BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, Munn LL. Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci U S A. 2012;109:911-916. [PMID: 22203958 DOI: 10.1073/pnas.1118910109] [Cited by in Crossref: 380] [Cited by in F6Publishing: 388] [Article Influence: 31.7] [Reference Citation Analysis]
Number Citing Articles
1 Ntemafack A, Ayoub M, Hassan QP, Gandhi SG. A systematic review of pharmacological potential of phytochemicals from Rumex abyssinicus Jacq. South African Journal of Botany 2023;154:11-25. [DOI: 10.1016/j.sajb.2023.01.013] [Reference Citation Analysis]
2 Wang C, Wang H, Yang H, Xu C, Wang Q, Li Z, Zhang Z, Guan J, Yu X, Yang X, Yang X, Li Z. Targeting cancer-associated fibroblasts with hydroxyethyl starch nanomedicine boosts cancer therapy. Nano Res 2023. [DOI: 10.1007/s12274-023-5394-7] [Reference Citation Analysis]
3 Zhang C, Liu S, Yu YC, Han Q. Mechanical Force Remodeling the Adult Brain. Neurosci Bull 2023. [PMID: 36656429 DOI: 10.1007/s12264-023-01019-8] [Reference Citation Analysis]
4 Zhu P, Lu H, Wang M, Chen K, Chen Z, Yang L. Targeted mechanical forces enhance the effects of tumor immunotherapy by regulating immune cells in the tumor microenvironment. Cancer Biol Med 2023;20:44-55. [PMID: 36647779 DOI: 10.20892/j.issn.2095-3941.2022.0491] [Reference Citation Analysis]
5 Pajic-Lijakovic I, Eftimie R, Milivojevic M, Bordas SPA. The dynamics along the biointerface between the epithelial and cancer mesenchymal cells: Modeling consideration. Semin Cell Dev Biol 2023:S1084-9521(22)00378-0. [PMID: 36631334 DOI: 10.1016/j.semcdb.2022.12.010] [Reference Citation Analysis]
6 Begum HM, Shen K. Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. WIREs Mech Dis 2023;:e1595. [PMID: 36597256 DOI: 10.1002/wsbm.1595] [Reference Citation Analysis]
7 Pajic-Lijakovic I, Milivojevic M. Active wetting of epithelial tissues: modeling considerations. Eur Biophys J 2023. [PMID: 36593348 DOI: 10.1007/s00249-022-01625-w] [Reference Citation Analysis]
8 Ugrinic M, Decanini D, Bidan N, Lazzari G, Harouri A, Hwang G, Haghiri-gosnet A, Mura S. Fabrication of high aspect ratio microfluidic devices for long term in vitro culture of 3D tumor models. Microelectronic Engineering 2023;267-268:111898. [DOI: 10.1016/j.mee.2022.111898] [Reference Citation Analysis]
9 van Santen VJB, Zandieh Doulabi B, Semeins CM, Hogervorst JMA, Bratengeier C, Bakker AD. Compressed Prostate Cancer Cells Decrease Osteoclast Activity While Enhancing Osteoblast Activity In Vitro. Int J Mol Sci 2023;24. [PMID: 36614201 DOI: 10.3390/ijms24010759] [Reference Citation Analysis]
10 Vejjasilpa K, Maqsood I, Schulz-Siegmund M, Hacker MC. Adjustable Thermo-Responsive, Cell-Adhesive Tissue Engineering Scaffolds for Cell Stimulation through Periodic Changes in Culture Temperature. Int J Mol Sci 2022;24. [PMID: 36614014 DOI: 10.3390/ijms24010572] [Reference Citation Analysis]
11 Wang EJ, Chen IH, Kuo BY, Yu CC, Lai MT, Lin JT, Lin LY, Chen CM, Hwang T, Sheu JJ. Alterations of Cytoskeleton Networks in Cell Fate Determination and Cancer Development. Biomolecules 2022;12. [PMID: 36551290 DOI: 10.3390/biom12121862] [Reference Citation Analysis]
12 Biswas A, Ng BH, Prabhakaran VS, Chan CJ. Squeezing the eggs to grow: The mechanobiology of mammalian folliculogenesis. Front Cell Dev Biol 2022;10. [DOI: 10.3389/fcell.2022.1038107] [Reference Citation Analysis]
13 Gnanachandran K, Kędracka-krok S, Pabijan J, Lekka M. Discriminating bladder cancer cells through rheological mechanomarkers at cell and spheroid levels. Journal of Biomechanics 2022;144:111346. [DOI: 10.1016/j.jbiomech.2022.111346] [Reference Citation Analysis]
14 Lacombe J, Zenhausern F. Effect of mechanical forces on cellular response to radiation. Radiother Oncol 2022;176:187-98. [PMID: 36228760 DOI: 10.1016/j.radonc.2022.10.006] [Reference Citation Analysis]
15 Gonzalez-Molina J, Moyano-Galceran L, Single A, Gultekin O, Alsalhi S, Lehti K. Chemotherapy as a regulator of extracellular matrix-cell communication: Implications in therapy resistance. Semin Cancer Biol 2022;86:224-36. [PMID: 35331851 DOI: 10.1016/j.semcancer.2022.03.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
16 Cai G, Nguyen A, Bashirzadeh Y, Lin S, Bi D, Liu AP. Compressive stress drives adhesion-dependent unjamming transitions in breast cancer cell migration. Front Cell Dev Biol 2022;10:933042. [DOI: 10.3389/fcell.2022.933042] [Reference Citation Analysis]
17 Pajic-lijakovic I, Eftimie R, Milivojevic M, Bordas SP. The rearrangement of co-cultured cellular model systems via collective cell migration. Seminars in Cell & Developmental Biology 2022. [DOI: 10.1016/j.semcdb.2022.10.002] [Reference Citation Analysis]
18 Wang J, Han Y, Li Y, Zhang F, Cai M, Zhang X, Chen J, Ji C, Ma J, Xu F. Targeting Tumor Physical Microenvironment for Improved Radiotherapy. Small Methods. [DOI: 10.1002/smtd.202200570] [Reference Citation Analysis]
19 Joshi R, Han SB, Cho WK, Kim DH. The role of cellular traction forces in deciphering nuclear mechanics. Biomater Res 2022;26:43. [PMID: 36076274 DOI: 10.1186/s40824-022-00289-z] [Reference Citation Analysis]
20 Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022;10:954099. [DOI: 10.3389/fcell.2022.954099] [Reference Citation Analysis]
21 Ngalim SH, Yusoff N, Johnson RR, Abdul Razak SR, Chen X, Hobbs JK, Lee YY. A review on mechanobiology of cell adhesion networks in different stages of sporadic colorectal cancer to explain its tumorigenesis. Progress in Biophysics and Molecular Biology 2022. [DOI: 10.1016/j.pbiomolbio.2022.09.003] [Reference Citation Analysis]
22 Lin M, Meckes B, Chen C, Teplensky MH, Mirkin CA. Controlling Intracellular Machinery via Polymer Pen Lithography Molecular Patterning. ACS Cent Sci . [DOI: 10.1021/acscentsci.2c00683] [Reference Citation Analysis]
23 Zhang T, Jia Y, Yu Y, Zhang B, Xu F, Guo H. Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv Drug Deliv Rev 2022;186:114319. [PMID: 35545136 DOI: 10.1016/j.addr.2022.114319] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
24 Zhang L, Yan C, Hou X, Zhang X, Xie J, Xu H, Tong Y, Cui X, Cai K, Pu X, Wang L, Bai T, Wang D. The predictive accuracy of preoperative erythrocyte count and maximum tumor diameter to maximum kidney diameter ratio in renal cell carcinoma. Transl Androl Urol 2022;11:974-81. [PMID: 35958894 DOI: 10.21037/tau-22-414] [Reference Citation Analysis]
25 Peussa H, Kreutzer J, Mäntylä E, Mäki A, Nymark S, Kallio P, Ihalainen TO. Pneumatic equiaxial compression device for mechanical manipulation of epithelial cell packing and physiology. PLoS ONE 2022;17:e0268570. [DOI: 10.1371/journal.pone.0268570] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Tan R, Zhou Y, An Z, Xu Y. Cancer is a survival process under persistent microenvironmental and cellular stresses. Genomics, Proteomics & Bioinformatics 2022. [DOI: 10.1016/j.gpb.2022.03.002] [Reference Citation Analysis]
27 Abdolkarimzadeh F, Ashory MR, Ghasemi-Ghalebahman A, Karimi A. A position- and time-dependent pressure profile to model viscoelastic mechanical behavior of the brain tissue due to tumor growth. Comput Methods Biomech Biomed Engin 2022;:1-13. [PMID: 35638726 DOI: 10.1080/10255842.2022.2082245] [Reference Citation Analysis]
28 Cai G, Nguyen A, Bashirzadeh Y, Lin S, Bi D, Liu AP. Compressive stress drives adhesion-dependent unjamming transitions in breast cancer cell migration.. [DOI: 10.1101/2022.04.30.490153] [Reference Citation Analysis]
29 Zhou H, Wang M, Zhang Y, Su Q, Xie Z, Chen X, Yan R, Li P, Li T, Qin X, Yang H, Wu C, You F, Li S, Liu Y. Functions and clinical significance of mechanical tumor microenvironment: cancer cell sensing, mechanobiology and metastasis. Cancer Commun (Lond) 2022. [PMID: 35470988 DOI: 10.1002/cac2.12294] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Lipková J, Menze B, Wiestler B, Koumoutsakos P, Lowengrub JS. Modelling glioma progression, mass effect and intracranial pressure in patient anatomy. J R Soc Interface 2022;19:20210922. [PMID: 35317645 DOI: 10.1098/rsif.2021.0922] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Ding X, Li M, Cheng B, Wei Z, Dong Y, Xu F. Microsphere sensors for characterizing stress fields within three-dimensional extracellular matrix. Acta Biomater 2022;141:1-13. [PMID: 34979325 DOI: 10.1016/j.actbio.2021.12.033] [Reference Citation Analysis]
32 Fanfone D, Wu Z, Mammi J, Berthenet K, Neves D, Weber K, Halaburkova A, Virard F, Bunel F, Jamard C, Hernandez-Vargas H, Tait SWG, Hennino A, Ichim G. Confined migration promotes cancer metastasis through resistance to anoikis and increased invasiveness. Elife 2022;11:e73150. [PMID: 35256052 DOI: 10.7554/eLife.73150] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Yeh C, Juang DS, Chen Y, Rodoplu D, Hsu C. A Portable Controllable Compressive Stress Device to Monitor Human Breast Cancer Cell Protrusions at Single-Cell Resolution. Front Bioeng Biotechnol 2022;10:852318. [DOI: 10.3389/fbioe.2022.852318] [Reference Citation Analysis]
34 Slay EE, Meldrum FC, Pensabene V, Amer MH. Embracing Mechanobiology in Next Generation Organ-On-A-Chip Models of Bone Metastasis. Front Med Technol 2021;3:722501. [PMID: 35047952 DOI: 10.3389/fmedt.2021.722501] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Mary G, Malgras B, Perez JE, Nagle I, Luciani N, Pimpie C, Asnacios A, Pocard M, Reffay M, Wilhelm C. Magnetic Compression of Tumor Spheroids Increases Cell Proliferation In Vitro and Cancer Progression In Vivo. Cancers (Basel) 2022;14:366. [PMID: 35053529 DOI: 10.3390/cancers14020366] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
36 Luo M, Cai G, Ho KKY, Wen K, Tong Z, Deng L, Liu AP. Compression enhances invasive phenotype and matrix degradation of breast Cancer cells via Piezo1 activation. BMC Mol Cell Biol 2022;23:1. [PMID: 34979904 DOI: 10.1186/s12860-021-00401-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
37 Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. Adv Nanobiomed Res 2022;2:2100056. [PMID: 35156093 DOI: 10.1002/anbr.202100056] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
38 Franchi M, Masola V, Karamanos K, Franchi L, Kyriakopoulou K, Onisto M, Cappadone C. Basement Membrane, Collagen, and Fibronectin: Physical Interactions with Cancer Cells. The Extracellular Matrix and the Tumor Microenvironment 2022. [DOI: 10.1007/978-3-030-99708-3_10] [Reference Citation Analysis]
39 Pajic-lijakovic I, Milivojevic M. Viscoelasticity and cell swirling motion. Advances in Applied Mechanics 2022. [DOI: 10.1016/bs.aams.2022.05.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zhao X, Hu J, Li Y, Guo M. Volumetric compression develops noise-driven single-cell heterogeneity. Proc Natl Acad Sci U S A 2021;118:e2110550118. [PMID: 34916290 DOI: 10.1073/pnas.2110550118] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Zhao T, Chiang ZD, Morriss JW, LaFave LM, Murray EM, Del Priore I, Meli K, Lareau CA, Nadaf NM, Li J, Earl AS, Macosko EZ, Jacks T, Buenrostro JD, Chen F. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 2021. [PMID: 34912115 DOI: 10.1038/s41586-021-04217-4] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
42 Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers 2021;13:6188. [DOI: 10.3390/cancers13246188] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Kang W, Ferruzzi J, Spatarelu CP, Han YL, Sharma Y, Koehler SA, Mitchel JA, Khan A, Butler JP, Roblyer D, Zaman MH, Park JA, Guo M, Chen Z, Pegoraro AF, Fredberg JJ. A novel jamming phase diagram links tumor invasion to non-equilibrium phase separation. iScience 2021;24:103252. [PMID: 34755092 DOI: 10.1016/j.isci.2021.103252] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
44 Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants (Basel) 2021;10:1801. [PMID: 34829672 DOI: 10.3390/antiox10111801] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
45 Abdolkarimzadeh F, Ashory MR, Ghasemi-Ghalebahman A, Karimi A. Inverse dynamic finite element-optimization modeling of the brain tumor mass-effect using a variable pressure boundary. Comput Methods Programs Biomed 2021;212:106476. [PMID: 34715517 DOI: 10.1016/j.cmpb.2021.106476] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
46 Lamb MC, Kaluarachchi CP, Lansakara TI, Mellentine SQ, Lan Y, Tivanski AV, Tootle TL. Fascin limits Myosin activity within Drosophila border cells to control substrate stiffness and promote migration. Elife 2021;10:e69836. [PMID: 34698017 DOI: 10.7554/eLife.69836] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
47 Boyle ST, Poltavets V, Samuel MS. Mechanical Signaling in the Mammary Microenvironment: From Homeostasis to Cancer. Adv Exp Med Biol 2021;1329:399-417. [PMID: 34664249 DOI: 10.1007/978-3-030-73119-9_19] [Reference Citation Analysis]
48 Shao Y, Lu B. The emerging roles of circular RNAs in vessel co-option and vasculogenic mimicry: clinical insights for anti-angiogenic therapy in cancers. Cancer Metastasis Rev 2021. [PMID: 34664157 DOI: 10.1007/s10555-021-10000-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
49 Group Young Researchers In Inflammatory Carcinogenesis, Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021;13:4932. [PMID: 34638420 DOI: 10.3390/cancers13194932] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
