BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bräutigam L, Jensen LD, Poschmann G, Nyström S, Bannenberg S, Dreij K, Lepka K, Prozorovski T, Montano SJ, Aktas O, Uhlén P, Stühler K, Cao Y, Holmgren A, Berndt C. Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1. Proc Natl Acad Sci U S A 2013;110:20057-62. [PMID: 24277839 DOI: 10.1073/pnas.1313753110] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Fan R, Li Y, Yang Q, Jiang S, Huang J, Yang L, Chen X, Zhou F, Jiang S. Expression Analysis of a Novel Oxidoreductase Glutaredoxin 2 in Black Tiger Shrimp, Penaeus monodon. Antioxidants 2022;11:1857. [DOI: 10.3390/antiox11101857] [Reference Citation Analysis]
2 Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D. Regulation of SIRT1 and Its Roles in Inflammation. Front Immunol 2022;13:831168. [DOI: 10.3389/fimmu.2022.831168] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Wilms C, Lepka K, Häberlein F, Edwards S, Felsberg J, Pudelko L, Lindenberg TT, Poschmann G, Qin N, Volbracht K, Prozorovski T, Meuth SG, Kahlert UD, Remke M, Aktas O, Reifenberger G, Bräutigam L, Odermatt B, Berndt C. Glutaredoxin 2 promotes SP-1-dependent CSPG4 transcription and migration of wound healing NG2 glia and glioma cells: Enzymatic Taoism. Redox Biol 2021;49:102221. [PMID: 34952462 DOI: 10.1016/j.redox.2021.102221] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021;12:763417. [PMID: 34899389 DOI: 10.3389/fphys.2021.763417] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Ogata FT, Branco V, Vale FF, Coppo L. Glutaredoxin: Discovery, redox defense and much more. Redox Biol 2021;43:101975. [PMID: 33932870 DOI: 10.1016/j.redox.2021.101975] [Reference Citation Analysis]
6 Gill R, Mallay S, Young A, Mailloux RJ. An investigation into the impact of deleting one copy of the glutaredoxin-2 gene on diet-induced weight gain and the bioenergetics of muscle mitochondria in female mice fed a high fat diet. Redox Rep 2020;25:87-94. [PMID: 32993466 DOI: 10.1080/13510002.2020.1826750] [Reference Citation Analysis]
7 Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020;8:576946. [PMID: 33117804 DOI: 10.3389/fcell.2020.576946] [Cited by in Crossref: 9] [Cited by in F6Publishing: 40] [Article Influence: 4.5] [Reference Citation Analysis]
8 Berndt C, Christ L, Rouhier N, Mühlenhoff U. Glutaredoxins with iron-sulphur clusters in eukaryotes - Structure, function and impact on disease. Biochim Biophys Acta Bioenerg 2021;1862:148317. [PMID: 32980338 DOI: 10.1016/j.bbabio.2020.148317] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radical Biology and Medicine 2020;157:15-37. [DOI: 10.1016/j.freeradbiomed.2020.02.026] [Cited by in Crossref: 29] [Cited by in F6Publishing: 52] [Article Influence: 14.5] [Reference Citation Analysis]
10 Daniel T, Faruq HM, Laura Magdalena J, Manuela G, Christopher Horst L. Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism-Review. Molecules 2020;25:E3860. [PMID: 32854270 DOI: 10.3390/molecules25173860] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Trnka D, Engelke AD, Gellert M, Moseler A, Hossain MF, Lindenberg TT, Pedroletti L, Odermatt B, de Souza JV, Bronowska AK, Dick TP, Mühlenhoff U, Meyer AJ, Berndt C, Lillig CH. Molecular basis for the distinct functions of redox-active and FeS-transfering glutaredoxins. Nat Commun 2020;11:3445. [PMID: 32651396 DOI: 10.1038/s41467-020-17323-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
12 Brenig K, Grube L, Schwarzländer M, Köhrer K, Stühler K, Poschmann G. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation. J Proteome Res 2020;19:1923-40. [DOI: 10.1021/acs.jproteome.9b00752] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
13 Serrano JJ, Delgado B, Medina MÁ. Control of tumor angiogenesis and metastasis through modulation of cell redox state. Biochim Biophys Acta Rev Cancer 2020;1873:188352. [PMID: 32035101 DOI: 10.1016/j.bbcan.2020.188352] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
14 Omeka WKM, Liyanage DS, Yang H, Lee J. Glutaredoxin 2 from big belly seahorse (Hippocampus abdominalis) and its potential involvement in cellular redox homeostasis and host immune responses. Fish Shellfish Immunol 2019;95:411-21. [PMID: 31586678 DOI: 10.1016/j.fsi.2019.09.071] [Reference Citation Analysis]
