BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Martinez I, Cazalla D, Almstead LL, Steitz JA, DiMaio D. miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci USA. 2011;108:522-527. [PMID: 21187425 DOI: 10.1073/pnas.1017346108] [Cited by in Crossref: 149] [Cited by in F6Publishing: 142] [Article Influence: 12.4] [Reference Citation Analysis]
Number Citing Articles
1 Lin Z, Chen G, Zhang Y, He H, Liang Y, Ye J, Liang Y, Mo R, Lu J, Zhuo Y, Zheng Y, Jiang F, Han Z, Wu S, Zhong W, Wu C. MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer. Mol Cancer 2017;16. [DOI: 10.1186/s12943-017-0615-x] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 9.2] [Reference Citation Analysis]
2 Jin Y, Qi G, Chen G, Wang C, Fan X. Association between B-Myb proto-oncogene and the development of malignant tumors. Oncol Lett 2021;21:166. [PMID: 33552284 DOI: 10.3892/ol.2021.12427] [Reference Citation Analysis]
3 Banerjee S, Karunagaran D. An integrated approach for mining precise RNA-based cervical cancer staging biomarkers. Gene 2019;712:143961. [PMID: 31279709 DOI: 10.1016/j.gene.2019.143961] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
4 Jiang W, Zhang Z, Yang H, Lin Q, Han C, Qin X. The Involvement of miR-29b-3p in Arterial Calcification by Targeting Matrix Metalloproteinase-2. Biomed Res Int 2017;2017:6713606. [PMID: 28164126 DOI: 10.1155/2017/6713606] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
5 Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB, Yang JR. The role of miR-29b in cancer: regulation, function, and signaling. Onco Targets Ther. 2015;8:539-548. [PMID: 25767398 DOI: 10.2147/ott.s75899] [Cited by in Crossref: 29] [Cited by in F6Publishing: 80] [Article Influence: 4.1] [Reference Citation Analysis]
6 De Falco G, Ambrosio MR, Fuligni F, Onnis A, Bellan C, Rocca BJ, Navari M, Etebari M, Mundo L, Gazaneo S, Facchetti F, Pileri SA, Leoncini L, Piccaluga PP. Burkitt lymphoma beyond MYC translocation: N-MYC and DNA methyltransferases dysregulation. BMC Cancer 2015;15:668. [PMID: 26453442 DOI: 10.1186/s12885-015-1661-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
7 Smith-Vikos T, Slack FJ. MicroRNAs and their roles in aging. J Cell Sci 2012;125:7-17. [PMID: 22294612 DOI: 10.1242/jcs.099200] [Cited by in Crossref: 209] [Cited by in F6Publishing: 202] [Article Influence: 23.2] [Reference Citation Analysis]
8 Wagenseller AG, Shada A, D'Auria KM, Murphy C, Sun D, Molhoek KR, Papin JA, Dutta A, Slingluff CL Jr. MicroRNAs induced in melanoma treated with combination targeted therapy of Temsirolimus and Bevacizumab. J Transl Med 2013;11:218. [PMID: 24047116 DOI: 10.1186/1479-5876-11-218] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
9 Terlecki-Zaniewicz L, Lämmermann I, Latreille J, Bobbili MR, Pils V, Schosserer M, Weinmüllner R, Dellago H, Skalicky S, Pum D, Almaraz JCH, Scheideler M, Morizot F, Hackl M, Gruber F, Grillari J. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging (Albany NY) 2018;10:1103-32. [PMID: 29779019 DOI: 10.18632/aging.101452] [Cited by in Crossref: 82] [Cited by in F6Publishing: 78] [Article Influence: 27.3] [Reference Citation Analysis]
10 Ekman M, Bhattachariya A, Dahan D, Uvelius B, Albinsson S, Swärd K. Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness. PLoS One 2013;8:e82308. [PMID: 24340017 DOI: 10.1371/journal.pone.0082308] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
11 Hu Z, Klein JD, Mitch WE, Zhang L, