BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng X, Zhu W, Schurig-Briccio LA, Lindert S, Shoen C, Hitchings R, Li J, Wang Y, Baig N, Zhou T, Kim BK, Crick DC, Cynamon M, McCammon JA, Gennis RB, Oldfield E. Antiinfectives targeting enzymes and the proton motive force. Proc Natl Acad Sci U S A 2015;112:E7073-82. [PMID: 26644565 DOI: 10.1073/pnas.1521988112] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Mashabela GT, de Wet TJ, Warner DF, Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019;7. [DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
2 Tuvshintulga B, Vannier E, Tayebwa DS, Gantuya S, Sivakumar T, Guswanto A, Krause PJ, Yokoyama N, Igarashi I. Clofazimine, a Promising Drug for the Treatment of Babesia microti Infection in Severely Immunocompromised Hosts. J Infect Dis 2020;222:1027-36. [PMID: 32310272 DOI: 10.1093/infdis/jiaa195] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
3 Ellis MJ, Tsai CN, Johnson JW, French S, Elhenawy W, Porwollik S, Andrews-Polymenis H, McClelland M, Magolan J, Coombes BK, Brown ED. A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nat Commun 2019;10:197. [PMID: 30643129 DOI: 10.1038/s41467-018-08190-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
4 Antonenko YN, Denisov SS, Khailova LS, Nazarov PA, Rokitskaya T, Tashlitsky VN, Firsov AM, Korshunova GA, Kotova EA. Alkyl-substituted phenylamino derivatives of 7-nitrobenz-2-oxa-1,3-diazole as uncouplers of oxidative phosphorylation and antibacterial agents: involvement of membrane proteins in the uncoupling action. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017;1859:377-87. [DOI: 10.1016/j.bbamem.2016.12.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
5 Ammerman NC, Swanson RV, Tapley A, Moodley C, Ngcobo B, Adamson J, Dorasamy A, Moodley S, Mgaga Z, Bester LA, Singh SD, Almeida DV, Grosset JH. Clofazimine has delayed antimicrobial activity against Mycobacterium tuberculosis both in vitro and in vivo. J Antimicrob Chemother 2017;72:455-61. [DOI: 10.1093/jac/dkw417] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
6 Vermaas JV, Trebesch N, Mayne CG, Thangapandian S, Shekhar M, Mahinthichaichan P, Baylon JL, Jiang T, Wang Y, Muller MP, Shinn E, Zhao Z, Wen PC, Tajkhorshid E. Microscopic Characterization of Membrane Transporter Function by In Silico Modeling and Simulation. Methods Enzymol 2016;578:373-428. [PMID: 27497175 DOI: 10.1016/bs.mie.2016.05.042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
7 Nazarov PA, Kirsanov RS, Denisov SS, Khailova LS, Karakozova MV, Lyamzaev KG, Korshunova GA, Lukyanov KA, Kotova EA, Antonenko YN. Fluorescein Derivatives as Antibacterial Agents Acting via Membrane Depolarization. Biomolecules 2020;10:E309. [PMID: 32075319 DOI: 10.3390/biom10020309] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
8 Dupont C, Chen Y, Xu Z, Roquet-Banères F, Blaise M, Witt AK, Dubar F, Biot C, Guérardel Y, Maurer FP, Chng SS, Kremer L. A piperidinol-containing molecule is active against Mycobacterium tuberculosis by inhibiting the mycolic acid flippase activity of MmpL3. J Biol Chem 2019;294:17512-23. [PMID: 31562241 DOI: 10.1074/jbc.RA119.010135] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
9 Li W, Yazidi A, Pandya AN, Hegde P, Tong W, Calado Nogueira de Moura V, North EJ, Sygusch J, Jackson M. MmpL3 as a Target for the Treatment of Drug-Resistant Nontuberculous Mycobacterial Infections. Front Microbiol 2018;9:1547. [PMID: 30042757 DOI: 10.3389/fmicb.2018.01547] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