15 Yang L, Zeng C, Zhang Y, Wang F, Takamiya M, Strähle U. Functions of thioredoxin1 in brain development and in response to environmental chemicals in zebrafish embryos. Toxicology Letters 2019;314:43-52. [DOI: 10.1016/j.toxlet.2019.07.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Prozorovski T, Ingwersen J, Lukas D, Göttle P, Koop B, Graf J, Schneider R, Franke K, Schumacher S, Britsch S, Hartung H, Küry P, Berndt C, Aktas O. Regulation of sirtuin expression in autoimmune neuroinflammation: Induction of SIRT1 in oligodendrocyte progenitor cells. Neuroscience Letters 2019;704:116-25. [DOI: 10.1016/j.neulet.2019.04.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
17 Vall-Llaura N, Mir N, Garrido L, Vived C, Cabiscol E. Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity. Redox Biol 2019;24:101229. [PMID: 31153040 DOI: 10.1016/j.redox.2019.101229] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
18 Thomas NO, Shay KP, Hagen TM. Age-related loss of mitochondrial glutathione exacerbates menadione-induced inhibition of Complex I. Redox Biol 2019;22:101155. [PMID: 30851669 DOI: 10.1016/j.redox.2019.101155] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Dikalov SI, Dikalova AE. Crosstalk Between Mitochondrial Hyperacetylation and Oxidative Stress in Vascular Dysfunction and Hypertension. Antioxid Redox Signal 2019;31:710-21. [PMID: 30618267 DOI: 10.1089/ars.2018.7632] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]
20 Young A, Gill R, Mailloux RJ. Protein S-glutathionylation: The linchpin for the transmission of regulatory information on redox buffering capacity in mitochondria. Chem Biol Interact 2019;299:151-62. [PMID: 30537466 DOI: 10.1016/j.cbi.2018.12.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
21 Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018;7:E159. [PMID: 30404180 DOI: 10.3390/antiox7110159] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
22 Dominko K, Đikić D. Glutathionylation: a regulatory role of glutathione in physiological processes. Archives of Industrial Hygiene and Toxicology 2018;69:1-24. [DOI: 10.2478/aiht-2018-69-2966] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
23 Gutsche N, Holtmannspötter M, Maß L, O'Donoghue M, Busch A, Lauri A, Schubert V, Zachgo S. Conserved redox-dependent DNA binding of ROXY glutaredoxins with TGA transcription factors. Plant Direct 2017;1:e00030. [PMID: 31245678 DOI: 10.1002/pld3.30] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
24 Chalker J, Gardiner D, Kuksal N, Mailloux RJ. Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria. Redox Biol 2018;15:216-27. [PMID: 29274570 DOI: 10.1016/j.redox.2017.12.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
25 Berndt C, Lillig CH. Glutathione, Glutaredoxins, and Iron. Antioxidants & Redox Signaling 2017;27:1235-51. [DOI: 10.1089/ars.2017.7132] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 13.0] [Reference Citation Analysis]
26 García-giménez JL, Romá-mateo C, Pérez-machado G, Peiró-chova L, Pallardó FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radical Biology and Medicine 2017;112:36-48. [DOI: 10.1016/j.freeradbiomed.2017.07.008] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 9.6] [Reference Citation Analysis]
27 Lorenzen I, Mullen L, Bekeschus S, Hanschmann EM. Redox Regulation of Inflammatory Processes Is Enzymatically Controlled. Oxid Med Cell Longev 2017;2017:8459402. [PMID: 29118897 DOI: 10.1155/2017/8459402] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 6.2] [Reference Citation Analysis]
28 Song YC, Wu BJ, Chiu CC, Chen CL, Zhou JQ, Liang SR, Duh CY, Sung PJ, Wen ZH, Wu CY. Coral-Derived Natural Marine Compound GB9 Impairs Vascular Development in Zebrafish. Int J Mol Sci 2017;18:E1696. [PMID: 28771210 DOI: 10.3390/ijms18081696] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
29 Deponte M. The Incomplete Glutathione Puzzle: Just Guessing at Numbers and Figures? Antioxid Redox Signal 2017;27:1130-61. [PMID: 28540740 DOI: 10.1089/ars.2017.7123] [Cited by in Crossref: 76] [Cited by in F6Publishing: 68] [Article Influence: 15.2] [Reference Citation Analysis]
30 Hartman MD, Figueroa CM, Arias DG, Iglesias AA. Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants. Plant Cell Physiol 2017;58:145-55. [PMID: 28011870 DOI: 10.1093/pcp/pcw180] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
