BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Knight JF, Lesurf R, Zhao H, Pinnaduwage D, Davis RR, Saleh SM, Zuo D, Naujokas MA, Chughtai N, Herschkowitz JI, Prat A, Mulligan AM, Muller WJ, Cardiff RD, Gregg JP, Andrulis IL, Hallett MT, Park M. Met synergizes with p53 loss to induce mammary tumors that possess features of claudin-low breast cancer. Proc Natl Acad Sci U S A 2013;110:E1301-10. [PMID: 23509284 DOI: 10.1073/pnas.1210353110] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Zhang J, Babic A. Regulation of the MET oncogene: molecular mechanisms. Carcinogenesis 2016;37:345-55. [PMID: 26905592 DOI: 10.1093/carcin/bgw015] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]
2 Xu K. Breast cancer regulated by Fringe. Oncoscience 2015;2:829-30. [PMID: 26682266 DOI: 10.18632/oncoscience.203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
3 Ali NA, Wu J, Hochgräfe F, Chan H, Nair R, Ye S, Zhang L, Lyons RJ, Pinese M, Lee HC, Armstrong N, Ormandy CJ, Clark SJ, Swarbrick A, Daly RJ. Profiling the tyrosine phosphoproteome of different mouse mammary tumour models reveals distinct, model-specific signalling networks and conserved oncogenic pathways. Breast Cancer Res 2014;16:437. [PMID: 25200860 DOI: 10.1186/s13058-014-0437-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
4 Steenbrugge J, Vander Elst N, Demeyere K, De Wever O, Sanders NN, Van Den Broeck W, Ciamporcero E, Perera T, Meyer E. OMO-1 reduces progression and enhances cisplatin efficacy in a 4T1-based non-c-MET addicted intraductal mouse model for triple-negative breast cancer. NPJ Breast Cancer 2021;7:27. [PMID: 33731699 DOI: 10.1038/s41523-021-00234-8] [Reference Citation Analysis]
5 Ratcliffe CDH, Siddiqui N, Coelho PP, Laterreur N, Cookey TN, Sonenberg N, Park M. HGF-induced migration depends on the PI(3,4,5)P3-binding microexon-spliced variant of the Arf6 exchange factor cytohesin-1. J Cell Biol 2019;218:285-98. [PMID: 30404949 DOI: 10.1083/jcb.201804106] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
6 Kage H, Flodby P, Zhou B, Borok Z. Dichotomous roles of claudins as tumor promoters or suppressors: lessons from knockout mice. Cell Mol Life Sci 2019;76:4663-72. [PMID: 31332482 DOI: 10.1007/s00018-019-03238-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
7 Tumiati M, Munne PM, Edgren H, Eldfors S, Hemmes A, Kuznetsov SG. Rad51c- and Trp53-double-mutant mouse model reveals common features of homologous recombination-deficient breast cancers. Oncogene 2016;35:4601-10. [DOI: 10.1038/onc.2015.528] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
8 Hou Y, Hou L, Liang Y, Zhang Q, Hong X, Wang Y, Huang X, Zhong T, Pang W, Xu C, Zhu L, Li L, Fang J, Meng X. The p53-inducible CLDN7 regulates colorectal tumorigenesis and has prognostic significance. Neoplasia. 2020;22:590-603. [PMID: 32992138 DOI: 10.1016/j.neo.2020.09.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
9 Maroun CR, Rowlands T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther. 2014;142:316-338. [PMID: 24384534 DOI: 10.1016/j.pharmthera.2013.12.014] [Cited by in Crossref: 122] [Cited by in F6Publishing: 122] [Article Influence: 13.6] [Reference Citation Analysis]
10 Sharma S, Yao HP, Zhou YQ, Zhou J, Zhang R, Wang MH. Prevention of BMS-777607-induced polyploidy/senescence by mTOR inhibitor AZD8055 sensitizes breast cancer cells to cytotoxic chemotherapeutics. Mol Oncol 2014;8:469-82. [PMID: 24444656 DOI: 10.1016/j.molonc.2013.12.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
