BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Timko BP, Arruebo M, Shankarappa SA, McAlvin JB, Okonkwo OS, Mizrahi B, Stefanescu CF, Gomez L, Zhu J, Zhu A, Santamaria J, Langer R, Kohane DS. Near-infrared-actuated devices for remotely controlled drug delivery. Proc Natl Acad Sci U S A 2014;111:1349-54. [PMID: 24474759 DOI: 10.1073/pnas.1322651111] [Cited by in Crossref: 142] [Cited by in F6Publishing: 139] [Article Influence: 17.8] [Reference Citation Analysis]
Number Citing Articles
1 Coles L, Oluwasanya PW, Karam N, Proctor CM. Fluidic enabled bioelectronic implants: opportunities and challenges. J Mater Chem B 2022. [PMID: 35959561 DOI: 10.1039/d2tb00942k] [Reference Citation Analysis]
2 Seung Lee J, Kim J, Ye YS, Kim TI. Materials and device design for advanced phototherapy systems. Adv Drug Deliv Rev 2022;186:114339. [PMID: 35568104 DOI: 10.1016/j.addr.2022.114339] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Huang D, Gao S, Luo Y, Zhou X, Lu Z, Zou L, Hu K, Zhao Z, Zhang Y. Glucose-sensitive membrane with phenylboronic acid-based contraction-type microgels as chemical valves. Journal of Membrane Science 2022;650:120406. [DOI: 10.1016/j.memsci.2022.120406] [Reference Citation Analysis]
4 Kim CR, Cho YC, Lee SH, Han JH, Kim MJ, Ji HB, Kim S, Min CH, Shin BH, Lee C, Cho YM, Choy YB. Implantable device actuated by manual button clicks for noninvasive self‐drug administration. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10320] [Reference Citation Analysis]
5 Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnology 2022;20:152. [PMID: 35331246 DOI: 10.1186/s12951-022-01364-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
6 Valencia FJ, Ramírez M, Varas A, Rogan J. Thermal Sensitivity on Eccentric Gold Hollow Nanoparticles: A Perspective from Atomistic Simulations. J Chem Inf Model 2021;61:5499-507. [PMID: 34726404 DOI: 10.1021/acs.jcim.1c00849] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Martín Giménez VM, Arya G, Zucchi IA, Galante MJ, Manucha W. Photo-responsive polymeric nanocarriers for target-specific and controlled drug delivery. Soft Matter 2021;17:8577-84. [PMID: 34580698 DOI: 10.1039/d1sm00999k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang Y, Chen H, Jiang J, Zhai J. "Ion Pool" Structural Ion Storage Device: A New Strategy to Collect Ions by Nanoconfinement Effects. Small 2021;17:e2102880. [PMID: 34405945 DOI: 10.1002/smll.202102880] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Wang Y, Chen H, Zhai J. Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation. ACS Appl Mater Interfaces 2021;13:41159-68. [PMID: 34403239 DOI: 10.1021/acsami.1c07972] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
10 Mirvakili SM, Langer R. Wireless on-demand drug delivery. Nat Electron 2021;4:464-77. [DOI: 10.1038/s41928-021-00614-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
11 Sharma S, Masud MK, Kaneti YV, Rewatkar P, Koradia A, Hossain MSA, Yamauchi Y, Popat A, Salomon C. Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications. Small 2021;:e2102220. [PMID: 34216426 DOI: 10.1002/smll.202102220] [Cited by in Crossref: 2] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
12 Li X, Zhao Y, Zhao C. Applications of capillary action in drug delivery. iScience 2021;24:102810. [PMID: 34296074 DOI: 10.1016/j.isci.2021.102810] [Reference Citation Analysis]
13 Cheng L, Zhang X, Tang J, Lv Q, Liu J. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials 2021;275:120964. [PMID: 34147721 DOI: 10.1016/j.biomaterials.2021.120964] [Cited by in Crossref: 2] [Cited by in F6Publishing: 37] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang X, Guo W, Li L, Yu F, Li J, Liu L, Fang B, Xia L. Photothermally triggered biomimetic drug delivery of Teriparatide via reduced graphene oxide loaded chitosan hydrogel for osteoporotic bone regeneration. Chemical Engineering Journal 2021;413:127413. [DOI: 10.1016/j.cej.2020.127413] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
15 Li C, Wan L, Luo J, Jiang M, Wang K. Advances in Subcutaneous Delivery Systems of Biomacromolecular Agents for Diabetes Treatment. Int J Nanomedicine 2021;16:1261-80. [PMID: 33628020 DOI: 10.2147/IJN.S283416] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Egorov E, Pieters C, Korach-Rechtman H, Shklover J, Schroeder A. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv Transl Res 2021;11:345-52. [PMID: 33585972 DOI: 10.1007/s13346-021-00929-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
17 Di Trani N, Silvestri A, Sizovs A, Wang Y, Erm DR, Demarchi D, Liu X, Grattoni A. Electrostatically gated nanofluidic membrane for ultra-low power controlled drug delivery. Lab Chip 2020;20:1562-76. [PMID: 32249279 DOI: 10.1039/d0lc00121j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