10 Sander P, Walther P, Moepps B, Hinz M, Mostafa H, Schaefer P, Pala A, Rainer Wirtz C, Georgieff M, Marion Schneider E. Mitophagy-Related Cell Death Mediated by Vacquinol-1 and TRPM7 Blockade in Glioblastoma IV. In: Omerhodžić I, Arnautović K, editors. Glioma - Contemporary Diagnostic and Therapeutic Approaches. IntechOpen; 2019. [DOI: 10.5772/intechopen.77076] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Belosludtsev KN, Penkov NV, Tenkov KS, Talanov EY, Belosludtseva NV, Agafonov AV, Stepanova AE, Starinets VS, Vashchenko OV, Gudkov SV, Dubinin MV. Interaction of the anti-tuberculous drug bedaquiline with artificial membranes and rat erythrocytes. Chemico-Biological Interactions 2019;299:8-14. [DOI: 10.1016/j.cbi.2018.11.017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
12 Gupta S, Fatima Z, Kumawat S. Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net. Biosystems 2021;209:104509. [PMID: 34461147 DOI: 10.1016/j.biosystems.2021.104509] [Reference Citation Analysis]
13 Naran K, Moosa A, Barry CE 3rd, Boshoff HI, Mizrahi V, Warner DF. Bioluminescent Reporters for Rapid Mechanism of Action Assessment in Tuberculosis Drug Discovery. Antimicrob Agents Chemother 2016;60:6748-57. [PMID: 27572410 DOI: 10.1128/AAC.01178-16] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
14 Iaubasarova IR, Khailova LS, Firsov AM, Grivennikova VG, Kirsanov RS, Korshunova GA, Kotova EA, Antonenko YN. The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler. PLoS One 2020;15:e0244499. [PMID: 33378414 DOI: 10.1371/journal.pone.0244499] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Hards K, Cook GM. Targeting bacterial energetics to produce new antimicrobials. Drug Resistance Updates 2018;36:1-12. [DOI: 10.1016/j.drup.2017.11.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
16 Copp JN, Pletzer D, Brown AS, Van der Heijden J, Miton CM, Edgar RJ, Rich MH, Little RF, Williams EM, Hancock REW, Tokuriki N, Ackerley DF. Mechanistic Understanding Enables the Rational Design of Salicylanilide Combination Therapies for Gram-Negative Infections. mBio 2020;11:e02068-20. [PMID: 32934086 DOI: 10.1128/mBio.02068-20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
17 Dupont C, Viljoen A, Dubar F, Blaise M, Bernut A, Pawlik A, Bouchier C, Brosch R, Guérardel Y, Lelièvre J, Ballell L, Herrmann J, Biot C, Kremer L. A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus: Inhibiting mycolic acid transport in M. abscessus. Molecular Microbiology 2016;101:515-29. [DOI: 10.1111/mmi.13406] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 10.7] [Reference Citation Analysis]
18 Chen C, Gardete S, Jansen RS, Shetty A, Dick T, Rhee KY, Dartois V. Verapamil Targets Membrane Energetics in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018;62:e02107-17. [PMID: 29463541 DOI: 10.1128/AAC.02107-17] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
19 Cahill C, Cox DJ, O'Connell F, Basdeo SA, Gogan KM, Ó'Maoldomhnaigh C, O'Sullivan J, Keane J, Phelan JJ. The Effect of Tuberculosis Antimicrobials on the Immunometabolic Profiles of Primary Human Macrophages Stimulated with Mycobacterium tuberculosis. Int J Mol Sci 2021;22:12189. [PMID: 34830070 DOI: 10.3390/ijms222212189] [Reference Citation Analysis]
20 Jeon AB, Ackart DF, Li W, Jackson M, Melander RJ, Melander C, Abramovitch RB, Chicco AJ, Basaraba RJ, Obregón-Henao A. 2-aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Sci Rep 2019;9:1513. [PMID: 30728417 DOI: 10.1038/s41598-018-38064-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
21 Mohammad H, Younis W, Chen L, Peters CE, Pogliano J, Pogliano K, Cooper B, Zhang J, Mayhoub A, Oldfield E, Cushman M, Seleem MN. Phenylthiazole Antibacterial Agents Targeting Cell Wall Synthesis Exhibit Potent Activity in Vitro and in Vivo against Vancomycin-Resistant Enterococci. J Med Chem 2017;60:2425-38. [PMID: 28248504 DOI: 10.1021/acs.jmedchem.6b01780] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 6.4] [Reference Citation Analysis]