50 Mustapha R, Ng K, Monypenny J, Ng T. Insights Into Unveiling a Potential Role of Tertiary Lymphoid Structures in Metastasis. Front Mol Biosci 2021;8:661516. [PMID: 34568423 DOI: 10.3389/fmolb.2021.661516] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
51 Horst EN, Bregenzer ME, Mehta P, Snyder CS, Repetto T, Yang-Hartwich Y, Mehta G. Personalized models of heterogeneous 3D epithelial tumor microenvironments: Ovarian cancer as a model. Acta Biomater 2021;132:401-20. [PMID: 33940195 DOI: 10.1016/j.actbio.2021.04.041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
52 Semenova N, Tuchin VV. 3D models of the dynamics of cancer cells under external pressure. Chaos 2021;31:083122. [PMID: 34470224 DOI: 10.1063/5.0056764] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
53 Broholm M, Degett TH, Furbo S, Fiehn AK, Bulut M, Litman T, Eriksen JO, Troelsen JT, Gjerdrum LMR, Gögenur I. Colonic Stent as Bridge to Surgery for Malignant Obstruction Induces Gene Expressional Changes Associated with a More Aggressive Tumor Phenotype. Ann Surg Oncol 2021;28:8519-31. [PMID: 34467497 DOI: 10.1245/s10434-021-10226-4] [Reference Citation Analysis]
54 Claude-Taupin A, Codogno P, Dupont N. Links between autophagy and tissue mechanics. J Cell Sci 2021;134:jcs258589. [PMID: 34472605 DOI: 10.1242/jcs.258589] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
55 Loneker AE, Wells RG. Perspective: The Mechanobiology of Hepatocellular Carcinoma. Cancers (Basel) 2021;13:4275. [PMID: 34503085 DOI: 10.3390/cancers13174275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Fanfone D, Wu ZC, Mammi J, Berthenet K, Neves D, Weber K, Halaburkova A, Virard F, Bunel F, Hernandez-vargas H, Tait SW, Hennino A, Ichim G. Confined migration promotes cancer metastasis through resistance to anoikis and increased invasiveness.. [DOI: 10.1101/2021.08.17.456592] [Reference Citation Analysis]
57 Paek J, Song JW, Ban E, Morimitsu Y, Osuji CO, Shenoy VB, Huh DD. Soft robotic constrictor for in vitro modeling of dynamic tissue compression. Sci Rep 2021;11:16478. [PMID: 34389738 DOI: 10.1038/s41598-021-94769-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
58 Mohammed D, Park CY, Fredberg JJ, Weitz DA. Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin. Sci Rep 2021;11:16279. [PMID: 34381087 DOI: 10.1038/s41598-021-95740-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
59 Bednarzig V, Karakaya E, Egaña AL, Teßmar J, Boccaccini AR, Detsch R. Advanced ADA-GEL bioink for bioprinted artificial cancer models. Bioprinting 2021;23:e00145. [DOI: 10.1016/j.bprint.2021.e00145] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
60 Purkayastha P, Jaiswal MK, Lele TP. Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure. Cytoskeleton (Hoboken) 2021. [PMID: 34291887 DOI: 10.1002/cm.21680] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
61 Kiran A, Kumar N, Mehandia V. Mechanism of tissue expansion in the early stage of the migration.. [DOI: 10.1101/2021.07.20.453119] [Reference Citation Analysis]
62 Lee SG, Lee SN, Baek J, Yoon JH, Lee H. Mechanical compression enhances ciliary beating through cytoskeleton remodeling in human nasal epithelial cells. Acta Biomater 2021;128:346-56. [PMID: 33882353 DOI: 10.1016/j.actbio.2021.04.030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Morikura T, Miyata S. Mechanical Intermittent Compression Affects the Progression Rate of Malignant Melanoma Cells in a Cycle Period-Dependent Manner. Diagnostics (Basel) 2021;11:1112. [PMID: 34207144 DOI: 10.3390/diagnostics11061112] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Kalli M, Li R, Mills GB, Stylianopoulos T, Zervantonakis IK. Mechanical stress in pancreatic cancer: Signaling pathway adaptation activates cytoskeletal remodeling and enhances cell migration.. [DOI: 10.1101/2021.06.11.448065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Broussard JA, Koetsier JL, Hegazy M, Green KJ. Desmosomes polarize and integrate chemical and mechanical signaling to govern epidermal tissue form and function. Curr Biol 2021;31:3275-3291.e5. [PMID: 34107301 DOI: 10.1016/j.cub.2021.05.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
66 Di-Luoffo M, Ben-Meriem Z, Lefebvre P, Delarue M, Guillermet-Guibert J. PI3K functions as a hub in mechanotransduction. Trends Biochem Sci 2021:S0968-0004(21)00108-0. [PMID: 34112586 DOI: 10.1016/j.tibs.2021.05.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
67 Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021;13:2788. [PMID: 34205140 DOI: 10.3390/cancers13112788] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
68 Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021;12:656364. [PMID: 34122412 DOI: 10.3389/fimmu.2021.656364] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 23.5] [Reference Citation Analysis]
69 Zhang J, Yang S, Tan Y, Wang Y. Effects of Mechanical Compression on Cell Morphology and Function in Human Corneal Fibroblasts. Curr Eye Res 2021;46:1467-73. [PMID: 34039223 DOI: 10.1080/02713683.2021.1904510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Liu Z, Hu S, Yun Z, Hu W, Zhang S, Luo D. Using dynamic cell communication improves treatment strategies of breast cancer. Cancer Cell Int 2021;21:275. [PMID: 34034721 DOI: 10.1186/s12935-021-01979-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Onal S, Alkaisi MM, Nock V. A Flexible Microdevice for Mechanical Cell Stimulation and Compression in Microfluidic Settings. Front Phys 2021;9:654918. [DOI: 10.3389/fphy.2021.654918] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
72 Macnamara CK. Biomechanical modelling of cancer: Agent‐based force‐based models of solid tumours within the context of the tumour microenvironment. Comp Sys Onco 2021;1. [DOI: 10.1002/cso2.1018] [Reference Citation Analysis]
73 Dey K, Roca E, Ramorino G, Sartore L. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci 2020;8:7033-81. [PMID: 33150878 DOI: 10.1039/d0bm01255f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
74 Spencer A, Sligar AD, Chavarria D, Lee J, Choksi D, Patil NP, Lee H, Veith AP, Riley WJ, Desai S, Abbaspour A, Singeetham R, Baker AB. Biomechanical regulation of breast cancer metastasis and progression. Sci Rep 2021;11:9838. [PMID: 33972619 DOI: 10.1038/s41598-021-89288-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
75 Lamb MC, Kaluarachchi CP, Lansakara TI, Lan Y, Tivanski AV, Tootle TL. Fascin limits Myosin activity within Drosophila border cells to control substrate stiffness and promote migration.. [DOI: 10.1101/2021.04.27.441651] [Reference Citation Analysis]
76 Carotenuto AR, Cutolo A, Palumbo S, Fraldi M. Lyapunov stability of competitive cells dynamics in tumor mechanobiology. Acta Mech Sin 2021;37:244-63. [DOI: 10.1007/s10409-021-01061-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
77 Sun Y, Li H, Chen Q, Luo Q, Song G. The distribution of liver cancer stem cells correlates with the mechanical heterogeneity of liver cancer tissue. Histochem Cell Biol 2021;156:47-58. [PMID: 33710418 DOI: 10.1007/s00418-021-01979-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int 2021;21:152. [PMID: 33663530 DOI: 10.1186/s12935-021-01853-8] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 26.0] [Reference Citation Analysis]
79 Riehl BD, Kim E, Bouzid T, Lim JY. The Role of Microenvironmental Cues and Mechanical Loading Milieus in Breast Cancer Cell Progression and Metastasis. Front Bioeng Biotechnol 2020;8:608526. [PMID: 33585411 DOI: 10.3389/fbioe.2020.608526] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
80 Amos SE, Choi YS. The Cancer Microenvironment: Mechanical Challenges of the Metastatic Cascade. Front Bioeng Biotechnol 2021;9:625859. [PMID: 33644019 DOI: 10.3389/fbioe.2021.625859] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
81 Redmond J, McCarthy H, Buchanan P, Levingstone TJ, Dunne NJ. Advances in biofabrication techniques for collagen-based 3D in vitro culture models for breast cancer research. Mater Sci Eng C Mater Biol Appl 2021;122:111944. [PMID: 33641930 DOI: 10.1016/j.msec.2021.111944] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
82 Kulwatno J, Gearhart J, Gong X, Herzog N, Getzin M, Skobe M, Mills KL. Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint. Integr Biol (Camb) 2021;13:1-16. [PMID: 33443535 DOI: 10.1093/intbio/zyaa024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
83 Zhang X, Mak M. Biophysical Informatics Approach For Quantifying Phenotypic Heterogeneity In Cancer Cell Migration In Confined Microenvironments. Bioinformatics 2021:btab053. [PMID: 33523141 DOI: 10.1093/bioinformatics/btab053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
84 Pajic-Lijakovic I, Milivojevic M. Multiscale nature of cell rearrangement caused by collective cell migration. Eur Biophys J 2021;50:1-14. [PMID: 33495939 DOI: 10.1007/s00249-021-01496-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
85 Choi BH, Kou Z, Colon TM, Chen CH, Chen Y, Dai W. Identification of Radil as a Ras binding partner and putative activator. J Biol Chem 2021;296:100314. [PMID: 33482197 DOI: 10.1016/j.jbc.2021.100314] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
86 Onal S, Alkaisi MM, Nock V. A flexible micro-piston device for mechanical cell stimulation and compression in microfluidic settings.. [DOI: 10.1101/2021.01.11.426203] [Reference Citation Analysis]
87 Stewart TA, Hughes K, Stevenson AJ, Marino N, Ju AL, Morehead M, Davis FM. Mammary mechanobiology - investigating roles for mechanically activated ion channels in lactation and involution. J Cell Sci 2021;134:jcs248849. [PMID: 33262312 DOI: 10.1242/jcs.248849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
88 Pajic-lijakovic I. The basic concept of viscoelasticity. Viscoelasticity and Collective Cell Migration 2021. [DOI: 10.1016/b978-0-12-820310-1.00006-9] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
89 Bibliography. Mechanotransduction 2021. [DOI: 10.1016/b978-0-12-817882-9.00008-2] [Reference Citation Analysis]
90 Mok S, Boghdady C, Moraes C. Probing tissue mechanics at the cellular-length scale in cancer microenvironments. Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms 2021. [DOI: 10.1016/b978-0-12-823990-2.00004-0] [Reference Citation Analysis]
91 Thai VL, Griffin KH, Thorpe SW, Randall RL, Leach JK. Tissue engineered platforms for studying primary and metastatic neoplasm behavior in bone. J Biomech 2021;115:110189. [PMID: 33385867 DOI: 10.1016/j.jbiomech.2020.110189] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
92 Nia HT, Munn LL, Jain RK. Physical traits of cancer. Science 2020;370:eaaz0868. [PMID: 33122355 DOI: 10.1126/science.aaz0868] [Cited by in Crossref: 170] [Cited by in F6Publishing: 174] [Article Influence: 56.7] [Reference Citation Analysis]
93 Romanov V, Silvani G, Zhu H, Cox CD, Martinac B. An Acoustic Platform for Single-Cell, High-Throughput Measurements of the Viscoelastic Properties of Cells. Small 2021;17:e2005759. [PMID: 33326190 DOI: 10.1002/smll.202005759] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
94 Kalinin V. Cell – extracellular matrix interaction in glioma growth. In silico model. Journal of Integrative Bioinformatics 2020;17. [DOI: 10.1515/jib-2020-0027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
95 Barkovskaya A, Buffone A Jr, Žídek M, Weaver VM. Proteoglycans as Mediators of Cancer Tissue Mechanics. Front Cell Dev Biol 2020;8:569377. [PMID: 33330449 DOI: 10.3389/fcell.2020.569377] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
96 Veerasubramanian PK, Trinh A, Akhtar N, Liu WF, Downing TL. Biophysical and epigenetic regulation of cancer stemness, invasiveness and immune action. Curr Tissue Microenviron Rep 2020;1:277-300. [PMID: 33817661 DOI: 10.1007/s43152-020-00021-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
97 Haider T, Sandha KK, Soni V, Gupta PN. Recent advances in tumor microenvironment associated therapeutic strategies and evaluation models. Materials Science and Engineering: C 2020;116:111229. [DOI: 10.1016/j.msec.2020.111229] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
98 Smolarczyk R, Czapla J, Jarosz-Biej M, Czerwinski K, Cichoń T. Vascular disrupting agents in cancer therapy. Eur J Pharmacol 2021;891:173692. [PMID: 33130277 DOI: 10.1016/j.ejphar.2020.173692] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
99 Dawson MR, Xuan B, Hsu J, Ghosh D. Force balancing ACT-IN the tumor microenvironment: Cytoskeletal modifications in cancer and stromal cells to promote malignancy. Int Rev Cell Mol Biol 2021;360:1-31. [PMID: 33962748 DOI: 10.1016/bs.ircmb.2020.09.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
100 Mohammed D, Chan PY, Fredberg JJ, Weitz DA. Tumorigenic epithelial clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin.. [DOI: 10.1101/2020.10.26.355891] [Reference Citation Analysis]
101 Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials 2021;267:120497. [PMID: 33129187 DOI: 10.1016/j.biomaterials.2020.120497] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
102 Rizzuti IF, Mascheroni P, Arcucci S, Ben-Mériem Z, Prunet A, Barentin C, Rivière C, Delanoë-Ayari H, Hatzikirou H, Guillermet-Guibert J, Delarue M. Mechanical Control of Cell Proliferation Increases Resistance to Chemotherapeutic Agents. Phys Rev Lett 2020;125:128103. [PMID: 33016731 DOI: 10.1103/PhysRevLett.125.128103] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