18 Zhang W, Kohane DS. Keeping Nanomedicine on Target. Nano Lett 2021;21:3-5. [PMID: 33337166 DOI: 10.1021/acs.nanolett.0c04638] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Fuchs S, Shariati K, Ma M. Stimuli-Responsive Insulin Delivery Devices. Pharm Res 2020;37. [DOI: 10.1007/s11095-020-02918-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
20 Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Rahman NA, Liou N. Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. International Journal of Biological Macromolecules 2020;158:670-88. [DOI: 10.1016/j.ijbiomac.2020.05.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 6.5] [Reference Citation Analysis]
21 Li X, Yu C, Meng X, Hou Y, Cui Y, Zhu T, Li Y, Teng L, Sun F, Li Y. Study of double-targeting nanoparticles loaded with MCL-1 siRNA and dexamethasone for adjuvant-induced arthritis therapy. European Journal of Pharmaceutics and Biopharmaceutics 2020;154:136-43. [DOI: 10.1016/j.ejpb.2020.07.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
22 Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020;161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
23 Di Trani N, Silvestri A, Wang Y, Demarchi D, Liu X, Grattoni A. Silicon Nanofluidic Membrane for Electrostatic Control of Drugs and Analytes Elution. Pharmaceutics 2020;12:E679. [PMID: 32707665 DOI: 10.3390/pharmaceutics12070679] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
24 Chen W, Goldys EM, Deng W. Light-induced liposomes for cancer therapeutics. Progress in Lipid Research 2020;79:101052. [DOI: 10.1016/j.plipres.2020.101052] [Cited by in Crossref: 12] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
25 Shademani A, Chiao M. Analytical and Experimental Study of Magnetomechanical Properties of Magnetic Porous PDMS Sponge Under Non-Uniform Magnetic Fields. Journal of Applied Mechanics 2020;87:081008. [DOI: 10.1115/1.4047178] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Wang Y, Li Z, Ouyang J, Karniadakis GE. Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics. Soft Matter 2020;16:4756-66. [PMID: 32373893 DOI: 10.1039/d0sm00207k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
27 Xie Y, Hillmyer MA. Nanostructured Polymer Monoliths for Biomedical Delivery Applications. ACS Appl Bio Mater 2020;3:3236-47. [PMID: 35025366 DOI: 10.1021/acsabm.0c00228] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
28 Wilson LM, Castle JR. Recent Advances in Insulin Therapy. Diabetes Technol Ther 2020;22:929-36. [PMID: 32310681 DOI: 10.1089/dia.2020.0065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
29 Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020;10:4557-88. [PMID: 32292515 DOI: 10.7150/thno.38069] [Cited by in Crossref: 154] [Cited by in F6Publishing: 153] [Article Influence: 77.0] [Reference Citation Analysis]
30 Pinto MN, Mascharak PK. Light-assisted and remote delivery of carbon monoxide to malignant cells and tissues: Photochemotherapy in the spotlight. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2020;42:100341. [DOI: 10.1016/j.jphotochemrev.2020.100341] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
31 de Solorzano IO, Prieto M, Mendoza G, Sebastian V, Arruebo M. Triggered drug release from hybrid thermoresponsive nanoparticles using near infrared light. Nanomedicine 2020;15:219-34. [DOI: 10.2217/nnm-2019-0270] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
32 Pei F, Tian B. Nanoelectronics for Minimally Invasive Cellular Recordings. Adv Funct Mater 2020;30:1906210. [DOI: 10.1002/adfm.201906210] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
33 Sarode BR, Kover K, Friedman SH. Visible-Light-Activated High-Density Materials for Controlled in Vivo Insulin Release. Mol Pharm 2019;16:4677-87. [PMID: 31647241 DOI: 10.1021/acs.molpharmaceut.9b00806] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
34 Xiong Q, Lim Y, Li D, Pu K, Liang L, Duan H. Photoactive Nanocarriers for Controlled Delivery. Adv Funct Mater 2019;30:1903896. [DOI: 10.1002/adfm.201903896] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
35 Zhang S, Wang C, Chang H, Zhang Q, Cheng Y. Off-on switching of enzyme activity by near-infrared light-induced photothermal phase transition of nanohybrids. Sci Adv 2019;5:eaaw4252. [PMID: 31457084 DOI: 10.1126/sciadv.aaw4252] [Cited by in Crossref: 22] [Cited by in F6Publishing: 37] [Article Influence: 7.3] [Reference Citation Analysis]
36 Wang J, Yu J, Zhang Y, Zhang X, Kahkoska AR, Chen G, Wang Z, Sun W, Cai L, Chen Z, Qian C, Shen Q, Khademhosseini A, Buse JB, Gu Z. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci Adv 2019;5:eaaw4357. [PMID: 31309150 DOI: 10.1126/sciadv.aaw4357] [Cited by in Crossref: 48] [Cited by in F6Publishing: 62] [Article Influence: 16.0] [Reference Citation Analysis]
37 Zhang Y, Mickle AD, Gutruf P, McIlvried LA, Guo H, Wu Y, Golden JP, Xue Y, Grajales-Reyes JG, Wang X, Krishnan S, Xie Y, Peng D, Su CJ, Zhang F, Reeder JT, Vogt SK, Huang Y, Rogers JA, Gereau RW 4th. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci Adv 2019;5:eaaw5296. [PMID: 31281895 DOI: 10.1126/sciadv.aaw5296] [Cited by in Crossref: 54] [Cited by in F6Publishing: 68] [Article Influence: 18.0] [Reference Citation Analysis]