22 Ammerman NC, Swanson RV, Bautista EM, Almeida DV, Saini V, Omansen TF, Guo H, Chang YS, Li SY, Tapley A, Tasneen R, Tyagi S, Betoudji F, Moodley C, Ngcobo B, Pillay L, Bester LA, Singh SD, Chaisson RE, Nuermberger E, Grosset JH. Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother 2018;62:e00636-18. [PMID: 29735562 DOI: 10.1128/AAC.00636-18] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
23 Nath S. Interpretation of the mechanism of action of antituberculosis drug bedaquiline based on a novel two-ion theory of energy coupling in ATP synthesis. Bioeng Transl Med 2019;4:164-70. [PMID: 30680327 DOI: 10.1002/btm2.10106] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
24 Kim SM, Escorbar I, Lee K, Fuchs BB, Mylonakis E, Kim W. Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening. J Microbiol 2020;58:431-44. [PMID: 32462486 DOI: 10.1007/s12275-020-0163-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
25 Mayne CG, Arcario MJ, Mahinthichaichan P, Baylon JL, Vermaas JV, Navidpour L, Wen PC, Thangapandian S, Tajkhorshid E. The cellular membrane as a mediator for small molecule interaction with membrane proteins. Biochim Biophys Acta 2016;1858:2290-304. [PMID: 27163493 DOI: 10.1016/j.bbamem.2016.04.016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
26 Wright CC, Hsu FF, Arnett E, Dunaj JL, Davidson PM, Pacheco SA, Harriff MJ, Lewinsohn DM, Schlesinger LS, Purdy GE. The Mycobacterium tuberculosis MmpL11 Cell Wall Lipid Transporter Is Important for Biofilm Formation, Intracellular Growth, and Nonreplicating Persistence. Infect Immun 2017;85:e00131-17. [PMID: 28507063 DOI: 10.1128/IAI.00131-17] [Cited by in Crossref: 38] [Cited by in F6Publishing: 17] [Article Influence: 7.6] [Reference Citation Analysis]
27 Malwal SR, Zimmerman MD, Alvarez N, Sarathy JP, Dartois V, Nacy CA, Oldfield E. Structure, In Vivo Detection, and Antibacterial Activity of Metabolites of SQ109, an Anti-Infective Drug Candidate. ACS Infect Dis 2021;7:2492-507. [PMID: 34279904 DOI: 10.1021/acsinfecdis.1c00259] [Reference Citation Analysis]
28 Tharmalingam N, Jayamani E, Rajamuthiah R, Castillo D, Fuchs BB, Kelso MJ, Mylonakis E. Activity of a novel protonophore against methicillin-resistant Staphylococcus aureus. Future Med Chem 2017;9:1401-11. [PMID: 28771026 DOI: 10.4155/fmc-2017-0047] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
29 Yang X, Goswami S, Gorityala BK, Domalaon R, Lyu Y, Kumar A, Zhanel GG, Schweizer F. A Tobramycin Vector Enhances Synergy and Efficacy of Efflux Pump Inhibitors against Multidrug-Resistant Gram-Negative Bacteria. J Med Chem 2017;60:3913-32. [DOI: 10.1021/acs.jmedchem.7b00156] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
30 Domalaon R, Idowu T, Zhanel GG, Schweizer F. Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018;31:e00077-17. [PMID: 29540434 DOI: 10.1128/CMR.00077-17] [Cited by in Crossref: 107] [Cited by in F6Publishing: 50] [Article Influence: 26.8] [Reference Citation Analysis]
31 Gonec T, Pospisilova S, Kauerova T, Kos J, Dohanosova J, Oravec M, Kollar P, Coffey A, Liptaj T, Cizek A, Jampilek J. N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity. Molecules 2016;21:E1068. [PMID: 27537867 DOI: 10.3390/molecules21081068] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
32 Wu SC, Han F, Song MR, Chen S, Li Q, Zhang Q, Zhu K, Shen JZ. Natural Flavones from Morus alba against Methicillin-Resistant Staphylococcus aureus via Targeting the Proton Motive Force and Membrane Permeability. J Agric Food Chem 2019;67:10222-34. [PMID: 31385700 DOI: 10.1021/acs.jafc.9b01795] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