11 Xu H, Eirew P, Mullaly SC, Aparicio S. The omics of triple-negative breast cancers. Clin Chem 2014;60:122-33. [PMID: 24298072 DOI: 10.1373/clinchem.2013.207167] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 4.4] [Reference Citation Analysis]
12 Li R, Knight JF, Park M, Pendergast AM. Abl Kinases Regulate HGF/Met Signaling Required for Epithelial Cell Scattering, Tubulogenesis and Motility. PLoS One 2015;10:e0124960. [PMID: 25946048 DOI: 10.1371/journal.pone.0124960] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
13 Gao HF, Yang CQ, Cheng MY, Zhu T, Yang M, Zhang LL, Wang K. Prognostic Significance of Mesenchymal-Epithelial Transition in Triple-Negative Breast Cancers. Clin Breast Cancer 2018;18:e961-6. [PMID: 29880407 DOI: 10.1016/j.clbc.2018.04.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Sakuma Y, Matsukuma S, Nakamura Y, Yoshihara M, Koizume S, Sekiguchi H, Saito H, Nakayama H, Kameda Y, Yokose T, Oguni S, Niki T, Miyagi Y. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Lab Invest 2013;93:1137-46. [DOI: 10.1038/labinvest.2013.102] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 3.4] [Reference Citation Analysis]
15 Hollern DP, Swiatnicki MR, Andrechek ER. Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genet 2018;14:e1007135. [PMID: 29346386 DOI: 10.1371/journal.pgen.1007135] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
16 Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, de la Grange P, Jonkers J, Deugnier MA, Glukhova MA, Faraldo MM. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene 2017;36:2355-65. [PMID: 27775073 DOI: 10.1038/onc.2016.396] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
17 Holland JD, Györffy B, Vogel R, Eckert K, Valenti G, Fang L, Lohneis P, Elezkurtaj S, Ziebold U, Birchmeier W. Combined Wnt/β-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep 2013;5:1214-27. [PMID: 24290754 DOI: 10.1016/j.celrep.2013.11.001] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 5.2] [Reference Citation Analysis]
18 Wu X, Zahari MS, Ma B, Liu R, Renuse S, Sahasrabuddhe NA, Chen L, Chaerkady R, Kim MS, Zhong J, Jelinek C, Barbhuiya MA, Leal-Rojas P, Yang Y, Kashyap MK, Marimuthu A, Ling M, Fackler MJ, Merino V, Zhang Z, Zahnow CA, Gabrielson E, Stearns V, Roa JC, Sukumar S, Gill PS, Pandey A. Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways. Oncotarget 2015;6:29143-60. [PMID: 26356563 DOI: 10.18632/oncotarget.5020] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
19 Di-Cicco A, Petit V, Chiche A, Bresson L, Romagnoli M, Orian-Rousseau V, Vivanco Md, Medina D, Faraldo MM, Glukhova MA, Deugnier MA. Paracrine Met signaling triggers epithelial-mesenchymal transition in mammary luminal progenitors, affecting their fate. Elife 2015;4. [PMID: 26165517 DOI: 10.7554/eLife.06104] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
20 Schachter NF, Adams JR, Skowron P, Kozma KJ, Lee CA, Raghuram N, Yang J, Loch AJ, Wang W, Kucharczuk A, Wright KL, Quintana RM, An Y, Dotzko D, Gorman JL, Wojtal D, Shah JS, Leon-Gomez P, Pellecchia G, Dupuy AJ, Perou CM, Ben-Porath I, Karni R, Zacksenhaus E, Woodgett JR, Done SJ, Garzia L, Sorana Morrissy A, Reimand J, Taylor MD, Egan SE. Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nat Commun 2021;12:5238. [PMID: 34475389 DOI: 10.1038/s41467-021-25467-w] [Reference Citation Analysis]
21 Hudson J, Ha JR, Sabourin V, Ahn R, La Selva R, Livingstone J, Podmore L, Knight J, Forrest L, Beauchemin N, Hallett M, Park M, Ursini-Siegel J. p66ShcA promotes breast cancer plasticity by inducing an epithelial-to-mesenchymal transition. Mol Cell Biol 2014;34:3689-701. [PMID: 25071152 DOI: 10.1128/MCB.00341-14] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
