BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci U S A 2011;108:9396-401. [PMID: 21606330 DOI: 10.1073/pnas.1103659108] [Cited by in Crossref: 120] [Cited by in F6Publishing: 90] [Article Influence: 10.9] [Reference Citation Analysis]
Number Citing Articles
1 Leister D. Genetic Engineering, Synthetic Biology and the Light Reactions of Photosynthesis. Plant Physiol 2019;179:778-93. [PMID: 29991483 DOI: 10.1104/pp.18.00360] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
2 Sarkar D, Shimizu K. An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresour Bioprocess 2015;2. [DOI: 10.1186/s40643-015-0045-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
3 Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO 2. Energy Environ Sci 2016;9:1400-11. [DOI: 10.1039/c5ee03102h] [Cited by in Crossref: 125] [Cited by in F6Publishing: 1] [Article Influence: 20.8] [Reference Citation Analysis]
4 Scoma A, Hemschemeier A. The hydrogen metabolism of sulfur deprived Chlamydomonas reinhardtii cells involves hydrogen uptake activities. Algal Research 2017;26:341-7. [DOI: 10.1016/j.algal.2017.08.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
5 Harris BJ, Cheng X, Frymier P. Structure and Function of Photosystem I–[FeFe] Hydrogenase Protein Fusions: An All-Atom Molecular Dynamics Study. J Phys Chem B 2016;120:599-609. [DOI: 10.1021/acs.jpcb.5b07812] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
6 King PW. Designing interfaces of hydrogenase–nanomaterial hybrids for efficient solar conversion. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2013;1827:949-57. [DOI: 10.1016/j.bbabio.2013.03.006] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 5.7] [Reference Citation Analysis]
7 Kontur WS, Noguera DR, Donohue TJ. Maximizing reductant flow into microbial H2 production. Curr Opin Biotechnol 2012;23:382-9. [PMID: 22036711 DOI: 10.1016/j.copbio.2011.10.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
8 Li T, Jiang Q, Huang J, Aitchison CM, Huang F, Yang M, Dykes GF, He HL, Wang Q, Sprick RS, Cooper AI, Liu LN. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nat Commun 2020;11:5448. [PMID: 33116131 DOI: 10.1038/s41467-020-19280-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
9 Nogales J, Gudmundsson S, Thiele I. Toward systems metabolic engineering in cyanobacteria: opportunities and bottlenecks. Bioengineered 2013;4:158-63. [PMID: 23138691 DOI: 10.4161/bioe.22792] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
10 Rögner M. Metabolic engineering of cyanobacteria for the production of hydrogen from water. Biochem Soc Trans 2013;41:1254-9. [PMID: 24059516 DOI: 10.1042/BST20130122] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 1.9] [Reference Citation Analysis]
11 Koo J, Swartz JR. System analysis and improved [FeFe] hydrogenase O2 tolerance suggest feasibility for photosynthetic H2 production. Metabolic Engineering 2018;49:21-7. [DOI: 10.1016/j.ymben.2018.04.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
12 Sun Y, Chen M, Yang H, Zhang J, Kuang T, Huang F. Enhanced H2 photoproduction by down-regulation of ferredoxin-NADP+ reductase (FNR) in the green alga Chlamydomonas reinhardtii. International Journal of Hydrogen Energy 2013;38:16029-37. [DOI: 10.1016/j.ijhydene.2013.10.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
13 Lassen LM, Nielsen AZ, Ziersen B, Gnanasekaran T, Møller BL, Jensen PE. Redirecting Photosynthetic Electron Flow into Light-Driven Synthesis of Alternative Products Including High-Value Bioactive Natural Compounds. ACS Synth Biol 2014;3:1-12. [DOI: 10.1021/sb400136f] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 5.2] [Reference Citation Analysis]
14 Wang Y, Yang H, Zhang X, Han F, Tu W, Yang W. Microalgal Hydrogen Production. Small Methods 2020;4:1900514. [DOI: 10.1002/smtd.201900514] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
