the systemic coordination of lipid-dependent energy homeostasis. Curr Opin Insect Sci 2020;41:100-5. [PMID: 32898765 DOI: 10.1016/j.cois.2020.07.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Tanay A, Sebé-Pedrós A. Evolutionary Cell Type Mapping with Single-Cell Genomics. Trends Genet 2021:S0168-9525(21)00104-9. [PMID: 34020820 DOI: 10.1016/j.tig.2021.04.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Vorgia E, Lamprousi M, Denecke S, Vogelsang K, Geibel S, Vontas J, Douris V. Functional characterization and transcriptomic profiling of a spheroid-forming midgut cell line from Helicoverpa zea (Lepidoptera: Noctuidae). Insect Biochem Mol Biol 2021;128:103510. [PMID: 33276037 DOI: 10.1016/j.ibmb.2020.103510] [Reference Citation Analysis]
38 Krause SA, Overend G, Dow JAT, Leader DP. FlyAtlas 2 in 2022: enhancements to the Drosophila melanogaster expression atlas. Nucleic Acids Res 2021:gkab971. [PMID: 34718735 DOI: 10.1093/nar/gkab971] [Reference Citation Analysis]
39 Yoshinari Y, Kosakamoto H, Kamiyama T, Hoshino R, Matsuoka R, Kondo S, Tanimoto H, Nakamura A, Obata F, Niwa R. The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat Commun 2021;12:4818. [PMID: 34376687 DOI: 10.1038/s41467-021-25146-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zhou X, Ding G, Li J, Xiang X, Rushworth E, Song W. Physiological and Pathological Regulation of Peripheral Metabolism by Gut-Peptide Hormones in Drosophila. Front Physiol 2020;11:577717. [PMID: 33117196 DOI: 10.3389/fphys.2020.577717] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Feng M, Xia J, Fei S, Peng R, Wang X, Zhou Y, Wang P, Swevers L, Sun J. Identification of Silkworm Hemocyte Subsets and Analysis of Their Response to Baculovirus Infection Based on Single-Cell RNA Sequencing. Front Immunol 2021;12:645359. [PMID: 33995363 DOI: 10.3389/fimmu.2021.645359] [Reference Citation Analysis]
42 Silva JMF, Nagata T, Melo FL, Elena SF. Heterogeneity in the Response of Different Subtypes of Drosophila melanogaster Midgut Cells to Viral Infections. Viruses 2021;13:2284. [PMID: 34835089 DOI: 10.3390/v13112284] [Reference Citation Analysis]
43 Ferguson M, Foley E. Microbial recognition regulates intestinal epithelial growth in homeostasis and disease. FEBS J 2021. [PMID: 33977656 DOI: 10.1111/febs.15910] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
44 Resnik-Docampo M, Cunningham KM, Ruvalcaba SM, Choi C, Sauer V, Jones DL. Neuroglian regulates Drosophila intestinal stem cell proliferation through enhanced signaling via the epidermal growth factor receptor. Stem Cell Reports 2021;16:1584-97. [PMID: 33961791 DOI: 10.1016/j.stemcr.2021.04.006] [Reference Citation Analysis]
45 Jang S, Chen J, Choi J, Lim SY, Song H, Choi H, Kwon HW, Choi MS, Kwon JY. Spatiotemporal organization of enteroendocrine peptide expression in Drosophila. J Neurogenet 2021;:1-12. [PMID: 34670462 DOI: 10.1080/01677063.2021.1989425] [Reference Citation Analysis]