22 Hollern DP, Andrechek ER. A genomic analysis of mouse models of breast cancer reveals molecular features of mouse models and relationships to human breast cancer. Breast Cancer Res 2014;16:R59. [PMID: 25069779 DOI: 10.1186/bcr3672] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 7.1] [Reference Citation Analysis]
23 Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res 2015;17:52. [PMID: 25887320 DOI: 10.1186/s13058-015-0547-6] [Cited by in Crossref: 88] [Cited by in F6Publishing: 81] [Article Influence: 12.6] [Reference Citation Analysis]
24 Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S, Yuzugullu H, Von T, Li H, Lin Z, Stover DG, Lim E, Wang ZC, Iglehart JD, Young RA, Gray NS, Zhao JJ. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 2015;163:174-86. [PMID: 26406377 DOI: 10.1016/j.cell.2015.08.063] [Cited by in Crossref: 215] [Cited by in F6Publishing: 207] [Article Influence: 30.7] [Reference Citation Analysis]
25 Jones RA, Robinson TJ, Liu JC, Shrestha M, Voisin V, Ju Y, Chung PE, Pellecchia G, Fell VL, Bae S, Muthuswamy L, Datti A, Egan SE, Jiang Z, Leone G, Bader GD, Schimmer A, Zacksenhaus E. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest 2016;126:3739-57. [PMID: 27571409 DOI: 10.1172/JCI81568] [Cited by in Crossref: 62] [Cited by in F6Publishing: 45] [Article Influence: 10.3] [Reference Citation Analysis]
26 Chen L, Cui H, Fang J, Deng H, Kuang P, Guo H, Wang X, Zhao L. Glutamine deprivation plus BPTES alters etoposide- and cisplatin-induced apoptosis in triple negative breast cancer cells. Oncotarget 2016;7:54691-701. [PMID: 27419628 DOI: 10.18632/oncotarget.10579] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
27 Francis JC, Melchor L, Campbell J, Kendrick H, Wei W, Armisen-Garrido J, Assiotis I, Chen L, Kozarewa I, Fenwick K, Swain A, Smalley MJ, Lord CJ, Ashworth A. Whole-exome DNA sequence analysis of Brca2- and Trp53-deficient mouse mammary gland tumours. J Pathol 2015;236:186-200. [PMID: 25692405 DOI: 10.1002/path.4517] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
28 Mitra S, Bal A, Kashyap D, Kumar S, Shrivastav S, Das A, Singh G. Tumour angiogenesis and c-Met pathway activation - implications in breast cancer. APMIS 2020;128:316-25. [PMID: 31991499 DOI: 10.1111/apm.13031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Sung VYC, Knight JF, Johnson RM, Stern YE, Saleh SM, Savage P, Monast A, Zuo D, Duhamel S, Park M. Co-dependency for MET and FGFR1 in basal triple-negative breast cancers. NPJ Breast Cancer 2021;7:36. [PMID: 33772015 DOI: 10.1038/s41523-021-00238-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Granit RZ, Slyper M, Ben-Porath I. Axes of differentiation in breast cancer: untangling stemness, lineage identity, and the epithelial to mesenchymal transition. Wiley Interdiscip Rev Syst Biol Med 2014;6:93-106. [PMID: 24741710 DOI: 10.1002/wsbm.1252] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
31 Liu JC, Voisin V, Wang S, Wang DY, Jones RA, Datti A, Uehling D, Al-awar R, Egan SE, Bader GD, Tsao M, Mak TW, Zacksenhaus E. Combined deletion of Pten and p53 in mammary epithelium accelerates triple-negative breast cancer with dependency on eEF2K. EMBO Mol Med 2014;6:1542-60. [PMID: 25330770 DOI: 10.15252/emmm.201404402] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 9.9] [Reference Citation Analysis]