33 Lee DG, Hwang YH, Park EJ, Kim JH, Ryoo SW. Clomiphene Citrate Shows Effective and Sustained Antimicrobial Activity against Mycobacterium abscessus. Int J Mol Sci 2021;22:11029. [PMID: 34681686 DOI: 10.3390/ijms222011029] [Reference Citation Analysis]
34 Song J, Malwal SR, Baig N, Schurig-Briccio LA, Gao Z, Vaidya GS, Yang K, Abutaleb NS, Seleem MN, Gennis RB, Pogorelov TV, Oldfield E, Feng X. Discovery of Prenyltransferase Inhibitors with In Vitro and In Vivo Antibacterial Activity. ACS Infect Dis 2020;6:2979-93. [PMID: 33085463 DOI: 10.1021/acsinfecdis.0c00472] [Reference Citation Analysis]
35 Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021;34:1280-318. [PMID: 32924537 DOI: 10.1089/ars.2020.8039] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
36 Kim SS, Alves MJ, Gygli P, Otero J, Lindert S. Identification of Novel Cyclin A2 Binding Site and Nanomolar Inhibitors of Cyclin A2-CDK2 Complex. Curr Comput Aided Drug Des 2021;17:57-68. [PMID: 31889491 DOI: 10.2174/1573409916666191231113055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Nazarov PA, Osterman IA, Tokarchuk AV, Karakozova MV, Korshunova GA, Lyamzaev KG, Skulachev MV, Kotova EA, Skulachev VP, Antonenko YN. Mitochondria-targeted antioxidants as highly effective antibiotics. Sci Rep 2017;7:1394. [PMID: 28469140 DOI: 10.1038/s41598-017-00802-8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
38 Buter J, Cheng TY, Ghanem M, Grootemaat AE, Raman S, Feng X, Plantijn AR, Ennis T, Wang J, Cotton RN, Layre E, Ramnarine AK, Mayfield JA, Young DC, Jezek Martinot A, Siddiqi N, Wakabayashi S, Botella H, Calderon R, Murray M, Ehrt S, Snider BB, Reed MB, Oldfield E, Tan S, Rubin EJ, Behr MA, van der Wel NN, Minnaard AJ, Moody DB. Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nat Chem Biol 2019;15:889-99. [PMID: 31427817 DOI: 10.1038/s41589-019-0336-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 8.7] [Reference Citation Analysis]
39 Schweizer F. Enhancing uptake of antibiotics into Gram-negative bacteria using nonribosome-targeting aminoglycoside-based adjuvants. Future Med Chem 2019;11:1519-22. [PMID: 31469333 DOI: 10.4155/fmc-2019-0131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Korycka-Machała M, Viljoen A, Pawełczyk J, Borówka P, Dziadek B, Gobis K, Brzostek A, Kawka M, Blaise M, Strapagiel D, Kremer L, Dziadek J. 1H-Benzo[d]Imidazole Derivatives Affect MmpL3 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019;63:e00441-19. [PMID: 31332069 DOI: 10.1128/AAC.00441-19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
41 Hards K, McMillan DGG, Schurig-Briccio LA, Gennis RB, Lill H, Bald D, Cook GM. Ionophoric effects of the antitubercular drug bedaquiline. Proc Natl Acad Sci U S A 2018;115:7326-31. [PMID: 29941569 DOI: 10.1073/pnas.1803723115] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 10.8] [Reference Citation Analysis]
42 Montoya MC, Krysan DJ. Repurposing Estrogen Receptor Antagonists for the Treatment of Infectious Disease. mBio 2018;9:e02272-18. [PMID: 30563895 DOI: 10.1128/mBio.02272-18] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
43 Terekhova NV, Khailova LS, Rokitskaya TI, Nazarov PA, Islamov DR, Usachev KS, Tatarinov DA, Mironov VF, Kotova EA, Antonenko YN. Trialkyl(vinyl)phosphonium Chlorophenol Derivatives as Potent Mitochondrial Uncouplers and Antibacterial Agents. ACS Omega 2021;6:20676-85. [PMID: 34396013 DOI: 10.1021/acsomega.1c02909] [Reference Citation Analysis]
44 Al-Janabi AAHS. Repurposing of Tamoxifen Against the Oral Bacteria. Turk J Pharm Sci 2021;18:68-74. [PMID: 33634670 DOI: 10.4274/tjps.galenos.2019.23500] [Reference Citation Analysis]