103 Murphy RJ, Buenzli PR, Baker RE, Simpson MJ. Mechanical Cell Competition in Heterogeneous Epithelial Tissues. Bull Math Biol 2020;82:130. [PMID: 32979100 DOI: 10.1007/s11538-020-00807-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
104 Kunisaki SM, Jiang G, Biancotti JC, Ho KKY, Dye BR, Liu AP, Spence JR. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of the congenital diaphragmatic hernia fetal lung. Stem Cells Transl Med 2021;10:98-114. [PMID: 32949227 DOI: 10.1002/sctm.20-0199] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
105 Romanov V, Silvani G, Zhu H, Cox CD, Martinac B. An acoustic platform for single-cell, high-throughput measurements of the viscoelastic properties of cells.. [DOI: 10.1101/2020.09.07.286898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
106 Yoshimoto S, Morita H, Matsuda M, Katakura Y, Hirata M, Hashimoto S. NFAT5 promotes oral squamous cell carcinoma progression in a hyperosmotic environment. Lab Invest 2021;101:38-50. [PMID: 32901097 DOI: 10.1038/s41374-020-00486-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
107 Engelke H. Physics of the Extracellular Matrix and Biology of Tumors — A Close Relationship. Biophys Rev Lett 2020;15:121-130. [DOI: 10.1142/s1793048020300030] [Reference Citation Analysis]
108 Zhang X, Ruan Q, Zhai Y, Lu D, Li C, Fu Y, Zheng Z, Song Y, Guo J. Baicalein inhibits non-small-cell lung cancer invasion and metastasis by reducing ezrin tension in inflammation microenvironment. Cancer Sci 2020;111:3802-12. [PMID: 32691974 DOI: 10.1111/cas.14577] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
109 Skonieczna M, Adamiec M, Hudy D, Nieslon P, Fochtman D, Bil P. Live Impedance Measurements and Time-lapse Microscopy Observations of Cellular Adhesion, Proliferation and Migration after Ionizing Radiation. Curr Pharm Biotechnol 2020;21:642-52. [PMID: 31889493 DOI: 10.2174/1389201021666191224121206] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
110 Zhou Y, Sun H, Xu Y. Metabolic reprogramming in cancer: the bridge that connects intracellular stresses and cancer behaviors. Natl Sci Rev 2020;7:1270-3. [PMID: 34692153 DOI: 10.1093/nsr/nwaa082] [Reference Citation Analysis]
111 Yadav S, Kashaninejad N, Nguyen NT. RhoA and Rac1 in Liver Cancer Cells: Induction of Overexpression Using Mechanical Stimulation. Micromachines (Basel) 2020;11:E729. [PMID: 32731493 DOI: 10.3390/mi11080729] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
112 Nia HT, Datta M, Seano G, Zhang S, Ho WW, Roberge S, Huang P, Munn LL, Jain RK. In vivo compression and imaging in mouse brain to measure the effects of solid stress. Nat Protoc 2020;15:2321-40. [PMID: 32681151 DOI: 10.1038/s41596-020-0328-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
113 Pajic-Lijakovic I, Milivojevic M. Collective cell migration and residual stress accumulation: Rheological consideration. J Biomech 2020;108:109898. [PMID: 32636009 DOI: 10.1016/j.jbiomech.2020.109898] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
114 Asem M, Young A, Oyama C, ClaureDeLaZerda A, Liu Y, Ravosa MJ, Gupta V, Jewell A, Khabele D, Stack MS. Ascites-induced compression alters the peritoneal microenvironment and promotes metastatic success in ovarian cancer. Sci Rep 2020;10:11913. [PMID: 32681052 DOI: 10.1038/s41598-020-68639-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
115 Kulwatno J, Gearhart J, Gong X, Herzog N, Getzin M, Skobe M, Mills KL. Growth of tumor emboli within a vessel model reveals dependence on the magnitude of mechanical constraint.. [DOI: 10.1101/2020.07.06.190447] [Reference Citation Analysis]
116 Martin JD, Seano G, Jain RK. Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. Annu Rev Physiol 2019;81:505-34. [PMID: 30742782 DOI: 10.1146/annurev-physiol-020518-114700] [Cited by in Crossref: 195] [Cited by in F6Publishing: 205] [Article Influence: 65.0] [Reference Citation Analysis]
117 Wang Y, Goliwas KF, Severino PE, Hough KP, Van Vessem D, Wang H, Tousif S, Koomullil RP, Frost AR, Ponnazhagan S, Berry JL, Deshane JS. Mechanical strain induces phenotypic changes in breast cancer cells and promotes immunosuppression in the tumor microenvironment. Lab Invest 2020;100:1503-16. [PMID: 32572176 DOI: 10.1038/s41374-020-0452-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
118 Chen BJ, Wu JS, Tang YJ, Tang YL, Liang XH. What makes leader cells arise: Intrinsic properties and support from neighboring cells. J Cell Physiol 2020;235:8983-95. [PMID: 32572948 DOI: 10.1002/jcp.29828] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
119 Novak CM, Horst EN, Lin E, Mehta G. Compressive Stimulation Enhances Ovarian Cancer Proliferation, Invasion, Chemoresistance, and Mechanotransduction via CDC42 in a 3D Bioreactor. Cancers (Basel) 2020;12:E1521. [PMID: 32532057 DOI: 10.3390/cancers12061521] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
120 Baschieri F, Porshneva K, Montagnac G. Frustrated clathrin-mediated endocytosis – causes and possible functions. Journal of Cell Science 2020;133:jcs240861. [DOI: 10.1242/jcs.240861] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
121 Pratt SJP, Lee RM, Martin SS. The Mechanical Microenvironment in Breast Cancer. Cancers (Basel) 2020;12:E1452. [PMID: 32503141 DOI: 10.3390/cancers12061452] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
122 Mahmoodi M, Ferdowsi S, Ebrahimi-Barough S, Kamian S, Ai J. Tissue engineering applications in breast cancer. J Med Eng Technol 2020;44:162-8. [PMID: 32401543 DOI: 10.1080/03091902.2020.1757771] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
123 Faghihi D, Feng X, Lima EABF, Oden JT, Yankeelov TE. A Coupled Mass Transport and Deformation Theory of Multi-constituent Tumor Growth. J Mech Phys Solids 2020;139:103936. [PMID: 32394987 DOI: 10.1016/j.jmps.2020.103936] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
124 Kang W, Ferruzzi J, Spatarelu C, Han YL, Sharma Y, Koehler SA, Mitchel JA, Butler JP, Roblyer D, Zaman MH, Park J, Guo M, Chen Z, Pegoraro AF, Fredberg JJ. Tumor invasion as non-equilibrium phase separation.. [DOI: 10.1101/2020.04.28.066845] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
125 Doolin MT, Moriarty RA, Stroka KM. Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Front Physiol 2020;11:365. [PMID: 32390868 DOI: 10.3389/fphys.2020.00365] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
126 Monteiro CF, Santos SC, Custódio CA, Mano JF. Human Platelet Lysates-Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment. Adv Sci (Weinh) 2020;7:1902398. [PMID: 32274296 DOI: 10.1002/advs.201902398] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
127 Brunel B, Levy V, Millet A, Dolega ME, Delon A, Pierrat R, Cappello G. Measuring cell displacements in opaque tissues: dynamic light scattering in the multiple scattering regime. Biomed Opt Express 2020;11:2277-97. [PMID: 32341883 DOI: 10.1364/BOE.388360] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
128 Sun H, Zhou Y, Jiang H, Xu Y. Elucidation of Functional Roles of Sialic Acids in Cancer Migration. Front Oncol 2020;10:401. [PMID: 32296639 DOI: 10.3389/fonc.2020.00401] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
129 Piehler S, Wucherpfennig L, Tansi FL, Berndt A, Quaas R, Teichgraeber U, Hilger I. Hyperthermia affects collagen fiber architecture and induces apoptosis in pancreatic and fibroblast tumor hetero-spheroids in vitro. Nanomedicine 2020;28:102183. [PMID: 32222478 DOI: 10.1016/j.nano.2020.102183] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
130 Lai CC, Juang WC, Sun GC, Tseng YK, Jhong RC, Tseng CJ, Wong TY, Cheng PW. Vitamin D Attenuates Loss of Endothelial Biomarker Expression in Cardio-Endothelial Cells. Int J Mol Sci 2020;21:E2196. [PMID: 32235811 DOI: 10.3390/ijms21062196] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
131 Sorrin AJ, Kemal Ruhi M, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020;96:232-59. [PMID: 31895481 DOI: 10.1111/php.13209] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 10.3] [Reference Citation Analysis]
132 Lim JW, Kim HJ, Kim Y, Shin SG, Cho S, Jung WG, Jeong JH. An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding. Polymers (Basel) 2020;12:E583. [PMID: 32150989 DOI: 10.3390/polym12030583] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
133 Di Maggio F, El-Shakankery KH. Desmoplasia and Biophysics in Pancreatic Ductal Adenocarcinoma: Can We Learn From Breast Cancer? Pancreas 2020;49:313-25. [PMID: 32168249 DOI: 10.1097/MPA.0000000000001504] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
134 Fan Y, Jalali A, Chen A, Zhao X, Liu S, Teli M, Guo Y, Li F, Li J, Siegel A, Yang L, Liu J, Na S, Agarwal M, Robling AG, Nakshatri H, Li BY, Yokota H. Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion. Bone Res 2020;8:9. [PMID: 32128277 DOI: 10.1038/s41413-020-0083-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
135 Spencer A, Sligar AD, Chavarria D, Lee J, Choksi D, Patil NP, Lee H, Veith AP, Riley WJ, Desai S, Abbaspour A, Singeetham R, Baker AB. Biomechanical Regulation of Breast Cancer Metastasis and Progression.. [DOI: 10.1101/2020.01.21.914242] [Reference Citation Analysis]
136 Broussard JA, Koetsier JL, Hegazy M, Green KJ. Desmosomes polarize mechanical signaling to govern epidermal tissue form and function.. [DOI: 10.1101/2020.01.21.914176] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
137 Rizzuti I, Mascheroni P, Arcucci S, Ben-mériem Z, Prunet A, Barentin C, Rivière C, Delanoë-ayari H, Hatzikirou H, Guillermet-guibert J, Delarue M. Mechanical-control of cell proliferation increases resistance to chemotherapeutic agents.. [DOI: 10.1101/2020.01.18.910554] [Reference Citation Analysis]
138 Calhoun MA, Cui Y, Elliott EE, Mo X, Otero JJ, Winter JO. MicroRNA-mRNA Interactions at Low Levels of Compressive Solid Stress Implicate mir-548 in Increased Glioblastoma Cell Motility. Sci Rep 2020;10:311. [PMID: 31941933 DOI: 10.1038/s41598-019-56983-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
139 Kai F, Drain AP, Weaver VM. The Extracellular Matrix Modulates the Metastatic Journey. Dev Cell 2019;49:332-46. [PMID: 31063753 DOI: 10.1016/j.devcel.2019.03.026] [Cited by in Crossref: 200] [Cited by in F6Publishing: 213] [Article Influence: 66.7] [Reference Citation Analysis]
140 Prunet A, Lefort S, Delanoë-ayari H, Laperrousaz B, Simon G, Saci S, Argoul F, Guyot B, Rieu J, Gobert S, Maguer-satta V, Rivière C. Development of a soft cell confiner to decipher the impact of mechanical stimuli on cells.. [DOI: 10.1101/2020.01.04.892695] [Reference Citation Analysis]
141 Konopczyński T, Heiman R, Woźnicki P, Gniewek P, Duvernoy M, Hallatschek O, Hesser J. Instance Segmentation of Densely Packed Cells Using a Hybrid Model of U-Net and Mask R-CNN. Artificial Intelligence and Soft Computing 2020. [DOI: 10.1007/978-3-030-61401-0_58] [Reference Citation Analysis]
142 Li NT, L. Co I, Landon-brace N, Latour S, Mcguigan AP. Tissue-engineered 3D cancer microenvironment for screening therapeutics. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00019-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
143 Martin JD, Jain RK. Normalizing the Tumor Microenvironment for Radiosensitization. Cancer Drug Discovery and Development 2020. [DOI: 10.1007/978-3-030-49701-9_12] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
144 Prunet A, Lefort S, Delanoë-ayari H, Laperrousaz B, Simon G, Barentin C, Saci S, Argoul F, Guyot B, Rieu J, Gobert S, Maguer-satta V, Rivière C. A new agarose-based microsystem to investigate cell response to prolonged confinement. Lab Chip 2020;20:4016-30. [DOI: 10.1039/d0lc00732c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
145 Rice A, del Rio Hernandez A. Biomechanics of cancer cells. Bioengineering Innovative Solutions for Cancer 2020. [DOI: 10.1016/b978-0-12-813886-1.00014-0] [Reference Citation Analysis]
146 Das J, Maiti TK. Mechanical Stress-Induced Autophagy: A Key Player in Cancer Metastasis. Autophagy in tumor and tumor microenvironment 2020. [DOI: 10.1007/978-981-15-6930-2_8] [Reference Citation Analysis]
147 Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. Adv Exp Med Biol 2020;1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
148 Lynch ME, Neu CP, Seelbinder B, Mccreery KP. The Role of Mechanobiology in Cancer Metastasis. Mechanobiology. Elsevier; 2020. pp. 65-78. [DOI: 10.1016/b978-0-12-817931-4.00004-2] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
149 Pajic-lijakovic I, Milivojevic M. Collective cell migration and residual stress accumulation: modeling consideration.. [DOI: 10.1101/2019.12.18.881144] [Reference Citation Analysis]
150 Kolosnjaj-Tabi J, Kralj S, Griseti E, Nemec S, Wilhelm C, Plan Sangnier A, Bellard E, Fourquaux I, Golzio M, Rols MP. Magnetic Silica-Coated Iron Oxide Nanochains as Photothermal Agents, Disrupting the Extracellular Matrix, and Eradicating Cancer Cells. Cancers (Basel) 2019;11:E2040. [PMID: 31861146 DOI: 10.3390/cancers11122040] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