15 Mosebach L, Heilmann C, Mutoh R, Gäbelein P, Steinbeck J, Happe T, Ikegami T, Hanke G, Kurisu G, Hippler M. Association of Ferredoxin:NADP+ oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii. Photosynth Res 2017;134:291-306. [PMID: 28593495 DOI: 10.1007/s11120-017-0408-5] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 6.4] [Reference Citation Analysis]
16 Gorka M, Perez A, Baker CS, Ferlez B, van der Est A, Bryant DA, Golbeck JH. Electron transfer from the A1A and A1B sites to a tethered Pt nanoparticle requires the FeS clusters for suppression of the recombination channel. Journal of Photochemistry and Photobiology B: Biology 2015;152:325-34. [DOI: 10.1016/j.jphotobiol.2015.08.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Elman T, Hoai Ho TT, Milrad Y, Hippler M, Yacoby I. Enhanced chloroplast-mitochondria crosstalk promotes ambient algal-H2 production. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100828] [Reference Citation Analysis]
18 Zhu L, Hiltunen E, Antila E, Zhong J, Yuan Z, Wang Z. Microalgal biofuels: Flexible bioenergies for sustainable development. Renewable and Sustainable Energy Reviews 2014;30:1035-46. [DOI: 10.1016/j.rser.2013.11.003] [Cited by in Crossref: 107] [Cited by in F6Publishing: 65] [Article Influence: 13.4] [Reference Citation Analysis]
19 Vojta L, Carić D, Cesar V, Antunović Dunić J, Lepeduš H, Kveder M, Fulgosi H. TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis. Sci Rep 2015;5:10085. [PMID: 26041075 DOI: 10.1038/srep10085] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
20 Shahar N, Landman S, Weiner I, Elman T, Dafni E, Feldman Y, Tuller T, Yacoby I. The Integration of Multiple Nuclear-Encoded Transgenes in the Green Alga Chlamydomonas reinhardtii Results in Higher Transcription Levels. Front Plant Sci 2019;10:1784. [PMID: 32117346 DOI: 10.3389/fpls.2019.01784] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Peden EA, Boehm M, Mulder DW, Davis R, Old WM, King PW, Ghirardi ML, Dubini A. Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii. J Biol Chem 2013;288:35192-209. [PMID: 24100040 DOI: 10.1074/jbc.M113.483727] [Cited by in Crossref: 68] [Cited by in F6Publishing: 29] [Article Influence: 7.6] [Reference Citation Analysis]
22 Nielsen AZ, Ziersen B, Jensen K, Lassen LM, Olsen CE, Møller BL, Jensen PE. Redirecting photosynthetic reducing power toward bioactive natural product synthesis. ACS Synth Biol 2013;2:308-15. [PMID: 23654276 DOI: 10.1021/sb300128r] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 6.9] [Reference Citation Analysis]
23 Weiner I, Atar S, Schweitzer S, Eilenberg H, Feldman Y, Avitan M, Blau M, Danon A, Tuller T, Yacoby I. Enhancing heterologous expression in Chlamydomonas reinhardtii by transcript sequence optimization. Plant J 2018;94:22-31. [DOI: 10.1111/tpj.13836] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
24 Morra S, Cordara A, Gilardi G, Valetti F. Atypical effect of temperature tuning on the insertion of the catalytic iron-sulfur center in a recombinant [FeFe]-hydrogenase. Protein Sci 2015;24:2090-4. [PMID: 26362685 DOI: 10.1002/pro.2805] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
25 Sayre HJ, Tian L, Son M, Hart SM, Liu X, Arias-rotondo DM, Rand BP, Schlau-cohen GS, Scholes GD. Solar fuels and feedstocks: the quest for renewable black gold. Energy Environ Sci 2021;14:1402-19. [DOI: 10.1039/d0ee03300f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
26 Allahverdiyeva Y, Aro E, Kosourov S. Recent Developments on Cyanobacteria and Green Algae for Biohydrogen Photoproduction and Its Importance in CO2 Reduction. Bioenergy Research: Advances and Applications. Elsevier; 2014. pp. 367-87. [DOI: 10.1016/b978-0-444-59561-4.00021-8] [Cited by in Crossref: 12] [Article Influence: 1.5] [Reference Citation Analysis]
27 Chen M, Liu P, Zhang J, Peng L, Huang F. Photochemical characteristics of Chlamydomonas mutant hpm91 lacking proton gradient regulation 5 (PGR5) during sustained H2 photoproduction under sulfur deprivation. International Journal of Hydrogen Energy 2019;44:31790-9. [DOI: 10.1016/j.ijhydene.2019.10.074] [Reference Citation Analysis]