32 Wang S, Liu JC, Kim D, Datti A, Zacksenhaus E. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer. Breast Cancer Res 2016;18:9. [PMID: 26781438 DOI: 10.1186/s13058-015-0668-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
33 West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol. 2015;15:615-629. [PMID: 26358393 DOI: 10.1038/nri3896] [Cited by in Crossref: 184] [Cited by in F6Publishing: 176] [Article Influence: 26.3] [Reference Citation Analysis]
34 Ioannou MS, Bell ES, Girard M, Chaineau M, Hamlin JN, Daubaras M, Monast A, Park M, Hodgson L, McPherson PS. DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior. J Cell Biol 2015;208:629-48. [PMID: 25713415 DOI: 10.1083/jcb.201407068] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 7.6] [Reference Citation Analysis]
35 Kolesnikoff N, Attema JL, Roslan S, Bert AG, Schwarz QP, Gregory PA, Goodall GJ. Specificity protein 1 (Sp1) maintains basal epithelial expression of the miR-200 family: implications for epithelial-mesenchymal transition. J Biol Chem 2014;289:11194-205. [PMID: 24627491 DOI: 10.1074/jbc.M113.529172] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 5.1] [Reference Citation Analysis]
36 Jiao Q, Wu A, Shao G, Peng H, Wang M, Ji S, Liu P, Zhang J. The latest progress in research on triple negative breast cancer (TNBC): risk factors, possible therapeutic targets and prognostic markers. J Thorac Dis 2014;6:1329-35. [PMID: 25276378 DOI: 10.3978/j.issn.2072-1439.2014.08.13] [Cited by in F6Publishing: 21] [Reference Citation Analysis]
37 Pfefferle AD, Agrawal YN, Koboldt DC, Kanchi KL, Herschkowitz JI, Mardis ER, Rosen JM, Perou CM. Genomic profiling of murine mammary tumors identifies potential personalized drug targets for p53-deficient mammary cancers. Dis Model Mech 2016;9:749-57. [PMID: 27149990 DOI: 10.1242/dmm.025239] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
38 Muñoz R, Hileeto D, Cruz-Muñoz W, Wood GA, Xu P, Man S, Viloria-Petit A, Kerbel RS. Suppressive impact of metronomic chemotherapy using UFT and/or cyclophosphamide on mediators of breast cancer dissemination and invasion. PLoS One 2019;14:e0222580. [PMID: 31536574 DOI: 10.1371/journal.pone.0222580] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
39 Annunziato S, de Ruiter JR, Henneman L, Brambillasca CS, Lutz C, Vaillant F, Ferrante F, Drenth AP, van der Burg E, Siteur B, van Gerwen B, de Bruijn R, van Miltenburg MH, Huijbers IJ, van de Ven M, Visvader JE, Lindeman GJ, Wessels LFA, Jonkers J. Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer. Nat Commun 2019;10:397. [PMID: 30674894 DOI: 10.1038/s41467-019-08301-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
40 Du Y, Yamaguchi H, Wei Y, Hsu JL, Wang HL, Hsu YH, Lin WC, Yu WH, Leonard PG, Lee GR 4th, Chen MK, Nakai K, Hsu MC, Chen CT, Sun Y, Wu Y, Chang WC, Huang WC, Liu CL, Chang YC, Chen CH, Park M, Jones P, Hortobagyi GN, Hung MC. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med 2016;22:194-201. [PMID: 26779812 DOI: 10.1038/nm.4032] [Cited by in Crossref: 106] [Cited by in F6Publishing: 105] [Article Influence: 17.7] [Reference Citation Analysis]
41 Gaule PB, Crown J, O'Donovan N, Duffy MJ. cMET in triple-negative breast cancer: is it a therapeutic target for this subset of breast cancer patients? Expert Opin Ther Targets 2014;18:999-1009. [PMID: 25084805 DOI: 10.1517/14728222.2014.938050] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
42 Chung WC, Zhang S, Challagundla L, Zhou Y, Xu K. Lunatic Fringe and p53 Cooperatively Suppress Mesenchymal Stem-Like Breast Cancer. Neoplasia 2017;19:885-95. [PMID: 28938159 DOI: 10.1016/j.neo.2017.08.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