38 Zhang J, Jiang X, Wen X, Xu Q, Zeng H, Zhao Y, Liu M, Wang Z, Hu X, Wang Y. Bio-responsive smart polymers and biomedical applications. J Phys Mater 2019;2:032004. [DOI: 10.1088/2515-7639/ab1af5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
39 Said SS, Campbell S, Hoare T. Externally Addressable Smart Drug Delivery Vehicles: Current Technologies and Future Directions. Chem Mater 2019;31:4971-89. [DOI: 10.1021/acs.chemmater.9b01798] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
40 Huang PJ, Garcia JV, Fenwick A, Wu G, Ford PC. Nitric Oxide Uncaging from a Hydrophobic Chromium(III) PhotoNORM: Visible and Near-Infrared Photochemistry in Biocompatible Polymer Disks. ACS Omega 2019;4:9181-7. [PMID: 31460006 DOI: 10.1021/acsomega.9b00592] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
41 Lee SH, Piao H, Cho YC, Kim SN, Choi G, Kim CR, Ji HB, Park CG, Lee C, Shin CI, Koh WG, Choy YB, Choy JH. Implantable multireservoir device with stimulus-responsive membrane for on-demand and pulsatile delivery of growth hormone. Proc Natl Acad Sci U S A 2019;116:11664-72. [PMID: 31123147 DOI: 10.1073/pnas.1906931116] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
42 Fu L, Zhai J. Biomimetic stimuli‐responsive nanochannels and their applications. ELECTROPHORESIS 2019;40:2058-74. [DOI: 10.1002/elps.201800536] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
43 Kalyan I, Pal T, Pal A. Time and temperature dependent formation of hollow gold nanoparticles via galvanic replacement reaction of As(0) and its catalytic application. MRS Communications 2019;9:270-9. [DOI: 10.1557/mrc.2018.214] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 Danyuo Y, Ani CJ, Salifu AA, Obayemi JD, Dozie-Nwachukwu S, Obanawu VO, Akpan UM, Odusanya OS, Abade-Abugre M, McBagonluri F, Soboyejo WO. Anomalous Release Kinetics of Prodigiosin from Poly-N-Isopropyl-Acrylamid based Hydrogels for The Treatment of Triple Negative Breast Cancer. Sci Rep 2019;9:3862. [PMID: 30846795 DOI: 10.1038/s41598-019-39578-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]
45 Sancho-Albero M, Navascués N, Mendoza G, Sebastián V, Arruebo M, Martín-Duque P, Santamaría J. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobiotechnology 2019;17:16. [PMID: 30683120 DOI: 10.1186/s12951-018-0437-z] [Cited by in Crossref: 66] [Cited by in F6Publishing: 94] [Article Influence: 22.0] [Reference Citation Analysis]
46 Lin YJ, Mi FL, Lin PY, Miao YB, Huang T, Chen KH, Chen CT, Chang Y, Sung HW. Strategies for improving diabetic therapy via alternative administration routes that involve stimuli-responsive insulin-delivering systems. Adv Drug Deliv Rev 2019;139:71-82. [PMID: 30529306 DOI: 10.1016/j.addr.2018.12.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
47 Di Trani N, Silvestri A, Bruno G, Geninatti T, Chua CYX, Gilbert A, Rizzo G, Filgueira CS, Demarchi D, Grattoni A. Remotely controlled nanofluidic implantable platform for tunable drug delivery. Lab Chip 2019;19:2192-204. [DOI: 10.1039/c9lc00394k] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
48 Prasad R, Chauhan DS, Yadav AS, Devrukhkar J, Singh B, Gorain M, Temgire M, Bellare J, Kundu GC, Srivastava R. A biodegradable fluorescent nanohybrid for photo-driven tumor diagnosis and tumor growth inhibition. Nanoscale 2018;10:19082-91. [PMID: 30288516 DOI: 10.1039/c8nr05164j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
49 Ford PC. Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide. Coordination Chemistry Reviews 2018;376:548-64. [DOI: 10.1016/j.ccr.2018.07.018] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 10.8] [Reference Citation Analysis]
50 Dang M, Saunders L, Niu X, Fan Y, Ma PX. Biomimetic delivery of signals for bone tissue engineering. Bone Res 2018;6:25. [PMID: 30181921 DOI: 10.1038/s41413-018-0025-8] [Cited by in Crossref: 94] [Cited by in F6Publishing: 111] [Article Influence: 23.5] [Reference Citation Analysis]
51 Xu Y, Huang Y, Zhang X, Lu W, Yu J, Liu S. Carrier-free Janus nano-prodrug based on camptothecin and gemcitabine: Reduction-triggered drug release and synergistic in vitro antiproliferative effect in multiple cancer cells. Int J Pharm 2018;550:45-56. [PMID: 30138703 DOI: 10.1016/j.ijpharm.2018.08.041] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
52 Zhao Z, Rinaldi C. Magnetization Dynamics and Energy Dissipation of Interacting Magnetic Nanoparticles in Alternating Magnetic Fields with and without a Static Bias Field. J Phys Chem C 2018;122:21018-30. [DOI: 10.1021/acs.jpcc.8b04071] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
53 Alejo T, Andreu V, Mendoza G, Sebastian V, Arruebo M. Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating. Journal of Colloid and Interface Science 2018;523:234-44. [DOI: 10.1016/j.jcis.2018.03.107] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