151 Ferruzzi J, Sun M, Gkousioudi A, Pilvar A, Roblyer D, Zhang Y, Zaman MH. Compressive Remodeling Alters Fluid Transport Properties of Collagen Networks - Implications for Tumor Growth. Sci Rep 2019;9:17151. [PMID: 31748563 DOI: 10.1038/s41598-019-50268-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
152 Bratsun DA, Krasnyakov IV, Pismen LM. Biomechanical modeling of invasive breast carcinoma under a dynamic change in cell phenotype: collective migration of large groups of cells. Biomech Model Mechanobiol 2020;19:723-43. [PMID: 31686305 DOI: 10.1007/s10237-019-01244-z] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
153 Munn LL, Nia HT. Mechanosensing tensile solid stresses. Proc Natl Acad Sci U S A 2019;116:21960-2. [PMID: 31619566 DOI: 10.1073/pnas.1916115116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
154 Carotenuto AR, Cutolo A, Palumbo S, Fraldi M. Growth and remodeling in highly stressed solid tumors. Meccanica 2019;54:1941-57. [DOI: 10.1007/s11012-019-01057-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
155 Sukumar UK, Packirisamy G. Fabrication of Nanofibrous Scaffold Grafted with Gelatin Functionalized Polystyrene Microspheres for Manifesting Nanomechanical Cues of Stretch Stimulated Fibroblast. ACS Appl Bio Mater 2019;2:5323-39. [DOI: 10.1021/acsabm.9b00580] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
156 Chen H, Cai Y, Chen Q, Li Z. Multiscale modeling of solid stress and tumor cell invasion in response to dynamic mechanical microenvironment. Biomech Model Mechanobiol 2020;19:577-90. [PMID: 31571083 DOI: 10.1007/s10237-019-01231-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
157 Zhu Y, Yu F, Tan Y, Yuan H, Hu F. Strategies of targeting pathological stroma for enhanced antitumor therapies. Pharmacological Research 2019;148:104401. [DOI: 10.1016/j.phrs.2019.104401] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
158 Morikura T, Miyata S. Effect of Mechanical Compression on Invasion Process of Malignant Melanoma Using In Vitro Three-Dimensional Cell Culture Device. Micromachines (Basel) 2019;10:E666. [PMID: 31575066 DOI: 10.3390/mi10100666] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
159 Kalli M, Voutouri C, Minia A, Pliaka V, Fotis C, Alexopoulos LG, Stylianopoulos T. Mechanical Compression Regulates Brain Cancer Cell Migration Through MEK1/Erk1 Pathway Activation and GDF15 Expression. Front Oncol 2019;9:992. [PMID: 31612114 DOI: 10.3389/fonc.2019.00992] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
160 Hu J, Chen S, Hu W, Lü S, Long M. Mechanical Point Loading Induces Cortex Stiffening and Actin Reorganization. Biophys J 2019;117:1405-18. [PMID: 31585706 DOI: 10.1016/j.bpj.2019.09.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
161 Scott KE, Rychel K, Ranamukhaarachchi S, Rangamani P, Fraley SI. Emerging themes and unifying concepts underlying cell behavior regulation by the pericellular space. Acta Biomater 2019;96:81-98. [PMID: 31176842 DOI: 10.1016/j.actbio.2019.06.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
162 Teeuwssen M, Fodde R. Cell Heterogeneity and Phenotypic Plasticity in Metastasis Formation: The Case of Colon Cancer. Cancers (Basel) 2019;11:E1368. [PMID: 31540068 DOI: 10.3390/cancers11091368] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
163 Islam MT, Tasciotti E, Righetti R. Non-Invasive Imaging of Normalized Solid Stress in Cancers in Vivo. IEEE J Transl Eng Health Med 2019;7:4300209. [PMID: 32309062 DOI: 10.1109/JTEHM.2019.2932059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
164 Özkale B, Parreira R, Bekdemir A, Pancaldi L, Özelçi E, Amadio C, Kaynak M, Stellacci F, Mooney DJ, Sakar MS. Modular soft robotic microdevices for dexterous biomanipulation. Lab Chip 2019;19:778-88. [PMID: 30714604 DOI: 10.1039/c8lc01200h] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
165 Chen XQ, Xue CR, Hou P, Lin BQ, Zhang JR. Lymphocyte-to-monocyte ratio effectively predicts survival outcome of patients with obstructive colorectal cancer. World J Gastroenterol 2019; 25(33): 4970-4984 [PMID: 31543687 DOI: 10.3748/wjg.v25.i33.4970] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
166 Wong TY, Chang SN, Jhong RC, Tseng CJ, Sun GC, Cheng PW. Closer to Nature Through Dynamic Culture Systems. Cells 2019;8:E942. [PMID: 31438519 DOI: 10.3390/cells8090942] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
167 Takao S, Taya M, Chiew C. Mechanical stress-induced cell death in breast cancer cells. Biol Open 2019;8:bio043133. [PMID: 31362953 DOI: 10.1242/bio.043133] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
168 Kim BG, Sung JS, Jang Y, Cha YJ, Kang S, Han HH, Lee JH, Cho NH. Compression-induced expression of glycolysis genes in CAFs correlates with EMT and angiogenesis gene expression in breast cancer. Commun Biol 2019;2:313. [PMID: 31428701 DOI: 10.1038/s42003-019-0553-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
169 Shang M, Soon RH, Lim CT, Khoo BL, Han J. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip 2019;19:369-86. [PMID: 30644496 DOI: 10.1039/c8lc00970h] [Cited by in Crossref: 119] [Cited by in F6Publishing: 123] [Article Influence: 29.8] [Reference Citation Analysis]
170 Islam MT, Righetti R. A Novel Finite Element Model to Assess the Effect of Solid Stress Inside Tumors on Elastographic Normal Strains and Fluid Pressure. Journal of Engineering and Science in Medical Diagnostics and Therapy 2019;2. [DOI: 10.1115/1.4044048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
171 Das J, Agarwal T, Chakraborty S, Maiti TK. Compressive stress-induced autophagy promotes invasion of HeLa cells by facilitating protein turnover in vitro. Experimental Cell Research 2019;381:201-7. [DOI: 10.1016/j.yexcr.2019.04.037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
172 Liu G, Zhang MK, He Y, Li XR, Wang ZL. Shear wave elasticity of breast lesions: would it be correlated with the extracellular matrix components? Gland Surg 2019;8:399-406. [PMID: 31538065 DOI: 10.21037/gs.2019.04.09] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
173 Begum HM, Ta HP, Zhou H, Ando Y, Kang D, Nemes K, Mariano CF, Hao J, Yu M, Shen K. Spatial Regulation of Mitochondrial Heterogeneity by Stromal Confinement in Micropatterned Tumor Models. Sci Rep 2019;9:11187. [PMID: 31371796 DOI: 10.1038/s41598-019-47593-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
174 Ficorella C, Martínez Vázquez R, Heine P, Lepera E, Cao J, Warmt E, Osellame R, Käs JA. Normal epithelial and triple-negative breast cancer cells show the same invasion potential in rigid spatial confinement. New J Phys 2019;21:083016. [DOI: 10.1088/1367-2630/ab3572] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
175 Chen Z, Li H, Zhang L, Lee CK, Ho LWC, Chan CKW, Yang H, Choi CHJ. Specific Delivery of Oligonucleotides to the Cell Nucleus via Gentle Compression and Attachment of Polythymidine. ACS Appl Mater Interfaces 2019;11:27624-40. [PMID: 31303000 DOI: 10.1021/acsami.9b11391] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
176 Murphy RJ, Buenzli PR, Baker RE, Simpson MJ. A one-dimensional individual-based mechanical model of cell movement in heterogeneous tissues and its coarse-grained approximation. Proc Math Phys Eng Sci 2019;475:20180838. [PMID: 31423086 DOI: 10.1098/rspa.2018.0838] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
177 Taubenberger AV, Girardo S, Träber N, Fischer-Friedrich E, Kräter M, Wagner K, Kurth T, Richter I, Haller B, Binner M, Hahn D, Freudenberg U, Werner C, Guck J. 3D Microenvironment Stiffness Regulates Tumor Spheroid Growth and Mechanics via p21 and ROCK. Adv Biosyst 2019;3:e1900128. [PMID: 32648654 DOI: 10.1002/adbi.201900128] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 12.3] [Reference Citation Analysis]
178 Kolb AD, Bussard KM. The Bone Extracellular Matrix as an Ideal Milieu for Cancer Cell Metastases. Cancers (Basel) 2019;11:E1020. [PMID: 31330786 DOI: 10.3390/cancers11071020] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
179 Stella GM, Kolling S, Benvenuti S, Bortolotto C. Lung-Seeking Metastases. Cancers (Basel) 2019;11:E1010. [PMID: 31330946 DOI: 10.3390/cancers11071010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 8.5] [Reference Citation Analysis]
180 Bregenzer ME, Horst EN, Mehta P, Novak CM, Repetto T, Mehta G. The Role of Cancer Stem Cells and Mechanical Forces in Ovarian Cancer Metastasis. Cancers (Basel) 2019;11:E1008. [PMID: 31323899 DOI: 10.3390/cancers11071008] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 8.3] [Reference Citation Analysis]
181 Chang J, Chaudhuri O. Beyond proteases: Basement membrane mechanics and cancer invasion. J Cell Biol 2019;218:2456-69. [PMID: 31315943 DOI: 10.1083/jcb.201903066] [Cited by in Crossref: 76] [Cited by in F6Publishing: 82] [Article Influence: 19.0] [Reference Citation Analysis]
182 Kareva I. Metabolism and Gut Microbiota in Cancer Immunoediting, CD8/Treg Ratios, Immune Cell Homeostasis, and Cancer (Immuno)Therapy: Concise Review. Stem Cells 2019;37:1273-80. [PMID: 31260163 DOI: 10.1002/stem.3051] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
183 Das J, Chakraborty S, Maiti TK. Mechanical stress-induced autophagic response: A cancer-enabling characteristic? Semin Cancer Biol 2020;66:101-9. [PMID: 31150765 DOI: 10.1016/j.semcancer.2019.05.017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
184 Mei X, Middleton K, Shim D, Wan Q, Xu L, Ma YV, Devadas D, Walji N, Wang L, Young EWK, You L. Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis. Integrative Biology 2019;11:119-29. [DOI: 10.1093/intbio/zyz008] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 9.8] [Reference Citation Analysis]
185 Mascheroni P, López Alfonso JC, Kalli M, Stylianopoulos T, Meyer-Hermann M, Hatzikirou H. On the Impact of Chemo-Mechanically Induced Phenotypic Transitions in Gliomas. Cancers (Basel) 2019;11:E716. [PMID: 31137643 DOI: 10.3390/cancers11050716] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
186 Jang I, Beningo KA. Integrins, CAFs and Mechanical Forces in the Progression of Cancer. Cancers (Basel) 2019;11:E721. [PMID: 31137693 DOI: 10.3390/cancers11050721] [Cited by in Crossref: 73] [Cited by in F6Publishing: 78] [Article Influence: 18.3] [Reference Citation Analysis]
187 Aoun L, Larnier S, Weiss P, Cazales M, Herbulot A, Ducommun B, Vieu C, Lobjois V. Measure and characterization of the forces exerted by growing multicellular spheroids using microdevice arrays. PLoS One 2019;14:e0217227. [PMID: 31120960 DOI: 10.1371/journal.pone.0217227] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
188 Bregenzer ME, Horst EN, Mehta P, Novak CM, Raghavan S, Snyder CS, Mehta G. Integrated cancer tissue engineering models for precision medicine. PLoS One 2019;14:e0216564. [PMID: 31075118 DOI: 10.1371/journal.pone.0216564] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
189 Bandyopadhyay A, Yadav P, Sarkar K, Bhattacharyya S. The destructive spontaneous ingression of tunable silica nanosheets through cancer cell membranes. Chem Sci 2019;10:6184-92. [PMID: 31360425 DOI: 10.1039/c9sc00076c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
190 Ansaryan S, Khayamian MA, Saghafi M, Shalileh S, Nikshoar MS, Abbasvandi F, Mahmoudi M, Bahrami F, Abdolahad M. Stretch Induces Invasive Phenotypes in Breast Cells Due to Activation of Aerobic-Glycolysis-Related Pathways. Adv Biosyst 2019;3:e1800294. [PMID: 32648669 DOI: 10.1002/adbi.201800294] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
191 Yadav S, Vadivelu R, Ahmed M, Barton M, Nguyen N. Stretching cells – An approach for early cancer diagnosis. Experimental Cell Research 2019;378:191-7. [DOI: 10.1016/j.yexcr.2019.01.029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
192 Nourmohammadi S, Aung TN, Cui J, Pei JV, De Ieso ML, Harata-Lee Y, Qu Z, Adelson DL, Yool AJ. Effect of Compound Kushen Injection, a Natural Compound Mixture, and Its Identified Chemical Components on Migration and Invasion of Colon, Brain, and Breast Cancer Cell Lines. Front Oncol 2019;9:314. [PMID: 31106149 DOI: 10.3389/fonc.2019.00314] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 7.5] [Reference Citation Analysis]
193 Calhoun MA, Chowdhury SS, Nelson MT, Lannutti JJ, Dupaix RB, Winter JO. Effect of Electrospun Fiber Mat Thickness and Support Method on Cell Morphology. Nanomaterials (Basel) 2019;9:E644. [PMID: 31010029 DOI: 10.3390/nano9040644] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
194 Chew S, Zeng Y, Khoo D, Hong Yu MY, Ahmed S, Chiam K. Enrichment and Identification of Neural Stem Cells in Neurospheres Using Rigidity-Tunable Gels. Tissue Engineering Part A 2019;25:427-36. [DOI: 10.1089/ten.tea.2018.0221] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
195 Xiao Y, Riahi R, Torab P, Zhang DD, Wong PK. Collective Cell Migration in 3D Epithelial Wound Healing. ACS Nano 2019;13:1204-12. [PMID: 30758172 DOI: 10.1021/acsnano.8b06305] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
196 Kalli M, Minia A, Pliaka V, Fotis C, Alexopoulos LG, Stylianopoulos T. Solid stress-induced migration is mediated by GDF15 through Akt pathway activation in pancreatic cancer cells. Sci Rep 2019;9:978. [PMID: 30700740 DOI: 10.1038/s41598-018-37425-6] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]