45 Cook GM, Hards K, Dunn E, Heikal A, Nakatani Y, Greening C, Crick DC, Fontes FL, Pethe K, Hasenoehrl E, Berney M. Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Microbiol Spectr 2017;5. [PMID: 28597820 DOI: 10.1128/microbiolspec.TBTB2-0014-2016] [Cited by in Crossref: 49] [Cited by in F6Publishing: 25] [Article Influence: 9.8] [Reference Citation Analysis]
46 Dik DA, Fisher JF, Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem Rev 2018;118:5952-84. [PMID: 29847102 DOI: 10.1021/acs.chemrev.8b00277] [Cited by in Crossref: 75] [Cited by in F6Publishing: 62] [Article Influence: 18.8] [Reference Citation Analysis]
47 Gorityala BK, Guchhait G, Goswami S, Fernando DM, Kumar A, Zhanel GG, Schweizer F. Hybrid Antibiotic Overcomes Resistance in P. aeruginosa by Enhancing Outer Membrane Penetration and Reducing Efflux. J Med Chem 2016;59:8441-55. [DOI: 10.1021/acs.jmedchem.6b00867] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
48 Cole ST. Inhibiting Mycobacterium tuberculosis within and without. Philos Trans R Soc Lond B Biol Sci 2016;371:20150506. [PMID: 27672155 DOI: 10.1098/rstb.2015.0506] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 7.4] [Reference Citation Analysis]
49 Krasnov VS, Kirsanov RS, Khailova LS, Firsov AM, Nazarov PA, Tashlitsky VN, Korshunova GA, Kotova EA, Antonenko YN. Alkyl esters of umbelliferone-4-acetic acid as protonophores in bilayer lipid membranes and ALDH2-dependent soft uncouplers in rat liver mitochondria. Bioelectrochemistry 2022;145:108081. [DOI: 10.1016/j.bioelechem.2022.108081] [Reference Citation Analysis]
50 Popova LB, Nosikova ES, Kotova EA, Tarasova EO, Nazarov PA, Khailova LS, Balezina OP, Antonenko YN. Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018;1860:1000-7. [DOI: 10.1016/j.bbamem.2018.01.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
51 Firsov AM, Popova LB, Khailova LS, Nazarov PA, Kotova EA, Antonenko YN. Protonophoric action of BAM15 on planar bilayers, liposomes, mitochondria, bacteria and neurons. Bioelectrochemistry 2021;137:107673. [PMID: 32971482 DOI: 10.1016/j.bioelechem.2020.107673] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Maiden MM, Waters CM. Triclosan depletes the membrane potential in Pseudomonas aeruginosa biofilms inhibiting aminoglycoside induced adaptive resistance. PLoS Pathog 2020;16:e1008529. [PMID: 33125434 DOI: 10.1371/journal.ppat.1008529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Viljoen A, Dubois V, Girard-misguich F, Blaise M, Herrmann J, Kremer L. The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments: MmpL structure and diversity in mycobacteria. Molecular Microbiology 2017;104:889-904. [DOI: 10.1111/mmi.13675] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 11.2] [Reference Citation Analysis]
54 Hards K, Cheung CY, Waller N, Adolph C, Keighley L, Tee ZS, Harold LK, Menorca A, Bujaroski RS, Buckley BJ, Tyndall JDA, McNeil MB, Rhee KY, Opel-Reading HK, Krause K, Preiss L, Langer JD, Meier T, Hasenoehrl EJ, Berney M, Kelso MJ, Cook GM. An amiloride derivative is active against the F1Fo-ATP synthase and cytochrome bd oxidase of Mycobacterium tuberculosis. Commun Biol 2022;5:166. [PMID: 35210534 DOI: 10.1038/s42003-022-03110-8] [Reference Citation Analysis]
55 García-García V, Oldfield E, Benaim G. Inhibition of Leishmania mexicana Growth by the Tuberculosis Drug SQ109. Antimicrob Agents Chemother 2016;60:6386-9. [PMID: 27458218 DOI: 10.1128/AAC.00945-16] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