31 Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, Fessel JP, Gamboa JL, Harrison DG, Dikalov SI. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circ Res 2017;121:564-74. [PMID: 28684630 DOI: 10.1161/CIRCRESAHA.117.310933] [Cited by in Crossref: 87] [Cited by in F6Publishing: 113] [Article Influence: 17.4] [Reference Citation Analysis]
32 Lepka K, Volbracht K, Bill E, Schneider R, Rios N, Hildebrandt T, Ingwersen J, Prozorovski T, Lillig CH, van Horssen J, Steinman L, Hartung H, Radi R, Holmgren A, Aktas O, Berndt C. Iron-sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia: LEPKA et al. Glia 2017;65:1521-34. [DOI: 10.1002/glia.23178] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
33 Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017;13:94-162. [PMID: 28577489 DOI: 10.1016/j.redox.2017.05.007] [Cited by in Crossref: 154] [Cited by in F6Publishing: 138] [Article Influence: 30.8] [Reference Citation Analysis]
34 Huang P, Chiu C, Chang H, Wang Y, Syue H, Song Y, Weng Z, Tai M, Wu C. Prdx1- encoded peroxiredoxin is important for vascular development in zebrafish. FEBS Lett 2017;591:889-902. [DOI: 10.1002/1873-3468.12604] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
35 O'Brien M, Chalker J, Slade L, Gardiner D, Mailloux RJ. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex. Free Radic Biol Med 2017;106:302-14. [PMID: 28242228 DOI: 10.1016/j.freeradbiomed.2017.02.046] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 9.4] [Reference Citation Analysis]
36 Shao D, Han J, Hou X, Fry J, Behring JB, Seta F, Long MT, Roy HK, Cohen RA, Matsui R, Bachschmid MM. Glutaredoxin-1 Deficiency Causes Fatty Liver and Dyslipidemia by Inhibiting Sirtuin-1. Antioxid Redox Signal 2017;27:313-27. [PMID: 27958883 DOI: 10.1089/ars.2016.6716] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
37 Mengel A, Ageeva A, Georgii E, Bernhardt J, Wu K, Durner J, Lindermayr C. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases. Plant Physiol 2017;173:1434-52. [PMID: 27980017 DOI: 10.1104/pp.16.01734] [Cited by in Crossref: 53] [Cited by in F6Publishing: 60] [Article Influence: 8.8] [Reference Citation Analysis]
38 Jin C, Zhang P, Zhang M, Zhang X, Lv L, Liu H, Liu Y, Zhou Y. Inhibition of SLC7A11 by Sulfasalazine Enhances Osteogenic Differentiation of Mesenchymal Stem Cells by Modulating BMP2/4 Expression and Suppresses Bone Loss in Ovariectomized Mice. J Bone Miner Res 2017;32:508-21. [PMID: 27696501 DOI: 10.1002/jbmr.3009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
39 Hansen T, Galougahi K, Celermajer D, Rasko N, Tang O, Bubb KJ, Figtree G. Oxidative and nitrosative signalling in pulmonary arterial hypertension — Implications for development of novel therapies. Pharmacology & Therapeutics 2016;165:50-62. [DOI: 10.1016/j.pharmthera.2016.05.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
40 Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 2016;7:e2253. [PMID: 27277675 DOI: 10.1038/cddis.2016.105] [Cited by in Crossref: 519] [Cited by in F6Publishing: 571] [Article Influence: 86.5] [Reference Citation Analysis]
41 Vall-Llaura N, Reverter-Branchat G, Vived C, Weertman N, Rodríguez-Colman MJ, Cabiscol E. Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance. Free Radic Biol Med 2016;96:45-56. [PMID: 27085841 DOI: 10.1016/j.freeradbiomed.2016.04.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
42 Hlushchuk R, Brönnimann D, Correa Shokiche C, Schaad L, Triet R, Jazwinska A, Tschanz SA, Djonov V. Zebrafish Caudal Fin Angiogenesis Assay-Advanced Quantitative Assessment Including 3-Way Correlative Microscopy. PLoS One 2016;11:e0149281. [PMID: 26950851 DOI: 10.1371/journal.pone.0149281] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
43 Mailloux RJ, Craig Ayre D, Christian SL. Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase. Redox Biol 2016;8:285-97. [PMID: 26928132 DOI: 10.1016/j.redox.2016.02.002] [Cited by in Crossref: 42] [Cited by in F6Publishing: 47] [Article Influence: 7.0] [Reference Citation Analysis]
44 Coppo L, Montano SJ, Padilla AC, Holmgren A. Determination of glutaredoxin enzyme activity and protein S-glutathionylation using fluorescent eosin-glutathione. Anal Biochem 2016;499:24-33. [PMID: 26836485 DOI: 10.1016/j.ab.2016.01.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