28 Winkler M, Esselborn J, Happe T. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor. Biochim Biophys Acta 2013;1827:974-85. [PMID: 23507618 DOI: 10.1016/j.bbabio.2013.03.004] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 7.8] [Reference Citation Analysis]
29 Zhang Y, Cheng P, Wang Y, Li Y, Su J, Chen Z, Yu X, Shen W. Genetic elucidation of hydrogen signaling in plant osmotic tolerance and stomatal closure via hydrogen sulfide. Free Radical Biology and Medicine 2020;161:1-14. [DOI: 10.1016/j.freeradbiomed.2020.09.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
30 Meuser JE, D'Adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC. Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into the role of HYDA2 in H₂ production. Biochem Biophys Res Commun 2012;417:704-9. [PMID: 22177948 DOI: 10.1016/j.bbrc.2011.12.002] [Cited by in Crossref: 71] [Cited by in F6Publishing: 56] [Article Influence: 6.5] [Reference Citation Analysis]
31 Appel J, Hueren V, Boehm M, Gutekunst K. Cyanobacterial in vivo solar hydrogen production using a photosystem I–hydrogenase (PsaD-HoxYH) fusion complex. Nat Energy 2020;5:458-67. [DOI: 10.1038/s41560-020-0609-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
32 Rama Mohan S. Structure and growth of research on biohydrogen generation using wastewater. International Journal of Hydrogen Energy 2015;40:16056-69. [DOI: 10.1016/j.ijhydene.2015.08.072] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
33 Bayro-Kaiser V, Nelson N. Temperature-sensitive PSII: a novel approach for sustained photosynthetic hydrogen production. Photosynth Res 2016;130:113-21. [PMID: 26951152 DOI: 10.1007/s11120-016-0232-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
34 Mellor SB, Vavitsas K, Nielsen AZ, Jensen PE. Photosynthetic fuel for heterologous enzymes: the role of electron carrier proteins. Photosynth Res 2017;134:329-42. [DOI: 10.1007/s11120-017-0364-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
35 Kanygin A, Milrad Y, Thummala C, Reifschneider K, Baker P, Marco P, Yacoby I, Redding KE. Rewiring photosynthesis: a photosystem I-hydrogenase chimera that makes H 2in vivo. Energy Environ Sci 2020;13:2903-14. [DOI: 10.1039/c9ee03859k] [Cited by in Crossref: 13] [Article Influence: 6.5] [Reference Citation Analysis]
36 Diakonova AN, Khrushchev SS, Kovalenko IB, Riznichenko GY, Rubin AB. Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction. Phys Biol 2016;13:056004. [PMID: 27716644 DOI: 10.1088/1478-3975/13/5/056004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
37 Saen-oon S, Lucas MF, Guallar V. Electron transfer in proteins: theory, applications and future perspectives. Phys Chem Chem Phys 2013;15:15271. [DOI: 10.1039/c3cp50484k] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
38 Nielsen AZ, Mellor SB, Vavitsas K, Wlodarczyk AJ, Gnanasekaran T, Perestrello Ramos H de Jesus M, King BC, Bakowski K, Jensen PE. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts. Plant J 2016;87:87-102. [PMID: 27005523 DOI: 10.1111/tpj.13173] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
39 Uggetti E, Sialve B, Trably E, Steyer J. Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioprod Bioref 2014;8:516-29. [DOI: 10.1002/bbb.1469] [Cited by in Crossref: 97] [Cited by in F6Publishing: 71] [Article Influence: 12.1] [Reference Citation Analysis]
40 Wittenberg G, Sheffler W, Darchi D, Baker D, Noy D. Accelerated electron transport from photosystem I to redox partners by covalently linked ferredoxin. Phys Chem Chem Phys 2013;15:19608-14. [PMID: 24129892 DOI: 10.1039/c3cp53264j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
41 Atkinson JT, Campbell I, Bennett GN, Silberg JJ. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Biochemistry 2016;55:7047-64. [DOI: 10.1021/acs.biochem.6b00831] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