56 Kotova EA, Antonenko YN. Fifty Years of Research on Protonophores: Mitochondrial Uncoupling As a Basis for Therapeutic Action. Acta Naturae 2022;14:4-13. [PMID: 35441048 DOI: 10.32607/actanaturae.11610] [Reference Citation Analysis]
57 Li W, Sanchez-Hidalgo A, Jones V, de Moura VC, North EJ, Jackson M. Synergistic Interactions of MmpL3 Inhibitors with Antitubercular Compounds In Vitro. Antimicrob Agents Chemother 2017;61:e02399-16. [PMID: 28115355 DOI: 10.1128/AAC.02399-16] [Cited by in Crossref: 38] [Cited by in F6Publishing: 22] [Article Influence: 7.6] [Reference Citation Analysis]
58 Yuan T, Sampson NS. Hit Generation in TB Drug Discovery: From Genome to Granuloma. Chem Rev 2018;118:1887-916. [PMID: 29384369 DOI: 10.1021/acs.chemrev.7b00602] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 12.0] [Reference Citation Analysis]
59 Boot M, Jim KK, Liu T, Commandeur S, Lu P, Verboom T, Lill H, Bitter W, Bald D. A fluorescence-based reporter for monitoring expression of mycobacterial cytochrome bd in response to antibacterials and during infection. Sci Rep 2017;7:10665. [PMID: 28878275 DOI: 10.1038/s41598-017-10944-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
60 Foss MH, Pou S, Davidson PM, Dunaj JL, Winter RW, Pou S, Licon MH, Doh JK, Li Y, Kelly JX, Dodean RA, Koop DR, Riscoe MK, Purdy GE. Diphenylether-Modified 1,2-Diamines with Improved Drug Properties for Development against Mycobacterium tuberculosis. ACS Infect Dis 2016;2:500-8. [PMID: 27626102 DOI: 10.1021/acsinfecdis.6b00052] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
61 Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev 2020;40:263-92. [PMID: 31254295 DOI: 10.1002/med.21602] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
62 Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017;5. [PMID: 28233509 DOI: 10.1128/microbiolspec.TBTB2-0031-2016] [Cited by in Crossref: 62] [Cited by in F6Publishing: 44] [Article Influence: 12.4] [Reference Citation Analysis]
63 Yang T, Moreira W, Nyantakyi SA, Chen H, Aziz DB, Go M, Dick T. Amphiphilic Indole Derivatives as Antimycobacterial Agents: Structure–Activity Relationships and Membrane Targeting Properties. J Med Chem 2017;60:2745-63. [DOI: 10.1021/acs.jmedchem.6b01530] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 7.4] [Reference Citation Analysis]
64 Zheng H, Williams JT, Coulson GB, Haiderer ER, Abramovitch RB. HC2091 Kills Mycobacterium tuberculosis by Targeting the MmpL3 Mycolic Acid Transporter. Antimicrob Agents Chemother 2018;62:e02459-17. [PMID: 29661875 DOI: 10.1128/AAC.02459-17] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
65 Cholo MC, Mothiba MT, Fourie B, Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother 2017;72:338-53. [PMID: 27798208 DOI: 10.1093/jac/dkw426] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 10.0] [Reference Citation Analysis]
66 Lupien A, Vocat A, Foo CS, Blattes E, Gillon JY, Makarov V, Cole ST. Optimized Background Regimen for Treatment of Active Tuberculosis with the Next-Generation Benzothiazinone Macozinone (PBTZ169). Antimicrob Agents Chemother 2018;62:e00840-18. [PMID: 30126954 DOI: 10.1128/AAC.00840-18] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 4.8] [Reference Citation Analysis]
67 Le D, Krasnopeeva E, Sinjab F, Pilizota T, Kim M. Active Efflux Leads to Heterogeneous Dissipation of Proton Motive Force by Protonophores in Bacteria. mBio 2021;12:e0067621. [PMID: 34253054 DOI: 10.1128/mBio.00676-21] [Reference Citation Analysis]
68 Antonenko YN, Denisov SS, Silachev DN, Khailova LS, Jankauskas SS, Rokitskaya TI, Danilina TI, Kotova EA, Korshunova GA, Plotnikov EY, Zorov DB. A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector. Biochim Biophys Acta 2016;1860:2463-73. [PMID: 27450891 DOI: 10.1016/j.bbagen.2016.07.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