54 Kim K, Jo MC, Jeong S, Palanikumar L, Rotello VM, Ryu JH, Park MH. Externally controlled drug release using a gold nanorod contained composite membrane. Nanoscale 2016;8:11949-55. [PMID: 27240476 DOI: 10.1039/c6nr00362a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
55 Schweizerhof S, Demco DE, Mourran A, Fechete R, Möller M. Diffusion of Gold Nanorods Functionalized with Thermoresponsive Polymer Brushes. Langmuir 2018;34:8031-41. [PMID: 29897767 DOI: 10.1021/acs.langmuir.8b01289] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
56 Sim JY, Haney MP, Park SI, McCall JG, Jeong JW. Microfluidic neural probes: in vivo tools for advancing neuroscience. Lab Chip 2017;17:1406-35. [PMID: 28349140 DOI: 10.1039/c7lc00103g] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 11.8] [Reference Citation Analysis]
57 Zhou Y, Ye H, Chen Y, Zhu R, Yin L. Photoresponsive Drug/Gene Delivery Systems. Biomacromolecules 2018;19:1840-57. [PMID: 29701952 DOI: 10.1021/acs.biomac.8b00422] [Cited by in Crossref: 47] [Cited by in F6Publishing: 57] [Article Influence: 11.8] [Reference Citation Analysis]
58 Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in Biomaterials for Drug Delivery. Adv Mater 2018;:e1705328. [PMID: 29736981 DOI: 10.1002/adma.201705328] [Cited by in Crossref: 332] [Cited by in F6Publishing: 306] [Article Influence: 83.0] [Reference Citation Analysis]
59 Linsley CS, Wu BM. Recent advances in light-responsive on-demand drug-delivery systems. Ther Deliv 2017;8:89-107. [PMID: 28088880 DOI: 10.4155/tde-2016-0060] [Cited by in Crossref: 94] [Cited by in F6Publishing: 109] [Article Influence: 23.5] [Reference Citation Analysis]
60 Yu Y, Miyako E. Alternating-Magnetic-Field-Mediated Wireless Manipulations of a Liquid Metal for Therapeutic Bioengineering. iScience 2018;3:134-48. [PMID: 30428316 DOI: 10.1016/j.isci.2018.04.012] [Cited by in Crossref: 31] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
61 Schweizerhof S, Demco DE, Mourran A, Fechete R, Möller M. Polymers Diffusivity Encoded by Stimuli‐Induced Phase Transition: Theory and Application to Poly( N ‐Isopropylacrylamide) with Hydrophilic and Hydrophobic End Groups. Macromol Chem Phys 2018;219:1700587. [DOI: 10.1002/macp.201700587] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
62 Guo L, Wang S, He Y, Zheng R, Chen L, Sun Y, Zhang Z, Shi W, Ge D. A remotely triggered drug release system with dot array-like configuration for controlled release of multiple drugs. J Mater Sci 2018;53:9382-92. [DOI: 10.1007/s10853-018-2283-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
63 Bo G, Ren L, Xu X, Du Y, Dou S. Recent progress on liquid metals and their applications. Advances in Physics: X 2018;3:1446359. [DOI: 10.1080/23746149.2018.1446359] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 8.5] [Reference Citation Analysis]
64 Malki M, Fleischer S, Shapira A, Dvir T. Gold Nanorod-Based Engineered Cardiac Patch for Suture-Free Engraftment by Near IR. Nano Lett 2018;18:4069-73. [PMID: 29406721 DOI: 10.1021/acs.nanolett.7b04924] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
65 Shagan A, Croitoru-sadger T, Corem-salkmon E, Mizrahi B. Near-Infrared Light Induced Phase Transition of Biodegradable Composites for On-Demand Healing and Drug Release. ACS Appl Mater Interfaces 2018;10:4131-9. [DOI: 10.1021/acsami.7b17481] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
66 Alejo T, Prieto M, García-juan H, Andreu V, Mendoza G, Sebastián V, Arruebo M. A facile method for the controlled polymerization of biocompatible and thermoresponsive oligo(ethylene glycol) methyl ether methacrylate copolymers. Polym J 2018;50:203-11. [DOI: 10.1038/s41428-017-0004-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
67 Mendoza G, Ortiz de Solorzano I, Pintre I, Garcia-salinas S, Sebastian V, Andreu V, Gimeno M, Arruebo M. Near infrared dye-labelled polymeric micro- and nanomaterials: in vivo imaging and evaluation of their local persistence. Nanoscale 2018;10:2970-82. [DOI: 10.1039/c7nr07345c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
68 Xiao K, Wu K, Chen L, Kong X, Zhang Y, Wen L, Jiang L. Biomimetic Peptide-Gated Nanoporous Membrane for On-Demand Molecule Transport. Angew Chem Int Ed 2018;57:151-5. [DOI: 10.1002/anie.201708695] [Cited by in Crossref: 22] [Cited by in F6Publishing: 29] [Article Influence: 4.4] [Reference Citation Analysis]
69 Xiao K, Wu K, Chen L, Kong X, Zhang Y, Wen L, Jiang L. Biomimetic Peptide-Gated Nanoporous Membrane for On-Demand Molecule Transport. Angew Chem 2018;130:157-61. [DOI: 10.1002/ange.201708695] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
70 Ikbal M, Balogh D, Mervinetsky E, Sfez R, Yitzchaik S. Light-Induced Aggregation of Gold Nanoparticles and Photoswitching of Silicon Surface Potential. J Phys Chem C 2017;121:27176-81. [DOI: 10.1021/acs.jpcc.7b09266] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