42 Subramanian V, Wecker MSA, Gerritsen A, Boehm M, Xiong W, Wachter B, Dubini A, González-Ballester D, Antonio RV, Ghirardi ML. Ferredoxin5 Deletion Affects Metabolism of Algae during the Different Phases of Sulfur Deprivation. Plant Physiol 2019;181:426-41. [PMID: 31350361 DOI: 10.1104/pp.19.00457] [Reference Citation Analysis]
43 Razeghifard R. Algal biofuels. Photosynth Res 2013;117:207-19. [PMID: 23605290 DOI: 10.1007/s11120-013-9828-z] [Cited by in Crossref: 61] [Cited by in F6Publishing: 42] [Article Influence: 6.8] [Reference Citation Analysis]
44 Engelbrecht V, Happe T. [FeFe]-hydrogenases from green algae. Enzymes of Energy Technology. Elsevier; 2018. pp. 203-30. [DOI: 10.1016/bs.mie.2018.10.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
45 Huang Z, Ye F, Zhang C, Chen S, Chen Y, Wu J, Togo M, Xing XH. Rational design of a tripartite fusion protein of heparinase I enables one-step affinity purification and real-time activity detection. J Biotechnol 2013;163:30-7. [PMID: 23073152 DOI: 10.1016/j.jbiotec.2012.09.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
46 Kim EJ, Wu CH, Adams MW, Zhang YP. Exceptionally High Rates of Biological Hydrogen Production by Biomimetic In Vitro Synthetic Enzymatic Pathways. Chemistry 2016;22:16047-51. [PMID: 27605312 DOI: 10.1002/chem.201604197] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
47 Krishnan A, Qian X, Ananyev G, Lun DS, Dismukes GC. Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. Adv Exp Med Biol 2018;1080:171-213. [PMID: 30091096 DOI: 10.1007/978-981-13-0854-3_8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
48 Khetkorn W, Khanna N, Incharoensakdi A, Lindblad P. Metabolic and genetic engineering of cyanobacteria for enhanced hydrogen production. Biofuels 2014;4:535-61. [DOI: 10.4155/bfs.13.41] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
49 Fan J, Huang L, Sun J, Qiu Y, Zhou J, Shen Y. Strategy for linker selection to enhance refolding and bioactivity of VAS-TRAIL fusion protein based on inclusion body conformation and activity. J Biotechnol 2015;209:16-22. [PMID: 26072465 DOI: 10.1016/j.jbiotec.2015.06.383] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
50 Milrad Y, Schweitzer S, Feldman Y, Yacoby I. Bi-directional electron transfer between H2 and NADPH mitigates light fluctuation responses in green algae. Plant Physiol 2021:kiab051. [PMID: 33793951 DOI: 10.1093/plphys/kiab051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
51 Utschig LM, Soltau SR, Tiede DM. Light-driven hydrogen production from Photosystem I-catalyst hybrids. Curr Opin Chem Biol 2015;25:1-8. [PMID: 25500176 DOI: 10.1016/j.cbpa.2014.11.019] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 5.6] [Reference Citation Analysis]
52 Zhang D, Vassiliadis VS. Chlamydomonas reinhardtii Metabolic Pathway Analysis for Biohydrogen Production under Non-Steady-State Operation. Ind Eng Chem Res 2015;54:10593-605. [DOI: 10.1021/acs.iecr.5b02034] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
53 El-khouly ME, El-mohsnawy E, Fukuzumi S. Solar energy conversion: From natural to artificial photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2017;31:36-83. [DOI: 10.1016/j.jphotochemrev.2017.02.001] [Cited by in Crossref: 140] [Cited by in F6Publishing: 67] [Article Influence: 28.0] [Reference Citation Analysis]
54 Koo J, Shiigi S, Rohovie M, Mehta K, Swartz JR. Characterization of [FeFe] Hydrogenase O2 Sensitivity Using a New, Physiological Approach. J Biol Chem 2016;291:21563-70. [PMID: 27435671 DOI: 10.1074/jbc.M116.737122] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
55 King SJ, Jerkovic A, Brown LJ, Petroll K, Willows RD. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii. Microb Biotechnol 2022. [PMID: 35338590 DOI: 10.1111/1751-7915.14024] [Reference Citation Analysis]
56 Rumpel S, Siebel JF, Farès C, Duan J, Reijerse E, Happe T, Lubitz W, Winkler M. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ Sci 2014;7:3296-301. [DOI: 10.1039/c4ee01444h] [Cited by in Crossref: 59] [Article Influence: 7.4] [Reference Citation Analysis]
57 Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S. Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2014;2:90. [PMID: 25717470 DOI: 10.3389/fbioe.2014.00090] [Cited by in Crossref: 92] [Cited by in F6Publishing: 53] [Article Influence: 13.1] [Reference Citation Analysis]
58 Baker DR, Manocchi AK, Lamicq ML, Li M, Nguyen K, Sumner JJ, Bruce BD, Lundgren CA. Comparative Photoactivity and Stability of Isolated Cyanobacterial Monomeric and Trimeric Photosystem I. J Phys Chem B 2014;118:2703-11. [DOI: 10.1021/jp407948p] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
59 Gupta SK, Kumari S, Reddy K, Bux F. Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol 2013;34:1653-70. [PMID: 24350426 DOI: 10.1080/09593330.2013.822022] [Cited by in Crossref: 59] [Cited by in F6Publishing: 30] [Article Influence: 7.4] [Reference Citation Analysis]
60 Yacoby I, Tegler LT, Pochekailov S, Zhang S, King PW. Optimized expression and purification for high-activity preparations of algal [FeFe]-hydrogenase. PLoS One 2012;7:e35886. [PMID: 22563413 DOI: 10.1371/journal.pone.0035886] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
61 Atkinson JT, Campbell IJ, Thomas EE, Bonitatibus SC, Elliott SJ, Bennett GN, Silberg JJ. Metalloprotein switches that display chemical-dependent electron transfer in cells. Nat Chem Biol 2019;15:189-95. [PMID: 30559426 DOI: 10.1038/s41589-018-0192-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
62 Godaux D, Bailleul B, Berne N, Cardol P. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii. Plant Physiol 2015;168:648-58. [PMID: 25931521 DOI: 10.1104/pp.15.00105] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
63 Wang K, Khoo KS, Chew KW, Selvarajoo A, Chen W, Chang J, Show PL. Microalgae: The Future Supply House of Biohydrogen and Biogas. Front Energy Res 2021;9:660399. [DOI: 10.3389/fenrg.2021.660399] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
64 Dubini A, Ghirardi ML. Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res 2015;123:241-53. [PMID: 24671643 DOI: 10.1007/s11120-014-9991-x] [Cited by in Crossref: 75] [Cited by in F6Publishing: 52] [Article Influence: 9.4] [Reference Citation Analysis]
65 Wecker MS, Ghirardi ML. High-throughput biosensor discriminates between different algal H2 -photoproducing strains. Biotechnol Bioeng 2014;111:1332-40. [PMID: 24578287 DOI: 10.1002/bit.25206] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
66 Mccullagh M, Voth GA. Unraveling the Role of the Protein Environment for [FeFe]-Hydrogenase: A New Application of Coarse-Graining. J Phys Chem B 2013;117:4062-71. [DOI: 10.1021/jp402441s] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
67 Oey M, Sawyer AL, Ross IL, Hankamer B. Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 2016;14:1487-99. [PMID: 26801871 DOI: 10.1111/pbi.12516] [Cited by in Crossref: 73] [Cited by in F6Publishing: 42] [Article Influence: 12.2] [Reference Citation Analysis]
68 Rousset M, Liebgott P. Engineering Hydrogenases for H2 Production: Bolts and Goals. In: Zannoni D, De Philippis R, editors. Microbial BioEnergy: Hydrogen Production. Dordrecht: Springer Netherlands; 2014. pp. 43-77. [DOI: 10.1007/978-94-017-8554-9_3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
69 Yonemoto IT, Smith HO, Weyman PD. Designed surface residue substitutions in [NiFe] hydrogenase that improve electron transfer characteristics. Int J Mol Sci 2015;16:2020-33. [PMID: 25603181 DOI: 10.3390/ijms16012020] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
70 Naldoni A, Riboni F, Guler U, Boltasseva A, Shalaev VM, Kildishev AV. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis. Nanophotonics 2016;5:112-33. [DOI: 10.1515/nanoph-2016-0018] [Cited by in Crossref: 76] [Cited by in F6Publishing: 48] [Article Influence: 12.7] [Reference Citation Analysis]