197 Chen Z, Liu W, Wang X, Liu Y, Li X. Sequential Drug Release to Modulate Collagen Synthesis and Promote Micelle Penetration in Tumors. ACS Biomater Sci Eng 2019;5:1343-53. [DOI: 10.1021/acsbiomaterials.8b01600] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
198 Lee G, Han SB, Lee JH, Kim HW, Kim DH. Cancer Mechanobiology: Microenvironmental Sensing and Metastasis. ACS Biomater Sci Eng 2019;5:3735-52. [PMID: 33405888 DOI: 10.1021/acsbiomaterials.8b01230] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
199 Lee W, Kalashnikov N, Mok S, Halaoui R, Kuzmin E, Putnam AJ, Takayama S, Park M, McCaffrey L, Zhao R, Leask RL, Moraes C. Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nat Commun 2019;10:144. [PMID: 30635553 DOI: 10.1038/s41467-018-07967-4] [Cited by in Crossref: 51] [Cited by in F6Publishing: 59] [Article Influence: 12.8] [Reference Citation Analysis]
200 Murad HY, Yu H, Luo D, Bortz EP, Halliburton GM, Sholl AB, Khismatullin DB. Mechanochemical Disruption Suppresses Metastatic Phenotype and Pushes Prostate Cancer Cells toward Apoptosis. Mol Cancer Res 2019;17:1087-101. [PMID: 30617107 DOI: 10.1158/1541-7786.MCR-18-0782] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
201 Luo M, K. Y. Ho K, Tong Z, Deng L, P. Liu A. Compressive Stress Enhances Invasive Phenotype of Cancer Cells via Piezo1 Activation.. [DOI: 10.1101/513218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
202 Gkretsi V, Louca M, Stylianou A, Minadakis G, Spyrou GM, Stylianopoulos T. Inhibition of Breast Cancer Cell Invasion by Ras Suppressor-1 (RSU-1) Silencing Is Reversed by Growth Differentiation Factor-15 (GDF-15). Int J Mol Sci 2019;20:E163. [PMID: 30621163 DOI: 10.3390/ijms20010163] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
203 Islam MT, Righetti R. A New Poroelastography Method to Assess the Solid Stress Distribution in Cancers. IEEE Access 2019;7:103404-15. [DOI: 10.1109/access.2019.2929021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
204 Ewing JR, Elmghirbi R, Nagaraja T. Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Brain Tumors. Nervous System Drug Delivery 2019. [DOI: 10.1016/b978-0-12-813997-4.00020-7] [Reference Citation Analysis]
205 Pajic-lijakovic I, Milivojevic M, Levic S, Trifkovic K, Balanc B, Nedovic V, Stevanovic-dajic Z, Radosevic R, Bugarski B. Matrix resistance stress reduction—prerequisite for achieving higher concentration of immobilized cells. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-818431-8.00009-x] [Reference Citation Analysis]
206 Vella A, Eko EM, Del Río Hernández A. The emergence of solid stress as a potent biomechanical marker of tumour progression. Emerg Top Life Sci 2018;2:739-49. [PMID: 33530664 DOI: 10.1042/ETLS20180049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
207 Nourmohammadi S, Aung TN, Cui J, Pei JV, De Ieso ML, Harata-lee Y, Qu Z, Adelson DL, Yool AJ. Effect of Compound Kushen Injection, a natural compound mixture, and its identified chemical components on migration and invasion of colon, brain and breast cancer cell lines.. [DOI: 10.1101/500124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
208 Murphy RJ, Buenzli PR, Baker RE, Simpson MJ. An individual-based mechanical model of cell movement in heterogeneous tissues and its coarse-grained approximation.. [DOI: 10.1101/485276] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
209 Mascheroni P, Lopez Alfonso JC, Kalli M, Stylianopoulos T, Meyer-hermann M, Hatzikirou H. On the impact of chemo-mechanically induced phenotypic transitions in gliomas.. [DOI: 10.1101/476150] [Reference Citation Analysis]
210 Battaglia RA, Delic S, Herrmann H, Snider NT. Vimentin on the move: new developments in cell migration. F1000Res 2018;7:F1000 Faculty Rev-1796. [PMID: 30505430 DOI: 10.12688/f1000research.15967.1] [Cited by in Crossref: 118] [Cited by in F6Publishing: 131] [Article Influence: 23.6] [Reference Citation Analysis]
211 Fleming JM, Yeyeodu ST, McLaughlin A, Schuman D, Taylor DK. In Situ Drug Delivery to Breast Cancer-Associated Extracellular Matrix. ACS Chem Biol 2018;13:2825-40. [PMID: 30183254 DOI: 10.1021/acschembio.8b00396] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
212 Zhang Q, Han X, Chen J, Xie X, Xu J, Zhao Y, Shen J, Hu L, Xu P, Song H, Zhang L, Zhao B, Wang YJ, Xia Z. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) mediate cell density-dependent proinflammatory responses. J Biol Chem 2018;293:18071-85. [PMID: 30315101 DOI: 10.1074/jbc.RA118.004251] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
213 Carotenuto A, Cutolo A, Petrillo A, Fusco R, Arra C, Sansone M, Larobina D, Cardoso L, Fraldi M. Growth and in vivo stresses traced through tumor mechanics enriched with predator-prey cells dynamics. Journal of the Mechanical Behavior of Biomedical Materials 2018;86:55-70. [DOI: 10.1016/j.jmbbm.2018.06.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
214 Damodaran K, Venkatachalapathy S, Alisafaei F, Radhakrishnan AV, Sharma Jokhun D, Shenoy VB, Shivashankar GV. Compressive force induces reversible chromatin condensation and cell geometry-dependent transcriptional response. Mol Biol Cell 2018;29:3039-51. [PMID: 30256731 DOI: 10.1091/mbc.E18-04-0256] [Cited by in Crossref: 74] [Cited by in F6Publishing: 73] [Article Influence: 14.8] [Reference Citation Analysis]
215 Klymenko Y, Wates RB, Weiss-Bilka H, Lombard R, Liu Y, Campbell L, Kim O, Wagner D, Ravosa MJ, Stack MS. Modeling the effect of ascites-induced compression on ovarian cancer multicellular aggregates. Dis Model Mech 2018;11:dmm034199. [PMID: 30254133 DOI: 10.1242/dmm.034199] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
216 Kumar V, Soni P, Garg M, Kamholz S, Chandra AB. Emerging Therapies in the Management of Advanced-Stage Gastric Cancer. Front Pharmacol. 2018;9:404. [PMID: 30271341 DOI: 10.3389/fphar.2018.00404] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
217 Liu W, He HB, Zhang C, Liu YP, Wan J. Distraction-suppression effect on osteosarcoma. Med Hypotheses. 2018;121:4-5. [PMID: 30396485 DOI: 10.1016/j.mehy.2018.09.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
218 Emon B, Bauer J, Jain Y, Jung B, Saif T. Biophysics of Tumor Microenvironment and Cancer Metastasis - A Mini Review. Comput Struct Biotechnol J 2018;16:279-87. [PMID: 30128085 DOI: 10.1016/j.csbj.2018.07.003] [Cited by in Crossref: 134] [Cited by in F6Publishing: 141] [Article Influence: 26.8] [Reference Citation Analysis]
219 Ferreira LP, Gaspar VM, Mano JF. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomater 2018;75:11-34. [PMID: 29803007 DOI: 10.1016/j.actbio.2018.05.034] [Cited by in Crossref: 105] [Cited by in F6Publishing: 105] [Article Influence: 21.0] [Reference Citation Analysis]
220 Fox ZD, Jiang G, Ho KKY, Walker KA, Liu AP, Kunisaki SM. Fetal lung transcriptome patterns in an ex vivo compression model of diaphragmatic hernia. J Surg Res 2018;231:411-20. [PMID: 30278961 DOI: 10.1016/j.jss.2018.06.064] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
221 Szasz O, Vincze G, Szigeti GP, Benyo Z, Szasz A. An allometric approach of tumor-angiogenesis. Medical Hypotheses 2018;116:74-8. [DOI: 10.1016/j.mehy.2018.03.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
222 Yue X, Nguyen TD, Zellmer V, Zhang S, Zorlutuna P. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials 2018;170:37-48. [DOI: 10.1016/j.biomaterials.2018.04.001] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
223 Chaudhuri PK, Low BC, Lim CT. Mechanobiology of Tumor Growth. Chem Rev 2018;118:6499-515. [DOI: 10.1021/acs.chemrev.8b00042] [Cited by in Crossref: 75] [Cited by in F6Publishing: 85] [Article Influence: 15.0] [Reference Citation Analysis]
224 Herbig M, Mietke A, Müller P, Otto O. Statistics for real-time deformability cytometry: Clustering, dimensionality reduction, and significance testing. Biomicrofluidics 2018;12:042214. [PMID: 29937952 DOI: 10.1063/1.5027197] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
225 Suzuki T, Muraki Y, Hatano N, Suzuki H, Muraki K. PIEZO1 Channel Is a Potential Regulator of Synovial Sarcoma Cell-Viability. Int J Mol Sci 2018;19:E1452. [PMID: 29757938 DOI: 10.3390/ijms19051452] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
226 Chen TH, Chen JS, Ko YC, Chen JW, Chu HY, Lu CS, Chu CW, Hsu HH, Tseng FG. A Microfluidic Platform for Investigating Transmembrane Pressure-Induced Glomerular Leakage. Micromachines (Basel) 2018;9:E228. [PMID: 30424161 DOI: 10.3390/mi9050228] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
227 Gkretsi V, Stylianopoulos T. Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Front Oncol 2018;8:145. [PMID: 29780748 DOI: 10.3389/fonc.2018.00145] [Cited by in Crossref: 182] [Cited by in F6Publishing: 195] [Article Influence: 36.4] [Reference Citation Analysis]
228 Mpekris F, Voutouri C, Papageorgis P, Stylianopoulos T. Stress alleviation strategy in cancer treatment: Insights from a mathematical model. Z Angew Math Mech 2018;98:2295-306. [DOI: 10.1002/zamm.201700270] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
229 Wolf KJ, Lee S, Kumar S. A 3D Topographical Model of Parenchymal Infiltration and Perivascular Invasion in Glioblastoma.. [DOI: 10.1101/298240] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
230 Wolf KJ, Lee S, Kumar S. A 3D topographical model of parenchymal infiltration and perivascular invasion in glioblastoma. APL Bioeng 2018;2:031903. [PMID: 29855630 DOI: 10.1063/1.5021059] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
231 Abdellatef SA, Nakanishi J. Photoactivatable substrates for systematic study of the impact of an extracellular matrix ligand on appearance of leader cells in collective cell migration. Biomaterials 2018;169:72-84. [PMID: 29655082 DOI: 10.1016/j.biomaterials.2018.03.045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
232 Ricca BL, Venugopalan G, Furuta S, Tanner K, Orellana WA, Reber CD, Brownfield DG, Bissell MJ, Fletcher DA. Transient external force induces phenotypic reversion of malignant epithelial structures via nitric oxide signaling. Elife 2018;7:e26161. [PMID: 29560858 DOI: 10.7554/eLife.26161] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
233 Stylianopoulos T, Munn LL, Jain RK. Reengineering the Tumor Vasculature: Improving Drug Delivery and Efficacy. Trends Cancer 2018;4:258-9. [PMID: 29606306 DOI: 10.1016/j.trecan.2018.02.010] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 10.6] [Reference Citation Analysis]
234 Das J, Maji S, Agarwal T, Chakraborty S, Maiti TK. Hemodynamic shear stress induces protective autophagy in HeLa cells through lipid raft-mediated mechanotransduction. Clin Exp Metastasis 2018;35:135-48. [DOI: 10.1007/s10585-018-9887-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
235 Stylianopoulos T, Munn LL, Jain RK. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 2018;4:292-319. [PMID: 29606314 DOI: 10.1016/j.trecan.2018.02.005] [Cited by in Crossref: 252] [Cited by in F6Publishing: 264] [Article Influence: 50.4] [Reference Citation Analysis]
236 Kalli M, Stylianopoulos T. Defining the Role of Solid Stress and Matrix Stiffness in Cancer Cell Proliferation and Metastasis. Front Oncol 2018;8:55. [PMID: 29594037 DOI: 10.3389/fonc.2018.00055] [Cited by in Crossref: 124] [Cited by in F6Publishing: 129] [Article Influence: 24.8] [Reference Citation Analysis]
237 Fang L, He Y, Tong Y, Hu L, Xin W, Liu Y, Zhong L, Zhang Y, Huang P. Flattened microvessel independently predicts poor prognosis of patients with non-small cell lung cancer. Oncotarget 2017;8:30092-9. [PMID: 28404911 DOI: 10.18632/oncotarget.15617] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
238 Gkretsi V, Stylianou A, Louca M, Stylianopoulos T. Identification of Ras suppressor-1 (RSU-1) as a potential breast cancer metastasis biomarker using a three-dimensional in vitro approach. Oncotarget 2017;8:27364-79. [PMID: 28423706 DOI: 10.18632/oncotarget.16062] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
239 Kalli M, Papageorgis P, Gkretsi V, Stylianopoulos T. Solid Stress Facilitates Fibroblasts Activation to Promote Pancreatic Cancer Cell Migration. Ann Biomed Eng 2018;46:657-69. [PMID: 29470747 DOI: 10.1007/s10439-018-1997-7] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 10.8] [Reference Citation Analysis]
240 Colella G, Fazioli F, Gallo M, De Chiara A, Apice G, Ruosi C, Cimmino A, de Nigris F. Sarcoma Spheroids and Organoids-Promising Tools in the Era of Personalized Medicine. Int J Mol Sci 2018;19:E615. [PMID: 29466296 DOI: 10.3390/ijms19020615] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
241 Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018;17:62. [PMID: 29458370 DOI: 10.1186/s12943-018-0815-z] [Cited by in Crossref: 67] [Cited by in F6Publishing: 73] [Article Influence: 13.4] [Reference Citation Analysis]
242 Surmaitis RL, Arias CJ, Schlenoff JB. Stressful Surfaces: Cell Metabolism on a Poorly Adhesive Substrate. Langmuir 2018;34:3119-25. [DOI: 10.1021/acs.langmuir.7b04172] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
243 Boyle ST, Kular J, Nobis M, Ruszkiewicz A, Timpson P, Samuel MS. Acute compressive stress activates RHO/ROCK-mediated cellular processes. Small GTPases 2020;11:354-70. [PMID: 29455593 DOI: 10.1080/21541248.2017.1413496] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