71 Rwei AY, Wang BY, Ji T, Zhan C, Kohane DS. Enhanced Triggering of Local Anesthetic Particles by Photosensitization and Photothermal Effect Using a Common Wavelength. Nano Lett 2017;17:7138-45. [PMID: 29058443 DOI: 10.1021/acs.nanolett.7b04176] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
72 Nowacki M, Peterson M, Kloskowski T, McCabe E, Guiral DC, Polom K, Pietkun K, Zegarska B, Pokrywczynska M, Drewa T, Roviello F, Medina EA, Habib SL, Zegarski W. Nanoparticle as a novel tool in hyperthermic intraperitoneal and pressurized intraperitoneal aerosol chemotheprapy to treat patients with peritoneal carcinomatosis. Oncotarget 2017;8:78208-24. [PMID: 29100461 DOI: 10.18632/oncotarget.20596] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
73 Schweizerhof S, Demco DE, Mourran A, Keul H, Fechete R, Möller M. Thermodynamic Parameters of Temperature-Induced Phase Transition for Brushes onto Nanoparticles: Hydrophilic versus Hydrophobic End-Groups Functionalization. Macromol Rapid Commun 2017;38. [PMID: 28833862 DOI: 10.1002/marc.201700362] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
74 Zheng Z, Hu J, Wang H, Huang J, Yu Y, Zhang Q, Cheng Y. Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light. ACS Appl Mater Interfaces 2017;9:24511-7. [PMID: 28677394 DOI: 10.1021/acsami.7b07204] [Cited by in Crossref: 38] [Cited by in F6Publishing: 45] [Article Influence: 7.6] [Reference Citation Analysis]
75 Rahoui N, Jiang B, Taloub N, Huang YD. Spatio-temporal control strategy of drug delivery systems based nano structures. Journal of Controlled Release 2017;255:176-201. [DOI: 10.1016/j.jconrel.2017.04.003] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]
76 Wang Y, Kohane DS. External triggering and triggered targeting strategies for drug delivery. Nat Rev Mater 2017;2. [DOI: 10.1038/natrevmats.2017.20] [Cited by in Crossref: 185] [Cited by in F6Publishing: 151] [Article Influence: 37.0] [Reference Citation Analysis]
77 Lu Y, Lin Y, Chen Z, Hu Q, Liu Y, Yu S, Gao W, Dickey MD, Gu Z. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer. Nano Lett 2017;17:2138-45. [PMID: 28325042 DOI: 10.1021/acs.nanolett.6b04346] [Cited by in Crossref: 89] [Cited by in F6Publishing: 112] [Article Influence: 17.8] [Reference Citation Analysis]
78 Li Z, Pierri AE, Huang P, Wu G, Iretskii AV, Ford PC. Dinuclear PhotoCORMs: Dioxygen-Assisted Carbon Monoxide Uncaging from Long-Wavelength-Absorbing Metal–Metal-Bonded Carbonyl Complexes. Inorg Chem 2017;56:6094-104. [DOI: 10.1021/acs.inorgchem.6b03138] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
79 Sagar V, Nair M. Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders. Expert Opin Drug Deliv 2018;15:137-52. [PMID: 28276967 DOI: 10.1080/17425247.2017.1297794] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
80 Hu J, Quan Y, Lai Y, Zheng Z, Hu Z, Wang X, Dai T, Zhang Q, Cheng Y. A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. Journal of Controlled Release 2017;247:145-52. [DOI: 10.1016/j.jconrel.2017.01.003] [Cited by in Crossref: 76] [Cited by in F6Publishing: 96] [Article Influence: 15.2] [Reference Citation Analysis]
81 Dang M, Koh AJ, Danciu T, McCauley LK, Ma PX. Preprogrammed Long-Term Systemic Pulsatile Delivery of Parathyroid Hormone to Strengthen Bone. Adv Healthc Mater 2017;6. [PMID: 27930873 DOI: 10.1002/adhm.201600901] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
82 Schweizerhof S, Demco DE, Mourran A, Keul H, Fechete R, Möller M. Temperature-Induced Phase Transition Characterization of Responsive Polymer Brushes Grafted onto Nanoparticles. Macromol Chem Phys 2017;218:1600495. [DOI: 10.1002/macp.201600495] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
83 Zhan C, Wang W, Santamaria C, Wang B, Rwei A, Timko BP, Kohane DS. Ultrasensitive Phototriggered Local Anesthesia. Nano Lett 2017;17:660-5. [PMID: 28058845 DOI: 10.1021/acs.nanolett.6b03588] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
84 McCall JG, Qazi R, Shin G, Li S, Ikram MH, Jang KI, Liu Y, Al-Hasani R, Bruchas MR, Jeong JW, Rogers JA. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat Protoc 2017;12:219-37. [PMID: 28055036 DOI: 10.1038/nprot.2016.155] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 7.0] [Reference Citation Analysis]
85 Su S, Du F, Li Z. Synthesis and pH-dependent hydrolysis profiles of mono- and dialkyl substituted maleamic acids. Org Biomol Chem 2017;15:8384-92. [DOI: 10.1039/c7ob02188g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
86 Hu J, Chen Y, Li Y, Zhou Z, Cheng Y. A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials 2017;112:133-40. [DOI: 10.1016/j.biomaterials.2016.10.015] [Cited by in Crossref: 60] [Cited by in F6Publishing: 71] [Article Influence: 12.0] [Reference Citation Analysis]
87 Wang J, Kaplan JA, Colson YL, Grinstaff MW. Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Adv Drug Deliv Rev 2017;108:68-82. [PMID: 27856307 DOI: 10.1016/j.addr.2016.11.001] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 12.0] [Reference Citation Analysis]