43 Zhang S, Chung WC, Miele L, Xu K. Targeting Met and Notch in the Lfng-deficient, Met-amplified triple-negative breast cancer. Cancer Biol Ther 2014;15:633-42. [PMID: 24556651 DOI: 10.4161/cbt.28180] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
44 Gray AL, Coleman DT, Shi R, Cardelli JA. Monocarboxylate transporter 1 contributes to growth factor-induced tumor cell migration independent of transporter activity. Oncotarget 2016;7:32695-706. [PMID: 27127175 DOI: 10.18632/oncotarget.9016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
45 Knight JF, Sung VYC, Kuzmin E, Couzens AL, de Verteuil DA, Ratcliffe CDH, Coelho PP, Johnson RM, Samavarchi-Tehrani P, Gruosso T, Smith HW, Lee W, Saleh SM, Zuo D, Zhao H, Guiot MC, Davis RR, Gregg JP, Moraes C, Gingras AC, Park M. KIBRA (WWC1) Is a Metastasis Suppressor Gene Affected by Chromosome 5q Loss in Triple-Negative Breast Cancer. Cell Rep 2018;22:3191-205. [PMID: 29562176 DOI: 10.1016/j.celrep.2018.02.095] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
46 Rajadurai CV, Havrylov S, Coelho PP, Ratcliffe CD, Zaoui K, Huang BH, Monast A, Chughtai N, Sangwan V, Gertler FB, Siegel PM, Park M. 5'-Inositol phosphatase SHIP2 recruits Mena to stabilize invadopodia for cancer cell invasion. J Cell Biol 2016;214:719-34. [PMID: 27597754 DOI: 10.1083/jcb.201501003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
47 Tao L, Xiang D, Xie Y, Bronson RT, Li Z. Induced p53 loss in mouse luminal cells causes clonal expansion and development of mammary tumours. Nat Commun 2017;8:14431. [PMID: 28194015 DOI: 10.1038/ncomms14431] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
48 Shah VV, Duncan AD, Jiang S, Stratton SA, Allton KL, Yam C, Jain A, Krause PM, Lu Y, Cai S, Tu Y, Zhou X, Zhang X, Jiang Y, Carroll CL, Kang Z, Liu B, Shen J, Gagea M, Manu SM, Huo L, Gilcrease M, Powell RT, Guo L, Stephan C, Davies PJ, Parker-Thornburg J, Lozano G, Behringer RR, Piwnica-Worms H, Chang JT, Moulder SL, Barton MC. Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer. Nat Commun 2021;12:5389. [PMID: 34508101 DOI: 10.1038/s41467-021-25650-z] [Reference Citation Analysis]
49 Ha JR, Siegel PM, Ursini-Siegel J. The Tyrosine Kinome Dictates Breast Cancer Heterogeneity and Therapeutic Responsiveness. J Cell Biochem 2016;117:1971-90. [PMID: 27392311 DOI: 10.1002/jcb.25561] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
50 Henneman L, van Miltenburg MH, Michalak EM, Braumuller TM, Jaspers JE, Drenth AP, de Korte-Grimmerink R, Gogola E, Szuhai K, Schlicker A, Bin Ali R, Pritchard C, Huijbers IJ, Berns A, Rottenberg S, Jonkers J. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer. Proc Natl Acad Sci U S A 2015;112:8409-14. [PMID: 26100884 DOI: 10.1073/pnas.1500223112] [Cited by in Crossref: 77] [Cited by in F6Publishing: 68] [Article Influence: 11.0] [Reference Citation Analysis]
51 Zuo K, Yuan X, Liang X, Sun X, Liu S, Connell PP, Li X, Yang W. qRT-PCR-based DNA homologous recombination-associated 4-gene score predicts pathologic complete response to platinum-based neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat 2021. [PMID: 34797456 DOI: 10.1007/s10549-021-06442-x] [Reference Citation Analysis]
52 Chiche A, Di-Cicco A, Sesma-Sanz L, Bresson L, de la Grange P, Glukhova MA, Faraldo MM, Deugnier MA. p53 controls the plasticity of mammary luminal progenitor cells downstream of Met signaling. Breast Cancer Res 2019;21:13. [PMID: 30683141 DOI: 10.1186/s13058-019-1101-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]