69 Voskuil MI, Covey CR, Walter ND. Antibiotic Lethality and Membrane Bioenergetics. Adv Microb Physiol 2018;73:77-122. [PMID: 30262111 DOI: 10.1016/bs.ampbs.2018.06.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
70 Roy KK, Wani MA. Emerging opportunities of exploiting mycobacterial electron transport chain pathway for drug-resistant tuberculosis drug discovery. Expert Opin Drug Discov 2020;15:231-41. [PMID: 31774006 DOI: 10.1080/17460441.2020.1696771] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
71 Heikal A, Hards K, Cheung C, Menorca A, Timmer MSM, Stocker BL, Cook GM. Activation of type II NADH dehydrogenase by quinolinequinones mediates antitubercular cell death. J Antimicrob Chemother 2016;71:2840-7. [DOI: 10.1093/jac/dkw244] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
72 Machado D, Girardini M, Viveiros M, Pieroni M. Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis. Front Microbiol 2018;9:1367. [PMID: 30018597 DOI: 10.3389/fmicb.2018.01367] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 8.8] [Reference Citation Analysis]
73 Belosludtsev KN, Belosludtseva NV, Talanov EY, Tenkov KS, Starinets VS, Agafonov AV, Pavlik LL, Dubinin MV. Effect of bedaquiline on the functions of rat liver mitochondria. Biochimica et Biophysica Acta (BBA) - Biomembranes 2019;1861:288-97. [DOI: 10.1016/j.bbamem.2018.06.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
74 Lima ML, Abengózar MA, Nácher-Vázquez M, Martínez-Alcázar MP, Barbas C, Tempone AG, López-Gonzálvez Á, Rivas L. Molecular Basis of the Leishmanicidal Activity of the Antidepressant Sertraline as a Drug Repurposing Candidate. Antimicrob Agents Chemother 2018;62:e01928-18. [PMID: 30297370 DOI: 10.1128/AAC.01928-18] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
75 Montoya MC, Beattie S, Alden KM, Krysan DJ. Derivatives of the Antimalarial Drug Mefloquine Are Broad-Spectrum Antifungal Molecules with Activity against Drug-Resistant Clinical Isolates. Antimicrob Agents Chemother 2020;64:e02331-19. [PMID: 31907188 DOI: 10.1128/AAC.02331-19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Bald D, Villellas C, Lu P, Koul A. Targeting Energy Metabolism in Mycobacterium tuberculosis, a New Paradigm in Antimycobacterial Drug Discovery. mBio 2017;8:e00272-17. [PMID: 28400527 DOI: 10.1128/mBio.00272-17] [Cited by in Crossref: 90] [Cited by in F6Publishing: 47] [Article Influence: 18.0] [Reference Citation Analysis]
77 Fridianto KT, Li M, Hards K, Negatu DA, Cook GM, Dick T, Lam Y, Go ML. Functionalized Dioxonaphthoimidazoliums: A Redox Cycling Chemotype with Potent Bactericidal Activities against Mycobacterium tuberculosis. J Med Chem 2021;64:15991-6007. [PMID: 34706190 DOI: 10.1021/acs.jmedchem.1c01383] [Reference Citation Analysis]
78 Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020;10:611683. [PMID: 33505923 DOI: 10.3389/fcimb.2020.611683] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Dombach JL, Quintana JLJ, Nagy TA, Wan C, Crooks AL, Yu H, Su CC, Yu EW, Shen J, Detweiler CS. A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. PLoS Pathog 2020;16:e1009119. [PMID: 33290418 DOI: 10.1371/journal.ppat.1009119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 McNeil MB, Ryburn HWK, Harold LK, Tirados JF, Cook GM. Transcriptional Inhibition of the F1F0-Type ATP Synthase Has Bactericidal Consequences on the Viability of Mycobacteria. Antimicrob Agents Chemother 2020;64:e00492-20. [PMID: 32423951 DOI: 10.1128/AAC.00492-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Kumari P, Pillai VVS, Benedetto A. Mechanisms of action of ionic liquids on living cells: the state of the art. Biophys Rev 2020;12:1187-215. [PMID: 32936423 DOI: 10.1007/s12551-020-00754-w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