244 Bidan CM, Fratzl M, Coullomb A, Moreau P, Lombard AH, Wang I, Balland M, Boudou T, Dempsey NM, Devillers T, Dupont A. Magneto-active substrates for local mechanical stimulation of living cells. Sci Rep 2018;8:1464. [PMID: 29362476 DOI: 10.1038/s41598-018-19804-1] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
245 Kim BG, Kang S, Han HH, Lee JH, Kim JE, Lee SH, Cho NH. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets. Oncotarget 2016;7:27468-78. [PMID: 27027350 DOI: 10.18632/oncotarget.8322] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
246 Nakanishi J. Mechanobiology. Materials Nanoarchitectonics 2018. [DOI: 10.1002/9783527808311.ch18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
247 Khayamian MA, Ansaryan S, Moghtaderi H, Abdolahad M. Applying VHB acrylic elastomer as a cell culture and stretchable substrate. International Journal of Polymeric Materials and Polymeric Biomaterials 2018;67:1096-104. [DOI: 10.1080/00914037.2017.1419244] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
248 Nicolas-boluda A, Silva AK, Fournel S, Gazeau F. Physical oncology: New targets for nanomedicine. Biomaterials 2018;150:87-99. [DOI: 10.1016/j.biomaterials.2017.10.014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
249 Alvarez-elizondo MB, Rozen R, Weihs D. Mechanobiology of metastatic cancer. Mechanobiology in Health and Disease 2018. [DOI: 10.1016/b978-0-12-812952-4.00015-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
250 Holt L, Hallatschek O, Delarue M. Mechano-chemostats to study the effects of compressive stress on yeast. Methods in Cell Biology 2018. [DOI: 10.1016/bs.mcb.2018.06.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
251 Aragon-Sanabria V, Kim GB, Dong C. From Cancer Immunoediting to New Strategies in Cancer Immunotherapy: The Roles of Immune Cells and Mechanics in Oncology. Adv Exp Med Biol 2018;1092:113-38. [PMID: 30368751 DOI: 10.1007/978-3-319-95294-9_7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
252 Ghosh D, Dawson MR. Microenvironment Influences Cancer Cell Mechanics from Tumor Growth to Metastasis. Adv Exp Med Biol 2018;1092:69-90. [PMID: 30368749 DOI: 10.1007/978-3-319-95294-9_5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
253 Chen MB, Kamm RD, Moeendarbary E. Engineered Models of Metastasis with Application to Study Cancer Biomechanics. Advances in Experimental Medicine and Biology 2018. [DOI: 10.1007/978-3-319-95294-9_10] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
254 Herbig M, Kräter M, Plak K, Müller P, Guck J, Otto O. Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells. Methods Mol Biol 2018;1678:347-69. [PMID: 29071686 DOI: 10.1007/978-1-4939-7346-0_15] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
255 Urrutia CO, Dominguez-garcía MV, Flores-estrada J, Laguna-camacho A, Castillo-cadena J, Flores-merino MV. Mechanical Stimulation of Cells Through Scaffold Design for Tissue Engineering. Scaffolds in Tissue Engineering - Materials, Technologies and Clinical Applications 2017. [DOI: 10.5772/intechopen.69925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
256 Takahashi G, Yamada T, Iwai T, Takeda K, Koizumi M, Shinji S, Uchida E. Oncological Assessment of Stent Placement for Obstructive Colorectal Cancer from Circulating Cell-Free DNA and Circulating Tumor DNA Dynamics. Ann Surg Oncol. 2018;25:737-744. [PMID: 29235008 DOI: 10.1245/s10434-017-6300-x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 6.8] [Reference Citation Analysis]
257 Lejeune E, Linder C. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids. Biomech Model Mechanobiol 2018;17:727-43. [PMID: 29197990 DOI: 10.1007/s10237-017-0989-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
258 Mishra R, van Drogen F, Dechant R, Oh S, Jeon NL, Lee SS, Peter M. Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress. Proc Natl Acad Sci U S A 2017;114:13471-6. [PMID: 29196524 DOI: 10.1073/pnas.1709079114] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
259 Stylianopoulos T. The Solid Mechanics of Cancer and Strategies for Improved Therapy. J Biomech Eng 2017;139. [PMID: 27760260 DOI: 10.1115/1.4034991] [Cited by in Crossref: 76] [Cited by in F6Publishing: 79] [Article Influence: 12.7] [Reference Citation Analysis]
260 Heo SJ, Cosgrove BD, Dai EN, Mauck RL. Mechano-adaptation of the stem cell nucleus. Nucleus 2018;9:9-19. [PMID: 29099288 DOI: 10.1080/19491034.2017.1371398] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
261 Venhuizen JH, Zegers MM. Making Heads or Tails of It: Cell-Cell Adhesion in Cellular and Supracellular Polarity in Collective Migration. Cold Spring Harb Perspect Biol 2017;9:a027854. [PMID: 28246177 DOI: 10.1101/cshperspect.a027854] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
262 Theveneau E, Linker C. Leaders in collective migration: are front cells really endowed with a particular set of skills? F1000Res 2017;6:1899. [PMID: 29152225 DOI: 10.12688/f1000research.11889.1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 7.5] [Reference Citation Analysis]
263 Paul CD, Hung WC, Wirtz D, Konstantopoulos K. Engineered Models of Confined Cell Migration. Annu Rev Biomed Eng 2016;18:159-80. [PMID: 27420571 DOI: 10.1146/annurev-bioeng-071114-040654] [Cited by in Crossref: 74] [Cited by in F6Publishing: 78] [Article Influence: 12.3] [Reference Citation Analysis]
264 Messica Y, Laser-Azogui A, Volberg T, Elisha Y, Lysakovskaia K, Eils R, Gladilin E, Geiger B, Beck R. The role of Vimentin in Regulating Cell Invasive Migration in Dense Cultures of Breast Carcinoma Cells. Nano Lett 2017;17:6941-8. [PMID: 29022351 DOI: 10.1021/acs.nanolett.7b03358] [Cited by in Crossref: 42] [Cited by in F6Publishing: 47] [Article Influence: 7.0] [Reference Citation Analysis]
265 Bidan CM, Fratzl M, Coullomb A, Moreau P, Lombard AH, Wang I, Balland M, Boudou T, Dempsey NM, Devillers T, Dupont A. Magneto-active substrates for local mechanical stimulation of living cells.. [DOI: 10.1101/204586] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
266 Mitchell MJ, Jain RK, Langer R. Engineering and physical sciences in oncology: challenges and opportunities. Nat Rev Cancer 2017;17:659-75. [PMID: 29026204 DOI: 10.1038/nrc.2017.83] [Cited by in Crossref: 163] [Cited by in F6Publishing: 168] [Article Influence: 27.2] [Reference Citation Analysis]
267 Sonavane PR, Wang C, Dzamba B, Weber GF, Periasamy A, DeSimone DW. Mechanical and signaling roles for keratin intermediate filaments in the assembly and morphogenesis of Xenopus mesendoderm tissue at gastrulation. Development 2017;144:4363-76. [PMID: 28982683 DOI: 10.1242/dev.155200] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
268 Gallinato O, Colin T, Saut O, Poignard C. Tumor growth model of ductal carcinoma: from in situ phase to stroma invasion. J Theor Biol 2017;429:253-66. [PMID: 28669882 DOI: 10.1016/j.jtbi.2017.06.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
269 Rajasekharan V, Sreenivasan VKA, Pereira FA, Farrell B. Catch-slip behavior observed upon rupturing membrane-cytoskeleton bonds.. [DOI: 10.1101/184069] [Reference Citation Analysis]
270 Xue SL, Lin SZ, Li B, Feng XQ. A nonlinear poroelastic theory of solid tumors with glycosaminoglycan swelling. J Theor Biol 2017;433:49-56. [PMID: 28859927 DOI: 10.1016/j.jtbi.2017.08.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
271 Chen Q, Yang D, Zong H, Zhu L, Wang L, Wang X, Zhu X, Song X, Wang J. Growth-induced stress enhances epithelial-mesenchymal transition induced by IL-6 in clear cell renal cell carcinoma via the Akt/GSK-3β/β-catenin signaling pathway. Oncogenesis 2017;6:e375. [PMID: 28846080 DOI: 10.1038/oncsis.2017.74] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 6.3] [Reference Citation Analysis]
272 Iranmanesh F, Nazari MA. Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model. J Biomech Eng 2017;139. [PMID: 28614573 DOI: 10.1115/1.4037038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
273 Fan B, Hu B, Yuan Q, Wen S, Liu T, Bai S, Qi X, Wang X, Yang D, Sun X, Song X. Impact of tumor architecture on disease recurrence and cancer-specific mortality of upper tract urothelial carcinoma treated with radical nephroureterectomy. Tumour Biol 2017;39:1010428317710822. [PMID: 28714362 DOI: 10.1177/1010428317710822] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
274 Kolosnjaj-Tabi J, Marangon I, Nicolas-Boluda A, Silva AKA, Gazeau F. Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix. Pharmacol Res 2017;126:123-37. [PMID: 28720518 DOI: 10.1016/j.phrs.2017.07.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
275 Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017;22-23:88-119. [PMID: 28688729 DOI: 10.1016/j.plrev.2017.06.016] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 8.3] [Reference Citation Analysis]
276 Hui TH, Tang YH, Yan Z, Yip TC, Fong HW, Cho WC, Ngan KC, Shum HC, Lin Y. Cadherin- and Rigidity-Dependent Growth of Lung Cancer Cells in a Partially Confined Microenvironment. ACS Biomater Sci Eng 2018;4:446-55. [PMID: 33418735 DOI: 10.1021/acsbiomaterials.7b00130] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
277 Evje S. An integrative multiphase model for cancer cell migration under influence of physical cues from the microenvironment. Chemical Engineering Science 2017;165:240-59. [DOI: 10.1016/j.ces.2017.02.045] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
278 Chen J, Kumar S. Biophysical Regulation of Cancer Stem/Initiating Cells: Implications for Disease Mechanisms and Translation. Curr Opin Biomed Eng 2017;1:87-95. [PMID: 29082354 DOI: 10.1016/j.cobme.2017.02.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
279 Eftimie R, Perez M, Buono PL. Pattern formation in a nonlocal mathematical model for the multiple roles of the TGF-β pathway in tumour dynamics. Math Biosci 2017;289:96-115. [PMID: 28511959 DOI: 10.1016/j.mbs.2017.05.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
280 Malandrino A, Kamm RD, Moeendarbary E. In Vitro Modeling of Mechanics in Cancer Metastasis. ACS Biomater Sci Eng 2018;4:294-301. [PMID: 29457129 DOI: 10.1021/acsbiomaterials.7b00041] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 8.2] [Reference Citation Analysis]
281 Taya M, Xu C, Matsuse T, Muraishi S. Molecular dynamics model for nano-motions of FePd nanohelices. Journal of Applied Physics 2017;121:154302. [DOI: 10.1063/1.4979474] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
282 Pajic-Lijakovic I, Milivojevic M. Successive relaxation cycles during long-time cell aggregate rounding after uni-axial compression. J Biol Phys 2017;43:197-209. [PMID: 28337554 DOI: 10.1007/s10867-017-9446-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
283 West AV, Wullkopf L, Christensen A, Leijnse N, Tarp JM, Mathiesen J, Erler JT, Oddershede LB. Dynamics of cancerous tissue correlates with invasiveness. Sci Rep 2017;7:43800. [PMID: 28262796 DOI: 10.1038/srep43800] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
284 Kim BG, Gao MQ, Kang S, Choi YP, Lee JH, Kim JE, Han HH, Mun SG, Cho NH. Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis. 2017;8:e2646. [PMID: 28252641 DOI: 10.1038/cddis.2017.73] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 6.5] [Reference Citation Analysis]
285 Gkretsi V, Stylianou A, Stylianopoulos T. Vasodilator-Stimulated Phosphoprotein (VASP) depletion from breast cancer MDA-MB-231 cells inhibits tumor spheroid invasion through downregulation of Migfilin, β-catenin and urokinase-plasminogen activator (uPA). Exp Cell Res 2017;352:281-92. [PMID: 28209486 DOI: 10.1016/j.yexcr.2017.02.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
286 Haase K, Shendruk TN, Pelling AE. Rapid dynamics of cell-shape recovery in response to local deformations. Soft Matter 2017;13:567-77. [PMID: 27942684 DOI: 10.1039/c6sm02560a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
287 Shendruk TN, Doostmohammadi A, Thijssen K, Yeomans JM. Dancing disclinations in confined active nematics. Soft Matter 2017;13:3853-62. [DOI: 10.1039/c6sm02310j] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 10.0] [Reference Citation Analysis]
288 Celli JP, Anderson MD. Cancer Biophysics. Reference Module in Life Sciences 2017. [DOI: 10.1016/b978-0-12-809633-8.12037-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
289 Piotrowski-Daspit AS, Tien J, Nelson CM. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr Biol (Camb) 2016;8:319-31. [PMID: 26853861 DOI: 10.1039/c5ib00282f] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 8.9] [Reference Citation Analysis]
290 Yang L, Carrington LJ, Erdogan B, Ao M, Brewer BM, Webb DJ, Li D. Biomechanics of cell reorientation in a three-dimensional matrix under compression. Exp Cell Res 2017;350:253-66. [PMID: 27919745 DOI: 10.1016/j.yexcr.2016.12.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
291 Martin JD, Fukumura D, Duda DG, Boucher Y, Jain RK. Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. Cold Spring Harb Perspect Med 2016;6:a027094. [PMID: 27663981 DOI: 10.1101/cshperspect.a027094] [Cited by in Crossref: 71] [Cited by in F6Publishing: 88] [Article Influence: 10.1] [Reference Citation Analysis]