88 Teodorescu F, Quéniat G, Foulon C, Lecoeur M, Barras A, Boulahneche S, Medjram MS, Hubert T, Abderrahmani A, Boukherroub R, Szunerits S. Transdermal skin patch based on reduced graphene oxide: A new approach for photothermal triggered permeation of ondansetron across porcine skin. Journal of Controlled Release 2017;245:137-46. [DOI: 10.1016/j.jconrel.2016.11.029] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
89 Santamaria CM, Woodruff A, Yang R, Kohane DS. Drug delivery systems for prolonged duration local anesthesia. Mater Today (Kidlington) 2017;20:22-31. [PMID: 28970739 DOI: 10.1016/j.mattod.2016.11.019] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 8.0] [Reference Citation Analysis]
90 Sanjay ST, Dou M, Fu G, Xu F, Li X. Controlled Drug Delivery Using Microdevices. Curr Pharm Biotechnol 2016;17:772-87. [PMID: 26813304 DOI: 10.2174/1389201017666160127110440] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
91 Cai K, Yen J, Yin Q, Liu Y, Song Z, Lezmi S, Zhang Y, Yang X, Helferich WG, Cheng J. Redox-Responsive Self-Assembled Chain-Shattering Polymeric Therapeutics. Biomater Sci 2015;3:1061-5. [PMID: 26146551 DOI: 10.1039/C4BM00452C] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
92 Park H, Yang S, Kang JY, Park MH. On-Demand Drug Delivery System Using Micro-organogels with Gold Nanorods. ACS Med Chem Lett 2016;7:1087-91. [PMID: 27994743 DOI: 10.1021/acsmedchemlett.6b00293] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
93 Basuki JS, Qie F, Mulet X, Suryadinata R, Vashi AV, Peng YY, Li L, Hao X, Tan T, Hughes TC. Photo-Modulated Therapeutic Protein Release from a Hydrogel Depot Using Visible Light. Angew Chem Int Ed Engl 2017;56:966-71. [PMID: 27918129 DOI: 10.1002/anie.201610618] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 6.2] [Reference Citation Analysis]
94 Basuki JS, Qie F, Mulet X, Suryadinata R, Vashi AV, Peng YY, Li L, Hao X, Tan T, Hughes TC. Photo-Modulated Therapeutic Protein Release from a Hydrogel Depot Using Visible Light. Angew Chem 2017;129:986-91. [DOI: 10.1002/ange.201610618] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
95 Wang P, Sun J, Lou Z, Fan F, Hu K, Sun Y, Gu N. Assembly-Induced Thermogenesis of Gold Nanoparticles in the Presence of Alternating Magnetic Field for Controllable Drug Release of Hydrogel. Adv Mater 2016;28:10801-8. [PMID: 27735090 DOI: 10.1002/adma.201603632] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 8.0] [Reference Citation Analysis]
96 Lu Y, Aimetti AA, Langer R, Gu Z. Bioresponsive materials. Nat Rev Mater 2017;2. [DOI: 10.1038/natrevmats.2016.75] [Cited by in Crossref: 685] [Cited by in F6Publishing: 636] [Article Influence: 114.2] [Reference Citation Analysis]
97 Liu Q, Zhan C, Kohane DS. Phototriggered Drug Delivery Using Inorganic Nanomaterials. Bioconjug Chem 2017;28:98-104. [PMID: 27661196 DOI: 10.1021/acs.bioconjchem.6b00448] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
98 Yu J, Zhang Y, Bomba H, Gu Z. Stimuli-Responsive Delivery of Therapeutics for Diabetes Treatment. Bioeng Transl Med 2016;1:323-37. [PMID: 29147685 DOI: 10.1002/btm2.10036] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 9.5] [Reference Citation Analysis]
99 Hsieh H, Ho L, Chang H. Aminophenylboronic acid polymer nanoparticles for quantitation of glucose and for insulin release. Anal Bioanal Chem 2016;408:6557-65. [DOI: 10.1007/s00216-016-9842-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
100 Li Z, Ye E, David, Lakshminarayanan R, Loh XJ. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small 2016;12:4782-806. [DOI: 10.1002/smll.201601129] [Cited by in Crossref: 195] [Cited by in F6Publishing: 196] [Article Influence: 32.5] [Reference Citation Analysis]
101 Bae KH, Kurisawa M. Emerging hydrogel designs for controlled protein delivery. Biomater Sci 2016;4:1184-92. [PMID: 27374633 DOI: 10.1039/c6bm00330c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
102 Xing T, Zhu J, Li J, Zhao J. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering. Journal of Applied Physics 2016;119:243104. [DOI: 10.1063/1.4954977] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
103 Beiranvand S, Eatemadi A, Karimi A. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles. Nanoscale Res Lett 2016;11:307. [PMID: 27342601 DOI: 10.1186/s11671-016-1520-8] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 7.0] [Reference Citation Analysis]
104 Liu Q, Wang W, Zhan C, Yang T, Kohane DS. Enhanced Precision of Nanoparticle Phototargeting in Vivo at a Safe Irradiance. Nano Lett 2016;16:4516-20. [PMID: 27310596 DOI: 10.1021/acs.nanolett.6b01730] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 5.8] [Reference Citation Analysis]
105 Dhavalikar R, Rinaldi C. Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients. J Magn Magn Mater 2016;419:267-73. [PMID: 28943706 DOI: 10.1016/j.jmmm.2016.06.038] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