82 Sarathy JP, Gruber G, Dick T. Re-Understanding the Mechanisms of Action of the Anti-Mycobacterial Drug Bedaquiline. Antibiotics (Basel) 2019;8:E261. [PMID: 31835707 DOI: 10.3390/antibiotics8040261] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
83 Ouyang Q, Zhang K, Lin D, Feng CG, Cai Y, Chen X. Bazedoxifene Suppresses Intracellular Mycobacterium tuberculosis Growth by Enhancing Autophagy. mSphere 2020;5:e00124-20. [PMID: 32269154 DOI: 10.1128/mSphere.00124-20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
84 Czarny TL, Brown ED. A Small-Molecule Screening Platform for the Discovery of Inhibitors of Undecaprenyl Diphosphate Synthase. ACS Infect Dis 2016;2:489-99. [DOI: 10.1021/acsinfecdis.6b00044] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
85 Wang M, Chan EWC, Xu C, Chen K, Yang C, Chen S. Econazole as adjuvant to conventional antibiotics is able to eradicate starvation-induced tolerant bacteria by causing proton motive force dissipation. J Antimicrob Chemother 2021:dkab384. [PMID: 34747463 DOI: 10.1093/jac/dkab384] [Reference Citation Analysis]
86 Mascolo L, Bald D. Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. Prog Biophys Mol Biol 2020;152:55-63. [PMID: 31738981 DOI: 10.1016/j.pbiomolbio.2019.11.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
87 Shetty A, Dick T. Mycobacterial Cell Wall Synthesis Inhibitors Cause Lethal ATP Burst. Front Microbiol 2018;9:1898. [PMID: 30158918 DOI: 10.3389/fmicb.2018.01898] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
88 Luo M, Zhou W, Patel H, Srivastava AP, Symersky J, Bonar MM, Faraldo-Gómez JD, Liao M, Mueller DM. Bedaquiline inhibits the yeast and human mitochondrial ATP synthases. Commun Biol 2020;3:452. [PMID: 32814813 DOI: 10.1038/s42003-020-01173-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
89 Lupoli TJ, Vaubourgeix J, Burns-Huang K, Gold B. Targeting the Proteostasis Network for Mycobacterial Drug Discovery. ACS Infect Dis 2018;4:478-98. [PMID: 29465983 DOI: 10.1021/acsinfecdis.7b00231] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
90 Li W, Stevens CM, Pandya AN, Darzynkiewicz Z, Bhattarai P, Tong W, Gonzalez-Juarrero M, North EJ, Zgurskaya HI, Jackson M. Direct Inhibition of MmpL3 by Novel Antitubercular Compounds. ACS Infect Dis 2019;5:1001-12. [PMID: 30882198 DOI: 10.1021/acsinfecdis.9b00048] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 12.3] [Reference Citation Analysis]
91 Antonenko YN, Khailova LS, Rokitskaya TI, Nosikova ES, Nazarov PA, Luzina OA, Salakhutdinov NF, Kotova EA. Mechanism of action of an old antibiotic revisited: Role of calcium ions in protonophoric activity of usnic acid. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2019;1860:310-6. [DOI: 10.1016/j.bbabio.2019.01.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
92 Nath S. Molecular mechanistic insights into uncoupling of ion transport from ATP synthesis. Biophys Chem 2018;242:15-21. [PMID: 30195214 DOI: 10.1016/j.bpc.2018.08.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
93 Savarino E, Bertani L, Ceccarelli L, Bodini G, Zingone F, Buda A, Facchin S, Lorenzon G, Marchi S, Marabotto E, De Bortoli N, Savarino V, Costa F, Blandizzi C. Antimicrobial treatment with the fixed-dose antibiotic combination RHB-104 for Mycobacterium avium subspecies paratuberculosis in Crohn's disease: pharmacological and clinical implications. Expert Opin Biol Ther 2019;19:79-88. [PMID: 30574820 DOI: 10.1080/14712598.2019.1561852] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]