292 Nia HT, Liu H, Seano G, Datta M, Jones D, Rahbari N, Incio J, Chauhan VP, Jung K, Martin JD, Askoxylakis V, Padera TP, Fukumura D, Boucher Y, Hornicek FJ, Grodzinsky AJ, Baish JW, Munn LL, Jain RK. Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 2016;1:0004. [PMID: 28966873 DOI: 10.1038/s41551-016-0004] [Cited by in Crossref: 152] [Cited by in F6Publishing: 171] [Article Influence: 21.7] [Reference Citation Analysis]
293 Voutouri C, Polydorou C, Papageorgis P, Gkretsi V, Stylianopoulos T. Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy. Neoplasia. 2016;18:732-741. [PMID: 27886639 DOI: 10.1016/j.neo.2016.10.001] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 9.1] [Reference Citation Analysis]
294 Lorenzo G, Scott MA, Tew K, Hughes TJ, Zhang YJ, Liu L, Vilanova G, Gomez H. Tissue-scale, personalized modeling and simulation of prostate cancer growth. Proc Natl Acad Sci U S A 2016;113:E7663-71. [PMID: 27856758 DOI: 10.1073/pnas.1615791113] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 7.6] [Reference Citation Analysis]
295 Guzman A, Sánchez Alemany V, Nguyen Y, Zhang CR, Kaufman LJ. A novel 3D in vitro metastasis model elucidates differential invasive strategies during and after breaching basement membrane. Biomaterials 2017;115:19-29. [PMID: 27880891 DOI: 10.1016/j.biomaterials.2016.11.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
296 Toume S, Gefen A, Weihs D. Low-level stretching accelerates cell migration into a gap. Int Wound J 2017;14:698-703. [PMID: 27748039 DOI: 10.1111/iwj.12679] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
297 Marturano-Kruik A, Yeager K, Bach D, Villasante A, Cimetta E, Vunjak-Novakovic G. Mimicking biophysical stimuli within bone tumor microenvironment. Annu Int Conf IEEE Eng Med Biol Soc 2015;2015:3561-4. [PMID: 26737062 DOI: 10.1109/EMBC.2015.7319162] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.1] [Reference Citation Analysis]
298 Boddupalli A, Zhu L, Bratlie KM. Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes. Adv Healthc Mater 2016;5:2575-94. [PMID: 27593734 DOI: 10.1002/adhm.201600532] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 7.0] [Reference Citation Analysis]
299 Jiang C, Cui C, Zhong W, Li G, Li L, Shao Y. Tumor proliferation and diffusion on percolation clusters. J Biol Phys 2016;42:637-58. [PMID: 27678112 DOI: 10.1007/s10867-016-9427-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
300 Kieffer C, Wang Y, Bagca F, Lamaze C. [Butterfly effect and cancer: how a mechanical pressure induced in vivo leads to tumorigenesis in neighboring healthy cells]. Med Sci (Paris) 2016;32:713-5. [PMID: 27615178 DOI: 10.1051/medsci/20163208017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
301 Spicer GL, Azarin SM, Yi J, Young ST, Ellis R, Bauer GM, Shea LD, Backman V. Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography. Phys Med Biol 2016;61:6892-904. [PMID: 27618507 DOI: 10.1088/0031-9155/61/19/6892] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
302 Xue S, Li B, Feng X, Gao H. Biochemomechanical poroelastic theory of avascular tumor growth. Journal of the Mechanics and Physics of Solids 2016;94:409-32. [DOI: 10.1016/j.jmps.2016.05.011] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.7] [Reference Citation Analysis]
303 Dupont N, Codogno P. Autophagy transduces physical constraints into biological responses. Int J Biochem Cell Biol 2016;79:419-26. [PMID: 27566364 DOI: 10.1016/j.biocel.2016.08.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
304 Dean ZS, Elias P, Jamilpour N, Utzinger U, Wong PK. Probing 3D Collective Cancer Invasion Using Double-Stranded Locked Nucleic Acid Biosensors. Anal Chem 2016;88:8902-7. [PMID: 27529634 DOI: 10.1021/acs.analchem.6b02608] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
305 McGrail DJ, McAndrews KM, Brandenburg CP, Ravikumar N, Kieu QM, Dawson MR. Osmotic Regulation Is Required for Cancer Cell Survival under Solid Stress. Biophys J 2015;109:1334-7. [PMID: 26445434 DOI: 10.1016/j.bpj.2015.07.046] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
306 Huang J, Wang L, Xiong C, Yuan F. Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment. Biomaterials 2016;98:103-12. [DOI: 10.1016/j.biomaterials.2016.04.024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
307 Doostmohammadi A, Thampi SP, Yeomans JM. Defect-Mediated Morphologies in Growing Cell Colonies. Phys Rev Lett 2016;117. [DOI: 10.1103/physrevlett.117.048102] [Cited by in Crossref: 85] [Cited by in F6Publishing: 87] [Article Influence: 12.1] [Reference Citation Analysis]
308 Prakash SS. Physicochemical modeling of tumorigenic homeorhesis: a system-dynamics interpretation of computer simulations. Converg Sci Phys Oncol 2016;2:035001. [DOI: 10.1088/2057-1739/2/3/035001] [Reference Citation Analysis]
309 Haase K, Shendruk TN, Pelling AE. Rapid dynamics of cell-shape recovery in response to local deformations.. [DOI: 10.1101/056143] [Reference Citation Analysis]
310 Brossel R, Yahi A, David S, Moreno Velasquez L, Guinebretière JM. Mechanical Signals Inhibit Growth of a Grafted Tumor In Vivo: Proof of Concept. PLoS One 2016;11:e0152885. [PMID: 27100674 DOI: 10.1371/journal.pone.0152885] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
311 Kuo CC, Kachan D, Levine AJ, Dennin M. Bubble-raft collapse and the nonequilibrium dynamics of two-state elastica. Phys Rev E 2016;93:032613. [PMID: 27078420 DOI: 10.1103/PhysRevE.93.032613] [Reference Citation Analysis]
312 Angeli S, Stylianopoulos T. Biphasic modeling of brain tumor biomechanics and response to radiation treatment. J Biomech 2016;49:1524-31. [PMID: 27086116 DOI: 10.1016/j.jbiomech.2016.03.029] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
313 Brossel R, Yahi A, David S, Moreno Velasquez L, Guinebretière J. Mechanical signals inhibit growth of a grafted tumor in vivo: Proof of Concept.. [DOI: 10.1101/045534] [Reference Citation Analysis]
314 Prakash SS. Cavitation of tumoral basement membrane as onset of cancer invasion and metastasis: physics of oncogenic homeorhesis via nonlinear mechano-metabolomics. Converg Sci Phys Oncol 2016;2:015001. [DOI: 10.1088/2057-1739/2/1/015001] [Reference Citation Analysis]
315 Yang Y, Jamilpour N, Yao B, Dean ZS, Riahi R, Wong PK. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement. Sci Rep 2016;6:22707. [PMID: 26936382 DOI: 10.1038/srep22707] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
316 Insua-Rodríguez J, Oskarsson T. The extracellular matrix in breast cancer. Adv Drug Deliv Rev 2016;97:41-55. [PMID: 26743193 DOI: 10.1016/j.addr.2015.12.017] [Cited by in Crossref: 209] [Cited by in F6Publishing: 226] [Article Influence: 29.9] [Reference Citation Analysis]
317 Reinhart-king CA. Cancer Cell Mechanics. Physical Sciences and Engineering Advances in Life Sciences and Oncology 2016. [DOI: 10.1007/978-3-319-17930-8_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
318 He X, Lee B, Jiang Y. Cell-ECM Interactions in Tumor Invasion. Adv Exp Med Biol 2016;936:73-91. [PMID: 27739043 DOI: 10.1007/978-3-319-42023-3_4] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 6.6] [Reference Citation Analysis]
319 Marturano-Kruik A, Villasante A, Vunjak-Novakovic G. Bioengineered Models of Solid Human Tumors for Cancer Research. Methods Mol Biol 2016;1502:203-11. [PMID: 27115504 DOI: 10.1007/7651_2016_353] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
320 Stylianou A, Stylianopoulos T. Atomic Force Microscopy Probing of Cancer Cells and Tumor Microenvironment Components. BioNanoSci 2016;6:33-46. [DOI: 10.1007/s12668-015-0187-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
321 Van Liedekerke P, Palm MM, Jagiella N, Drasdo D. Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comp Part Mech 2015;2:401-44. [DOI: 10.1007/s40571-015-0082-3] [Cited by in Crossref: 153] [Cited by in F6Publishing: 59] [Article Influence: 19.1] [Reference Citation Analysis]
322 Taloni A, Ben Amar M, Zapperi S, La Porta CA. The role of pressure in cancer growth. Eur Phys J Plus 2015;130. [DOI: 10.1140/epjp/i2015-15224-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
323 Heine P, Ehrlicher A, Käs J. Neuronal and metastatic cancer cells: Unlike brothers. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2015;1853:3126-31. [DOI: 10.1016/j.bbamcr.2015.06.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
324 Bao Y, Guo Z, Chen T. Left-right asymmetry in cell orientation requires high substrate rigidity. 2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED) 2015. [DOI: 10.1109/nanomed.2015.7492496] [Reference Citation Analysis]
325 Gkretsi V, Stylianou A, Papageorgis P, Polydorou C, Stylianopoulos T. Remodeling Components of the Tumor Microenvironment to Enhance Cancer Therapy. Front Oncol 2015;5:214. [PMID: 26528429 DOI: 10.3389/fonc.2015.00214] [Cited by in Crossref: 83] [Cited by in F6Publishing: 87] [Article Influence: 10.4] [Reference Citation Analysis]
326 Ou G, Weaver VM. Tumor-induced solid stress activates β-catenin signaling to drive malignant behavior in normal, tumor-adjacent cells. Bioessays 2015;37:1293-7. [PMID: 26439949 DOI: 10.1002/bies.201500090] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
327 Pirentis AP, Polydorou C, Papageorgis P, Voutouri C, Mpekris F, Stylianopoulos T. Remodeling of extracellular matrix due to solid stress accumulation during tumor growth. Connect Tissue Res 2015;56:345-54. [PMID: 26194953 DOI: 10.3109/03008207.2015.1047929] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
328 Jin S, Kim J, Yun W. Development of dynamic well plate system for cell culture with mechanical stimulus of shear stress and magnetic field. Int J Precis Eng Manuf 2015;16:2235-9. [DOI: 10.1007/s12541-015-0288-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
329 Singh M, Close DA, Mukundan S, Johnston PA, Sant S. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation. Assay Drug Dev Technol 2015;13:570-83. [PMID: 26274587 DOI: 10.1089/adt.2015.662] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 5.5] [Reference Citation Analysis]
330 Doostmohammadi A, Thampi SP, Saw TB, Lim CT, Ladoux B, Yeomans JM. Celebrating Soft Matter's 10th Anniversary: Cell division: a source of active stress in cellular monolayers. Soft Matter 2015;11:7328-36. [PMID: 26265162 DOI: 10.1039/c5sm01382h] [Cited by in Crossref: 63] [Cited by in F6Publishing: 63] [Article Influence: 7.9] [Reference Citation Analysis]
331 Leroux C, Palmier J, Boccara AC, Cappello G, Monnier S. Elastography of multicellular aggregates submitted to osmo-mechanical stress. New J Phys 2015;17:073035. [DOI: 10.1088/1367-2630/17/7/073035] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
332 Egan P, Sinko R, Leduc PR, Keten S. The role of mechanics in biological and bio-inspired systems. Nat Commun 2015;6. [DOI: 10.1038/ncomms8418] [Cited by in Crossref: 131] [Cited by in F6Publishing: 137] [Article Influence: 16.4] [Reference Citation Analysis]
333 Maier M, Müller KW, Heussinger C, Köhler S, Wall WA, Bausch AR, Lieleg O. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network. Eur Phys J E 2015;38. [DOI: 10.1140/epje/i2015-15050-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
334 Mpekris F, Angeli S, Pirentis AP, Stylianopoulos T. Stress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation, and drug delivery. Biomech Model Mechanobiol 2015;14:1391-402. [PMID: 25968141 DOI: 10.1007/s10237-015-0682-0] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 7.0] [Reference Citation Analysis]
335 Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 2015;7:1120-34. [PMID: 25959051 DOI: 10.1039/c5ib00040h] [Cited by in Crossref: 560] [Cited by in F6Publishing: 599] [Article Influence: 70.0] [Reference Citation Analysis]
336 Aoun L, Weiss P, Laborde A, Ducommun B, Lobjois V, Vieu C. Microdevice arrays of high aspect ratio poly(dimethylsiloxane) pillars for the investigation of multicellular tumour spheroid mechanical properties. Lab Chip 2014;14:2344-53. [PMID: 24836927 DOI: 10.1039/c4lc00197d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
337 La Porta CAM, Ghilardi A, Pasini M, Laurson L, Alava MJ, Zapperi S, Ben Amar M. Osmotic stress affects functional properties of human melanoma cell lines. Eur Phys J Plus 2015;130. [DOI: 10.1140/epjp/i2015-15064-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
338 Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 2014;16:321-46. [PMID: 25014786 DOI: 10.1146/annurev-bioeng-071813-105259] [Cited by in Crossref: 549] [Cited by in F6Publishing: 567] [Article Influence: 68.6] [Reference Citation Analysis]
339 Riahi R, Sun J, Wang S, Long M, Zhang DD, Wong PK. Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration. Nat Commun 2015;6:6556. [PMID: 25766473 DOI: 10.1038/ncomms7556] [Cited by in Crossref: 86] [Cited by in F6Publishing: 91] [Article Influence: 10.8] [Reference Citation Analysis]
340 Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 2015;17:276-87. [DOI: 10.1038/ncb3115] [Cited by in Crossref: 258] [Cited by in F6Publishing: 264] [Article Influence: 32.3] [Reference Citation Analysis]
