BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yuen MH, Fong YH, Nim YS, Lau PH, Wong KB. Structural insights into how GTP-dependent conformational changes in a metallochaperone UreG facilitate urease maturation. Proc Natl Acad Sci U S A 2017;114:E10890-8. [PMID: 29203664 DOI: 10.1073/pnas.1712658114] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Waskito LA, Salama NR, Yamaoka Y. Pathogenesis of Helicobacter pylori infection. Helicobacter 2018;23:e12516. [DOI: 10.1111/hel.12516] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
2 Pasquini M, Grosjean N, Hixson KK, Nicora CD, Yee EF, Lipton M, Blaby IK, Haley JD, Blaby-Haas CE. Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Rep 2022;39:110834. [PMID: 35584675 DOI: 10.1016/j.celrep.2022.110834] [Reference Citation Analysis]
3 Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021;50:12037-69. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Li W, Zhang Y, Achal V. Mechanisms of cadmium retention on enzyme-induced carbonate precipitation (EICP) of Ca/Mg: Nucleation, chemisorption, and co-precipitation. Journal of Environmental Chemical Engineering 2022;10:107507. [DOI: 10.1016/j.jece.2022.107507] [Reference Citation Analysis]
5 Alfano M, Pérard J, Miras R, Catty P, Cavazza C. Biophysical and structural characterization of the putative nickel chaperone CooT from Carboxydothermus hydrogenoformans. J Biol Inorg Chem 2018;23:809-17. [PMID: 29882029 DOI: 10.1007/s00775-018-1576-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
6 Molé CN, Dave K, Perlstein DL. Methods to Unravel the Roles of ATPases in Fe-S Cluster Biosynthesis. Methods Mol Biol 2021;2353:155-71. [PMID: 34292549 DOI: 10.1007/978-1-0716-1605-5_9] [Reference Citation Analysis]
7 Nim YS, Wong K. The Maturation Pathway of Nickel Urease. Inorganics 2019;7:85. [DOI: 10.3390/inorganics7070085] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Masetti M, Bertazzo M, Recanatini M, Ciurli S, Musiani F. Probing the transport of Ni(II) ions through the internal tunnels of the Helicobacter pylori UreDFG multimeric protein complex. J Inorg Biochem 2021;223:111554. [PMID: 34325209 DOI: 10.1016/j.jinorgbio.2021.111554] [Reference Citation Analysis]
9 Lacasse MJ, Summers KL, Khorasani-Motlagh M, George GN, Zamble DB. Bimodal Nickel-Binding Site on Escherichia coli [NiFe]-Hydrogenase Metallochaperone HypA. Inorg Chem 2019;58:13604-18. [PMID: 31273981 DOI: 10.1021/acs.inorgchem.9b00897] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Young TR, Martini MA, Foster AW, Glasfeld A, Osman D, Morton RJ, Deery E, Warren MJ, Robinson NJ. Calculating metalation in cells reveals CobW acquires CoII for vitamin B12 biosynthesis while related proteins prefer ZnII. Nat Commun 2021;12:1195. [PMID: 33608553 DOI: 10.1038/s41467-021-21479-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B12: A paradigm for protein metalation. Biochim Biophys Acta Mol Cell Res 2021;1868:118896. [PMID: 33096143 DOI: 10.1016/j.bbamcr.2020.118896] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
12 Jordan MR, Wang J, Weiss A, Skaar EP, Capdevila DA, Giedroc DP. Mechanistic Insights into the Metal-Dependent Activation of ZnII-Dependent Metallochaperones. Inorg Chem 2019;58:13661-72. [PMID: 31247880 DOI: 10.1021/acs.inorgchem.9b01173] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
13 Maroney MJ, Ciurli S. Nickel as a virulence factor in the Class I bacterial carcinogen, Helicobacter pylori. Semin Cancer Biol 2021:S1044-579X(21)00110-3. [PMID: 33865991 DOI: 10.1016/j.semcancer.2021.04.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zambelli B, Mazzei L, Ciurli S. Intrinsic disorder in the nickel-dependent urease network. Dancing Protein Clouds: Intrinsically Disordered Proteins in Health and Disease, Part B. Elsevier; 2020. pp. 307-30. [DOI: 10.1016/bs.pmbts.2020.05.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021;13:mfab046. [PMID: 34302342 DOI: 10.1093/mtomcs/mfab046] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Hu HQ, Huang HT, Maroney MJ. The Helicobacter pylori HypA·UreE2 Complex Contains a Novel High-Affinity Ni(II)-Binding Site. Biochemistry 2018;57:2932-42. [PMID: 29708738 DOI: 10.1021/acs.biochem.8b00127] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
17 Alfano M, Cavazza C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci 2020;29:1071-89. [PMID: 32022353 DOI: 10.1002/pro.3836] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
18 Zhang X, He Y, Xiong Z, Li M, Li M, Zheng N, Zhao S, Wang J. Chelerythrine Chloride: A Potential Rumen Microbial Urease Inhibitor Screened by Targeting UreG. Int J Mol Sci 2021;22:8212. [PMID: 34360977 DOI: 10.3390/ijms22158212] [Reference Citation Analysis]
19 Capdevila DA, Edmonds KA, Campanello GC, Wu H, Gonzalez-Gutierrez G, Giedroc DP. Functional Role of Solvent Entropy and Conformational Entropy of Metal Binding in a Dynamically Driven Allosteric System. J Am Chem Soc 2018;140:9108-19. [PMID: 29953213 DOI: 10.1021/jacs.8b02129] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
20 Pierro A, Etienne E, Gerbaud G, Guigliarelli B, Ciurli S, Belle V, Zambelli B, Mileo E. Nickel and GTP Modulate Helicobacter pylori UreG Structural Flexibility. Biomolecules 2020;10:E1062. [PMID: 32708696 DOI: 10.3390/biom10071062] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Zhang X, Zhao S, He Y, Zheng N, Yan X, Wang J. Substitution of residues in UreG to investigate UreE interactions and nickel binding in a predominant urease gene cluster from the ruminal metagenome. Int J Biol Macromol 2020;161:1591-601. [PMID: 32755703 DOI: 10.1016/j.ijbiomac.2020.07.260] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Ren X, Guo R, Akami M, Niu C. Nitrogen Acquisition Strategies Mediated by Insect Symbionts: A Review of Their Mechanisms, Methodologies, and Case Studies. Insects 2022;13:84. [DOI: 10.3390/insects13010084] [Reference Citation Analysis]
23 Grossman JD, Gay KA, Camire EJ, Walden WE, Perlstein DL. Coupling Nucleotide Binding and Hydrolysis to Iron-Sulfur Cluster Acquisition and Transfer Revealed through Genetic Dissection of the Nbp35 ATPase Site. Biochemistry 2019;58:2017-27. [PMID: 30865432 DOI: 10.1021/acs.biochem.8b00737] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]