71 Mazor Y, Toporik H, Nelson N. Temperature-sensitive PSII and promiscuous PSI as a possible solution for sustainable photosynthetic hydrogen production. Biochim Biophys Acta 2012;1817:1122-6. [PMID: 22269125 DOI: 10.1016/j.bbabio.2012.01.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
72 Wu B, Atkinson JT, Kahanda D, Bennett GN, Silberg JJ. Combinatorial design of chemical‐dependent protein switches for controlling intracellular electron transfer. AIChE J 2020;66. [DOI: 10.1002/aic.16796] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
73 Ben-Zvi O, Dafni E, Feldman Y, Yacoby I. Re-routing photosynthetic energy for continuous hydrogen production in vivo. Biotechnol Biofuels 2019;12:266. [PMID: 31737095 DOI: 10.1186/s13068-019-1608-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
74 Mohan SV, Pandey A. Biohydrogen Production. Biohydrogen. Elsevier; 2013. pp. 1-24. [DOI: 10.1016/b978-0-444-59555-3.00001-5] [Cited by in Crossref: 9] [Article Influence: 1.0] [Reference Citation Analysis]
75 Sawyer A, Winkler M. Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases. Photosynth Res 2017;134:307-16. [PMID: 28620699 DOI: 10.1007/s11120-017-0409-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
76 Marco P, Kozuleva M, Eilenberg H, Mazor Y, Gimeson P, Kanygin A, Redding K, Weiner I, Yacoby I. Binding of ferredoxin to algal photosystem I involves a single binding site and is composed of two thermodynamically distinct events. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2018;1859:234-43. [DOI: 10.1016/j.bbabio.2018.01.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
77 Santos-Merino M, Torrado A, Davis GA, Röttig A, Bibby TS, Kramer DM, Ducat DC. Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. Proc Natl Acad Sci U S A 2021;118:e2021523118. [PMID: 33836593 DOI: 10.1073/pnas.2021523118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
78 Nikolova D, Heilmann C, Hawat S, Gäbelein P, Hippler M. Absolute quantification of selected photosynthetic electron transfer proteins in Chlamydomonas reinhardtii in the presence and absence of oxygen. Photosynth Res 2018;137:281-93. [DOI: 10.1007/s11120-018-0502-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
79 Venkata Mohan S, Pandey A. Sustainable Hydrogen Production. Biohydrogen. Elsevier; 2019. pp. 1-23. [DOI: 10.1016/b978-0-444-64203-5.00001-0] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
80 Nagarajan D, Dong CD, Chen CY, Lee DJ, Chang JS. Biohydrogen production from microalgae-Major bottlenecks and future research perspectives. Biotechnol J 2021;16:e2000124. [PMID: 33249754 DOI: 10.1002/biot.202000124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Koo J, Cha Y. Investigation of the Ferredoxin's Influence on the Anaerobic and Aerobic, Enzymatic H2 Production. Front Bioeng Biotechnol 2021;9:641305. [PMID: 33718343 DOI: 10.3389/fbioe.2021.641305] [Reference Citation Analysis]
82 Jones CS, Mayfield SP. Algae biofuels: versatility for the future of bioenergy. Current Opinion in Biotechnology 2012;23:346-51. [DOI: 10.1016/j.copbio.2011.10.013] [Cited by in Crossref: 261] [Cited by in F6Publishing: 199] [Article Influence: 26.1] [Reference Citation Analysis]
83 Kosourov S, Böhm M, Senger M, Berggren G, Stensjö K, Mamedov F, Lindblad P, Allahverdiyeva Y. Photosynthetic hydrogen production: Novel protocols, promising engineering approaches and application of semi-synthetic hydrogenases. Physiol Plant 2021. [PMID: 33860946 DOI: 10.1111/ppl.13428] [Reference Citation Analysis]
84 Reifschneider-wegner K, Kanygin A, Redding KE. Expression of the [FeFe] hydrogenase in the chloroplast of Chlamydomonas reinhardtii. International Journal of Hydrogen Energy 2014;39:3657-65. [DOI: 10.1016/j.ijhydene.2013.12.157] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
85 Wu Z, Zheng R, Liu G, Liu R, Wu S, Sun C. Calcium protects bacteria against cadmium stress via reducing nitric oxide production and increasing iron acquisition. Environ Microbiol 2021;23:3541-53. [PMID: 32939902 DOI: 10.1111/1462-2920.15237] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