341 Li C, Rezania S, Kammerer S, Sokolowski A, Devaney T, Gorischek A, Jahn S, Hackl H, Groschner K, Windpassinger C, Malle E, Bauernhofer T, Schreibmayer W. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line. Sci Rep 2015;5:8364. [PMID: 25666479 DOI: 10.1038/srep08364] [Cited by in Crossref: 90] [Cited by in F6Publishing: 96] [Article Influence: 11.3] [Reference Citation Analysis]
342 Ziko L, Riad S, Amer M, Zdero R, Bougherara H, Amleh A. Mechanical stress promotes cisplatin-induced hepatocellular carcinoma cell death. Biomed Res Int 2015;2015:430569. [PMID: 25685789 DOI: 10.1155/2015/430569] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
343 Papageorgis P, Stylianopoulos T. Role of TGFβ in regulation of the tumor microenvironment and drug delivery (review). Int J Oncol 2015;46:933-43. [PMID: 25573346 DOI: 10.3892/ijo.2015.2816] [Cited by in Crossref: 124] [Cited by in F6Publishing: 132] [Article Influence: 15.5] [Reference Citation Analysis]
344 Chwalek K, Bray LJ, Werner C. Tissue-engineered 3D tumor angiogenesis models: potential technologies for anti-cancer drug discovery. Adv Drug Deliv Rev 2014;79-80:30-9. [PMID: 24819220 DOI: 10.1016/j.addr.2014.05.006] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 7.1] [Reference Citation Analysis]
345 Wu M, Swartz MA. Modeling tumor microenvironments in vitro. J Biomech Eng 2014;136:021011. [PMID: 24402507 DOI: 10.1115/1.4026447] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
346 Aung A, Seo YN, Lu S, Wang Y, Jamora C, del Álamo JC, Varghese S. 3D traction stresses activate protease-dependent invasion of cancer cells. Biophys J 2014;107:2528-37. [PMID: 25468332 DOI: 10.1016/j.bpj.2014.07.078] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 7.3] [Reference Citation Analysis]
347 Eslami A, Miyaguchi K, Mogushi K, Watanabe H, Okada N, Shibuya H, Mizushima H, Miura M, Tanaka H. PARVB overexpression increases cell migration capability and defines high risk for endophytic growth and metastasis in tongue squamous cell carcinoma. Br J Cancer 2015;112:338-44. [PMID: 25422907 DOI: 10.1038/bjc.2014.590] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
348 Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 2014;26:605-22. [PMID: 25517747 DOI: 10.1016/j.ccell.2014.10.006] [Cited by in Crossref: 897] [Cited by in F6Publishing: 952] [Article Influence: 99.7] [Reference Citation Analysis]
349 Lee E, Kim DY, Chung E, Lee EA, Park KS, Son Y. Transplantation of cyclic stretched fibroblasts accelerates the wound-healing process in streptozotocin-induced diabetic mice. Cell Transplant 2014;23:285-301. [PMID: 24622376 DOI: 10.3727/096368912X663541] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
350 Olcum M, Ozcivici E. Daily application of low magnitude mechanical stimulus inhibits the growth of MDA-MB-231 breast cancer cells in vitro. Cancer Cell Int 2014;14:102. [PMID: 25349533 DOI: 10.1186/s12935-014-0102-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
351 Gray AL, Stephens CA, Bigelow RL, Coleman DT, Cardelli JA. The polyphenols (-)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS One 2014;9:e109208. [PMID: 25272043 DOI: 10.1371/journal.pone.0109208] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
352 Sharma P, Kim A, Gill A, Wang J, Sheets K, Behkam B, Nain AS. Aligned and suspended fiber force probes for drug testing at single cell resolution. Biofabrication 2014;6:045006. [PMID: 25264874 DOI: 10.1088/1758-5082/6/4/045006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
353 Voutouri C, Stylianopoulos T. Evolution of osmotic pressure in solid tumors. J Biomech 2014;47:3441-7. [PMID: 25287111 DOI: 10.1016/j.jbiomech.2014.09.019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
354 Hu B, Shi W, Wu YL, Leow WR, Cai P, Li S, Chen X. Orthogonally engineering matrix topography and rigidity to regulate multicellular morphology. Adv Mater 2014;26:5786-93. [PMID: 25066463 DOI: 10.1002/adma.201402489] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 5.1] [Reference Citation Analysis]
355 Voutouri C, Mpekris F, Papageorgis P, Odysseos AD, Stylianopoulos T. Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors. PLoS One 2014;9:e104717. [PMID: 25111061 DOI: 10.1371/journal.pone.0104717] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 7.2] [Reference Citation Analysis]
356 Mills KL, Kemkemer R, Rudraraju S, Garikipati K. Elastic free energy drives the shape of prevascular solid tumors. PLoS One 2014;9:e103245. [PMID: 25072702 DOI: 10.1371/journal.pone.0103245] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
357 Sweeney KJ, Jarzabek MA, Dicker P, O'Brien DF, Callanan JJ, Byrne AT, Prehn JH. Validation of an imageable surgical resection animal model of Glioblastoma (GBM). J Neurosci Methods 2014;233:99-104. [PMID: 24952322 DOI: 10.1016/j.jneumeth.2014.05.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
358 Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, Mooney DJ. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 2014;13:970-8. [PMID: 24930031 DOI: 10.1038/nmat4009] [Cited by in Crossref: 550] [Cited by in F6Publishing: 559] [Article Influence: 61.1] [Reference Citation Analysis]
359 Chen S, Huang EH. The colon cancer stem cell microenvironment holds keys to future cancer therapy. J Gastrointest Surg 2014;18:1040-8. [PMID: 24643495 DOI: 10.1007/s11605-014-2497-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
360 Wang C, Tong X, Yang F. Bioengineered 3D Brain Tumor Model To Elucidate the Effects of Matrix Stiffness on Glioblastoma Cell Behavior Using PEG-Based Hydrogels. Mol Pharmaceutics 2014;11:2115-25. [DOI: 10.1021/mp5000828] [Cited by in Crossref: 165] [Cited by in F6Publishing: 167] [Article Influence: 18.3] [Reference Citation Analysis]
361 Wang J, Lü D, Mao D, Long M. Mechanomics: an emerging field between biology and biomechanics. Protein Cell 2014;5:518-31. [PMID: 24756566 DOI: 10.1007/s13238-014-0057-9] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 5.2] [Reference Citation Analysis]
362 Taloni A, Alemi AA, Ciusani E, Sethna JP, Zapperi S, La Porta CA. Mechanical properties of growing melanocytic nevi and the progression to melanoma. PLoS One 2014;9:e94229. [PMID: 24709938 DOI: 10.1371/journal.pone.0094229] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
363 Wang X, Wang J, Liu Y, Zong H, Che X, Zheng W, Chen F, Zhu Z, Yang D, Song X. Alterations in mechanical properties are associated with prostate cancer progression. Med Oncol 2014;31:876. [PMID: 24504844 DOI: 10.1007/s12032-014-0876-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
364 Jain R, Fukumura D, Duda D. Modes of Neovascularization in Tumors and Clinical Translation of Antiangiogenic Therapy. Pathobiology of Human Disease 2014. [DOI: 10.1016/b978-0-12-386456-7.05502-7] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
365 Desmaison A, Frongia C, Grenier K, Ducommun B, Lobjois V. Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids. PLoS One 2013;8:e80447. [PMID: 24312473 DOI: 10.1371/journal.pone.0080447] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 3.9] [Reference Citation Analysis]
366 Lien S, Chang S, Lee P, Wei S, Chang MD, Chang J, Chiu J. Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2013;1833:3124-33. [DOI: 10.1016/j.bbamcr.2013.08.023] [Cited by in Crossref: 78] [Cited by in F6Publishing: 82] [Article Influence: 7.8] [Reference Citation Analysis]
367 Marcucci F, Bellone M, Caserta CA, Corti A. Pushing tumor cells towards a malignant phenotype: stimuli from the microenvironment, intercellular communications and alternative roads. Int J Cancer 2014;135:1265-76. [PMID: 24174383 DOI: 10.1002/ijc.28572] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
368 Li JF, Lowengrub J. The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model. J Theor Biol 2014;343:79-91. [PMID: 24211749 DOI: 10.1016/j.jtbi.2013.10.008] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
369 Schötz EM, Lanio M, Talbot JA, Manning ML. Glassy dynamics in three-dimensional embryonic tissues. J R Soc Interface 2013;10:20130726. [PMID: 24068179 DOI: 10.1098/rsif.2013.0726] [Cited by in Crossref: 94] [Cited by in F6Publishing: 96] [Article Influence: 9.4] [Reference Citation Analysis]
370 Alessandri K, Sarangi BR, Gurchenkov VV, Sinha B, Kießling TR, Fetler L, Rico F, Scheuring S, Lamaze C, Simon A, Geraldo S, Vignjevic D, Doméjean H, Rolland L, Funfak A, Bibette J, Bremond N, Nassoy P. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci U S A 2013;110:14843-8. [PMID: 23980147 DOI: 10.1073/pnas.1309482110] [Cited by in Crossref: 296] [Cited by in F6Publishing: 297] [Article Influence: 29.6] [Reference Citation Analysis]
371 Mammoto T, Jiang A, Jiang E, Panigrahy D, Kieran MW, Mammoto A. Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. Am J Pathol 2013;183:1293-305. [PMID: 23928381 DOI: 10.1016/j.ajpath.2013.06.026] [Cited by in Crossref: 97] [Cited by in F6Publishing: 82] [Article Influence: 9.7] [Reference Citation Analysis]
372 Ricca BL, Venugopalan G, Fletcher DA. To pull or be pulled: parsing the multiple modes of mechanotransduction. Curr Opin Cell Biol 2013;25:558-64. [PMID: 23830123 DOI: 10.1016/j.ceb.2013.06.002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
373 Mak M, Reinhart-King CA, Erickson D. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab Chip 2013;13:340-8. [PMID: 23212313 DOI: 10.1039/c2lc41117b] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 7.8] [Reference Citation Analysis]
374 Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol. 2013;31:2205-2218. [PMID: 23669226 DOI: 10.1200/jco.2012.46.3653] [Cited by in Crossref: 732] [Cited by in F6Publishing: 780] [Article Influence: 73.2] [Reference Citation Analysis]
375 Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 2013;73:3833-41. [PMID: 23633490 DOI: 10.1158/0008-5472.CAN-12-4521] [Cited by in Crossref: 256] [Cited by in F6Publishing: 264] [Article Influence: 25.6] [Reference Citation Analysis]
376 Ciarletta P. Buckling instability in growing tumor spheroids. Phys Rev Lett 2013;110:158102. [PMID: 25167314 DOI: 10.1103/PhysRevLett.110.158102] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 4.4] [Reference Citation Analysis]
377 Song JW, Daubriac J, Tse JM, Bazou D, Munn LL. RhoA mediates flow-induced endothelial sprouting in a 3-D tissue analogue of angiogenesis. Lab Chip 2012;12:5000-6. [PMID: 23073300 DOI: 10.1039/c2lc40389g] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.5] [Reference Citation Analysis]
378 Delarue M, Montel F, Caen O, Elgeti J, Siaugue JM, Vignjevic D, Prost J, Joanny JF, Cappello G. Mechanical control of cell flow in multicellular spheroids. Phys Rev Lett 2013;110:138103. [PMID: 23581378 DOI: 10.1103/PhysRevLett.110.138103] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 5.1] [Reference Citation Analysis]
379 Das T, Chakraborty S. Perspective: Flicking with flow: Can microfluidics revolutionize the cancer research? Biomicrofluidics 2013;7:11811. [PMID: 24403993 DOI: 10.1063/1.4789750] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
380 Eisenhoffer GT, Rosenblatt J. Bringing balance by force: live cell extrusion controls epithelial cell numbers. Trends Cell Biol 2013;23:185-92. [PMID: 23273931 DOI: 10.1016/j.tcb.2012.11.006] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 7.0] [Reference Citation Analysis]
381 Marcucci F, Corti A. Improving drug penetration to curb tumor drug resistance. Drug Discovery Today 2012;17:1139-46. [DOI: 10.1016/j.drudis.2012.06.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
382 Tien J, Truslow JG, Nelson CM. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells. PLoS One 2012;7:e45191. [PMID: 23028839 DOI: 10.1371/journal.pone.0045191] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.4] [Reference Citation Analysis]
383 Kultti A, Li X, Jiang P, Thompson CB, Frost GI, Shepard HM. Therapeutic targeting of hyaluronan in the tumor stroma. Cancers (Basel) 2012;4:873-903. [PMID: 24213471 DOI: 10.3390/cancers4030873] [Cited by in Crossref: 67] [Cited by in F6Publishing: 72] [Article Influence: 6.1] [Reference Citation Analysis]
384 Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, Smith BL, Ferrone CR, Hornicek FJ, Boucher Y. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci USA. 2012;109:15101-15108. [PMID: 22932871 DOI: 10.1073/pnas.1213353109] [Cited by in Crossref: 521] [Cited by in F6Publishing: 537] [Article Influence: 47.4] [Reference Citation Analysis]
385 Polacheck WJ, Zervantonakis IK, Kamm RD. Tumor cell migration in complex microenvironments. Cell Mol Life Sci 2013;70:1335-56. [PMID: 22926411 DOI: 10.1007/s00018-012-1115-1] [Cited by in Crossref: 133] [Cited by in F6Publishing: 147] [Article Influence: 12.1] [Reference Citation Analysis]
386 Kurth F, Eyer K, Franco-obregón A, Dittrich PS. A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level. Current Opinion in Chemical Biology 2012;16:400-8. [DOI: 10.1016/j.cbpa.2012.03.014] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 4.9] [Reference Citation Analysis]
387 [DOI: 10.1101/2020.05.22.110122] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
388 Liu Q, Luo Q, Ju Y, Song G. Role of the mechanical microenvironment in cancer development and progression. Cancer Biol Med 2020;17:282-92. [PMID: 32587769 DOI: 10.20892/j.issn.2095-3941.2019.0437] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Reference Citation Analysis]