45 Amir Aslani B, Ghobadi S. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sci 2016;146:163-73. [PMID: 26792059 DOI: 10.1016/j.lfs.2016.01.014] [Cited by in Crossref: 89] [Cited by in F6Publishing: 75] [Article Influence: 14.8] [Reference Citation Analysis]
46 Netto LES, de Oliveira MA, Tairum CA, da Silva Neto JF. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radical Research 2016;50:206-45. [DOI: 10.3109/10715762.2015.1120864] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 6.3] [Reference Citation Analysis]
47 Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 2015;5:275-89. [PMID: 26079210 DOI: 10.1016/j.redox.2015.05.008] [Cited by in Crossref: 94] [Cited by in F6Publishing: 91] [Article Influence: 13.4] [Reference Citation Analysis]
48 Couturier J, Przybyla-toscano J, Roret T, Didierjean C, Rouhier N. The roles of glutaredoxins ligating Fe–S clusters: Sensing, transfer or repair functions? Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015;1853:1513-27. [DOI: 10.1016/j.bbamcr.2014.09.018] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 9.4] [Reference Citation Analysis]
49 Begas P, Staudacher V, Deponte M. Systematic re-evaluation of the bis(2-hydroxyethyl)disulfide (HEDS) assay reveals an alternative mechanism and activity of glutaredoxins. Chem Sci 2015;6:3788-96. [PMID: 29218148 DOI: 10.1039/c5sc01051a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
50 Salmina AB, Kuvacheva NV, Morgun AV, Komleva YK, Pozhilenkova EA, Lopatina OL, Gorina YV, Taranushenko TE, Petrova LL. Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol 2015;64:174-84. [PMID: 25900038 DOI: 10.1016/j.biocel.2015.04.005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
51 Berndt C, Lillig CH. Redox regulation of differentiation and de-differentiation. Biochim Biophys Acta 2015;1850:1467-8. [PMID: 25791023 DOI: 10.1016/j.bbagen.2015.03.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
52 Prozorovski T, Schneider R, Berndt C, Hartung HP, Aktas O. Redox-regulated fate of neural stem progenitor cells. Biochim Biophys Acta 2015;1850:1543-54. [PMID: 25662818 DOI: 10.1016/j.bbagen.2015.01.022] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
53 Hansen JM, Harris C. Glutathione during embryonic development. Biochim Biophys Acta 2015;1850:1527-42. [PMID: 25526700 DOI: 10.1016/j.bbagen.2014.12.001] [Cited by in Crossref: 53] [Cited by in F6Publishing: 63] [Article Influence: 6.6] [Reference Citation Analysis]
54 Mailloux RJ, Willmore WG. S-glutathionylation reactions in mitochondrial function and disease. Front Cell Dev Biol 2014;2:68. [PMID: 25453035 DOI: 10.3389/fcell.2014.00068] [Cited by in Crossref: 75] [Cited by in F6Publishing: 73] [Article Influence: 9.4] [Reference Citation Analysis]
55 Gellert M, Hanschmann EM, Lepka K, Berndt C, Lillig CH. Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation. Biochim Biophys Acta 2015;1850:1575-87. [PMID: 25450486 DOI: 10.1016/j.bbagen.2014.10.030] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
56 Mochin MT, Underwood KF, Cooper B, McLenithan JC, Pierce AD, Nalvarte C, Arbiser J, Karlsson AI, Moise AR, Moskovitz J, Passaniti A. Hyperglycemia and redox status regulate RUNX2 DNA-binding and an angiogenic phenotype in endothelial cells. Microvasc Res 2015;97:55-64. [PMID: 25283348 DOI: 10.1016/j.mvr.2014.09.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
57 Popov D. Protein S-glutathionylation: from current basics to targeted modifications. Arch Physiol Biochem 2014;120:123-30. [PMID: 25112365 DOI: 10.3109/13813455.2014.944544] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
58 Márquez VE, Arias DG, Chiribao ML, Faral-Tello P, Robello C, Iglesias AA, Guerrero SA. Redox metabolism in Trypanosoma cruzi. Biochemical characterization of dithiol glutaredoxin dependent cellular pathways. Biochimie 2014;106:56-67. [PMID: 25110158 DOI: 10.1016/j.biochi.2014.07.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
59 Berndt C, Lillig CH, Flohé L. Redox regulation by glutathione needs enzymes. Front Pharmacol 2014;5:168. [PMID: 25100998 DOI: 10.3389/fphar.2014.00168] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 6.8] [Reference Citation Analysis]
60 Berndt C, Poschmann G, Stühler K, Holmgren A, Bräutigam L. Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells. Redox Biol 2014;2:673-8. [PMID: 24944912 DOI: 10.1016/j.redox.2014.04.012] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]