86 Mellor SB, Nielsen AZ, Burow M, Motawia MS, Jakubauskas D, Møller BL, Jensen PE. Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis. ACS Chem Biol 2016;11:1862-9. [PMID: 27119279 DOI: 10.1021/acschembio.6b00190] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 6.5] [Reference Citation Analysis]
87 Milrad Y, Schweitzer S, Feldman Y, Yacoby I. Green Algal Hydrogenase Activity Is Outcompeted by Carbon Fixation before Inactivation by Oxygen Takes Place. Plant Physiol 2018;177:918-26. [PMID: 29784766 DOI: 10.1104/pp.18.00229] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
88 Wilkening S, Schmitt FJ, Horch M, Zebger I, Lenz O, Friedrich T. Characterization of Frex as an NADH sensor for in vivo applications in the presence of NAD+ and at various pH values. Photosynth Res 2017;133:305-15. [PMID: 28265794 DOI: 10.1007/s11120-017-0348-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
89 Redding KE, Appel J, Boehm M, Schuhmann W, Nowaczyk MM, Yacoby I, Gutekunst K. Advances and challenges in photosynthetic hydrogen production. Trends in Biotechnology 2022. [DOI: 10.1016/j.tibtech.2022.04.007] [Reference Citation Analysis]
90 Eilenberg H, Weiner I, Ben-Zvi O, Pundak C, Marmari A, Liran O, Wecker MS, Milrad Y, Yacoby I. The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance. Biotechnol Biofuels 2016;9:182. [PMID: 27582874 DOI: 10.1186/s13068-016-0601-3] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 7.2] [Reference Citation Analysis]
91 Su J, Yang X, Shao Y, Chen Z, Shen W. Molecular hydrogen–induced salinity tolerance requires melatonin signalling in Arabidopsis thaliana. Plant Cell Environ 2021;44:476-90. [DOI: 10.1111/pce.13926] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
92 Pochekailov S, Black RR, Chavali VP, Khakhar A, Seelig G. A Fluorescent Readout for the Oxidation State of Electron Transporting Proteins in Cell Free Settings. ACS Synth Biol 2016;5:662-71. [PMID: 27049848 DOI: 10.1021/acssynbio.5b00274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
93 Diament A, Weiner I, Shahar N, Landman S, Feldman Y, Atar S, Avitan M, Schweitzer S, Yacoby I, Tuller T. ChimeraUGEM: unsupervised gene expression modeling in any given organism. Bioinformatics 2019;35:3365-71. [PMID: 30715207 DOI: 10.1093/bioinformatics/btz080] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
94 Wang Y, Zhuang X, Chen M, Zeng Z, Cai X, Li H, Hu Z. An endogenous microRNA (miRNA1166.1) can regulate photobio-H2 production in eukaryotic green alga Chlamydomonas reinhardtii. Biotechnol Biofuels 2018;11:126. [PMID: 29743954 DOI: 10.1186/s13068-018-1126-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
95 Grossman A, Sanz-luque E, Yi H, Yang W. Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Microbiology 2019;165:697-718. [DOI: 10.1099/mic.0.000788] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
96 Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem 2012;5:500-21. [PMID: 22431486 DOI: 10.1002/cssc.201100661] [Cited by in Crossref: 173] [Cited by in F6Publishing: 146] [Article Influence: 17.3] [Reference Citation Analysis]
97 Min K, Lee S, Lee E, Lee Y, Yi H, Kim D. Facile Nondestructive Assembly of Tyrosine-Rich Peptide Nanofibers as a Biological Glue for Multicomponent-Based Nanoelectrode Applications. Adv Funct Mater 2018;28:1705729. [DOI: 10.1002/adfm.201705729] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
98 Lee S, Lee K, Song Y, Choi WK, Chang J, Yi H. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform. Adv Mater 2016;28:1577-84. [DOI: 10.1002/adma.201503930] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
99 Lamont CM, Kelly CL, Pinske C, Buchanan G, Palmer T, Sargent F. Expanding the substrates for a bacterial hydrogenlyase reaction. Microbiology (Reading) 2017;163:649-53. [PMID: 28488566 DOI: 10.1099/mic.0.000471] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]