106 Nag OK, Field LD, Chen Y, Sangtani A, Breger JC, Delehanty JB. Controlled actuation of therapeutic nanoparticles: an update on recent progress. Therapeutic Delivery 2016;7:335-52. [DOI: 10.4155/tde-2016-0003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
107 Kong YL, Gupta MK, Johnson BN, McAlpine MC. 3D Printed Bionic Nanodevices. Nano Today 2016;11:330-50. [PMID: 27617026 DOI: 10.1016/j.nantod.2016.04.007] [Cited by in Crossref: 69] [Cited by in F6Publishing: 67] [Article Influence: 11.5] [Reference Citation Analysis]
108 Tang Y, Li Z, Li X, Deng M, Karniadakis GE. Non-Equilibrium Dynamics of Vesicles and Micelles by Self-Assembly of Block Copolymers with Double Thermoresponsivity. Macromolecules 2016;49:2895-903. [DOI: 10.1021/acs.macromol.6b00365] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
109 Ford PC. From curiosity to applications. A personal perspective on inorganic photochemistry. Chem Sci 2016;7:2964-86. [PMID: 29997786 DOI: 10.1039/c6sc00188b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 4.2] [Reference Citation Analysis]
110 Hardy JG, Larrañeta E, Donnelly RF, Mcgoldrick N, Migalska K, Mccrudden MTC, Irwin NJ, Donnelly L, Mccoy CP. Hydrogel-Forming Microneedle Arrays Made from Light-Responsive Materials for On-Demand Transdermal Drug Delivery. Mol Pharmaceutics 2016;13:907-14. [DOI: 10.1021/acs.molpharmaceut.5b00807] [Cited by in Crossref: 74] [Cited by in F6Publishing: 70] [Article Influence: 12.3] [Reference Citation Analysis]
111 Chen MC, Lin ZW, Ling MH. Near-Infrared Light-Activatable Microneedle System for Treating Superficial Tumors by Combination of Chemotherapy and Photothermal Therapy. ACS Nano 2016;10:93-101. [PMID: 26592739 DOI: 10.1021/acsnano.5b05043] [Cited by in Crossref: 197] [Cited by in F6Publishing: 197] [Article Influence: 32.8] [Reference Citation Analysis]
112 Petriashvili G, Devadze L, Zurabishvili T, Sepashvili N, Chubinidze K. Light controlled drug delivery containers based on spiropyran doped liquid crystal micro spheres. Biomed Opt Express 2016;7:442-7. [PMID: 26977353 DOI: 10.1364/BOE.7.000442] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
113 Maitland D, Campbell SB, Chen J, Hoare T. Controlling the resolution and duration of pulsatile release from injectable magnetic ‘plum-pudding’ nanocomposite hydrogels. RSC Adv 2016;6:15770-81. [DOI: 10.1039/c6ra01665k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
114 Zhan C, Wang W, McAlvin JB, Guo S, Timko BP, Santamaria C, Kohane DS. Phototriggered Local Anesthesia. Nano Lett 2016;16:177-81. [PMID: 26654461 DOI: 10.1021/acs.nanolett.5b03440] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 8.4] [Reference Citation Analysis]
115 Rwei AY, Lee JJ, Zhan C, Liu Q, Ok MT, Shankarappa SA, Langer R, Kohane DS. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc Natl Acad Sci U S A 2015;112:15719-24. [PMID: 26644576 DOI: 10.1073/pnas.1518791112] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 9.0] [Reference Citation Analysis]
116 Lu Y, Hu Q, Lin Y, Pacardo DB, Wang C, Sun W, Ligler FS, Dickey MD, Gu Z. Transformable liquid-metal nanomedicine. Nat Commun 2015;6:10066. [PMID: 26625944 DOI: 10.1038/ncomms10066] [Cited by in Crossref: 255] [Cited by in F6Publishing: 305] [Article Influence: 36.4] [Reference Citation Analysis]
117 Lee CH, Kim H, Harburg DV, Park G, Ma Y, Pan T, Kim JS, Lee NY, Kim BH, Jang KI, Kang SK, Huang Y, Kim J, Lee KM, Leal C, Rogers JA. Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Mater 2015;7:e227. [PMID: 27175221 DOI: 10.1038/am.2015.114] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 8.0] [Reference Citation Analysis]
118 Soto-aquino D, Rinaldi C. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields. Journal of Magnetism and Magnetic Materials 2015;393:46-55. [DOI: 10.1016/j.jmmm.2015.05.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.9] [Reference Citation Analysis]
119 Luo D, Carter KA, Razi A, Geng J, Shao S, Giraldo D, Sunar U, Ortega J, Lovell JF. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 2016;75:193-202. [PMID: 26513413 DOI: 10.1016/j.biomaterials.2015.10.027] [Cited by in Crossref: 136] [Cited by in F6Publishing: 151] [Article Influence: 19.4] [Reference Citation Analysis]
120 Zhao P, Zheng M, Luo Z, Gong P, Gao G, Sheng Z, Zheng C, Ma Y, Cai L. NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy. Sci Rep 2015;5:14258. [PMID: 26400780 DOI: 10.1038/srep14258] [Cited by in Crossref: 65] [Cited by in F6Publishing: 76] [Article Influence: 9.3] [Reference Citation Analysis]
121 de Gracia Lux C, Lux J, Collet G, He S, Chan M, Olejniczak J, Foucault-collet A, Almutairi A. Short Soluble Coumarin Crosslinkers for Light-Controlled Release of Cells and Proteins from Hydrogels. Biomacromolecules 2015;16:3286-96. [DOI: 10.1021/acs.biomac.5b00950] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
122 Jeong JW, McCall JG, Shin G, Zhang Y, Al-Hasani R, Kim M, Li S, Sim JY, Jang KI, Shi Y. Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics. Cell. 2015;162:662-674. [PMID: 26189679 DOI: 10.1016/j.cell.2015.06.058] [Cited by in Crossref: 291] [Cited by in F6Publishing: 281] [Article Influence: 41.6] [Reference Citation Analysis]
123 Rwei AY, Wang W, Kohane DS. Photoresponsive nanoparticles for drug delivery. Nano Today 2015;10:451-67. [PMID: 26644797 DOI: 10.1016/j.nantod.2015.06.004] [Cited by in Crossref: 174] [Cited by in F6Publishing: 185] [Article Influence: 24.9] [Reference Citation Analysis]
124 Friberg S, Nyström AM. Nanotechnology in the war against cancer: new arms against an old enemy – a clinical view. Future Oncology 2015;11:1961-75. [DOI: 10.2217/fon.15.91] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
125 Sung B, Kim C, Kim M. Biodegradable colloidal microgels with tunable thermosensitive volume phase transitions for controllable drug delivery. Journal of Colloid and Interface Science 2015;450:26-33. [DOI: 10.1016/j.jcis.2015.02.068] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
126 Guerrero AR, Hassan N, Escobar CA, Albericio F, Kogan MJ, Araya E. Gold nanoparticles for photothermally controlled drug release. Nanomedicine (Lond) 2014;9:2023-39. [PMID: 25343351 DOI: 10.2217/nnm.14.126] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
127 Gupta MK, Meng F, Johnson BN, Kong YL, Tian L, Yeh YW, Masters N, Singamaneni S, McAlpine MC. 3D Printed Programmable Release Capsules. Nano Lett 2015;15:5321-9. [PMID: 26042472 DOI: 10.1021/acs.nanolett.5b01688] [Cited by in Crossref: 100] [Cited by in F6Publishing: 96] [Article Influence: 14.3] [Reference Citation Analysis]
128 Barhoumi A, Salvador-Culla B, Kohane DS. NIR-triggered drug delivery by collagen-mediated second harmonic generation. Adv Healthc Mater 2015;4:1159-63. [PMID: 25728310 DOI: 10.1002/adhm.201400768] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
129 Chen M, Ling M, Wang K, Lin Z, Lai B, Chen D. Near-Infrared Light-Responsive Composite Microneedles for On-Demand Transdermal Drug Delivery. Biomacromolecules 2015;16:1598-607. [DOI: 10.1021/acs.biomac.5b00185] [Cited by in Crossref: 68] [Cited by in F6Publishing: 78] [Article Influence: 9.7] [Reference Citation Analysis]
130 Chen MC, Wang KW, Chen DH, Ling MH, Liu CY. Remotely triggered release of small molecules from LaB6@SiO2-loaded polycaprolactone microneedles. Acta Biomater 2015;13:344-53. [PMID: 25463507 DOI: 10.1016/j.actbio.2014.11.040] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 6.7] [Reference Citation Analysis]
131 Sharker SM, Kim SM, Kim SH, In I, Lee H, Park SY. Target delivery of β-cyclodextrin/paclitaxel complexed fluorescent carbon nanoparticles: externally NIR light and internally pH sensitive-mediated release of paclitaxel with bio-imaging. J Mater Chem B 2015;3:5833-41. [DOI: 10.1039/c5tb00779h] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 7.9] [Reference Citation Analysis]
132 Mase JD, Razgoniaev AO, Tschirhart MK, Ostrowski AD. Light-controlled release of nitric oxide from solid polymer composite materials using visible and near infra-red light. Photochem Photobiol Sci 2015;14:775-85. [DOI: 10.1039/c4pp00441h] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
133 Lee TT, García JR, Paez JI, Singh A, Phelps EA, Weis S, Shafiq Z, Shekaran A, Del Campo A, García AJ. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat Mater 2015;14:352-60. [PMID: 25502097 DOI: 10.1038/nmat4157] [Cited by in Crossref: 285] [Cited by in F6Publishing: 289] [Article Influence: 35.6] [Reference Citation Analysis]
134 Prieto M, Arenal R, Henrard L, Gomez L, Sebastian V, Arruebo M. Morphological Tunability of the Plasmonic Response: From Hollow Gold Nanoparticles to Gold Nanorings. J Phys Chem C 2014;118:28804-11. [DOI: 10.1021/jp5096129] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
135 Timko BP, Kohane DS. Prospects for near-infrared technology in remotely triggered drug delivery. Expert Opin Drug Deliv 2014;11:1681-5. [PMID: 25008774 DOI: 10.1517/17425247.2014.930435] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
136 Yi X, Gao H. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: A two-dimensional study. Phys Rev E 2014;89. [DOI: 10.1103/physreve.89.062712] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 4.9] [Reference Citation Analysis]
137 Abouelmagd SA, Hyun H, Yeo Y. Extracellularly activatable nanocarriers for drug delivery to tumors. Expert Opin Drug Deliv 2014;11:1601-18. [PMID: 24950343 DOI: 10.1517/17425247.2014.930434] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
138 Coulibaly FS, Youan BB. Concanavalin A-polysaccharides binding affinity analysis using a quartz crystal microbalance. Biosens Bioelectron 2014;59:404-11. [PMID: 24768820 DOI: 10.1016/j.bios.2014.03.040] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
139 Shah S, Sasmal PK, Lee KB. Photo-triggerable Hydrogel-Nanoparticle Hybrid Scaffolds for Remotely Controlled Drug Delivery. J Mater Chem B 2014;2:7685-93. [PMID: 25580246 DOI: 10.1039/C4TB01436G] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]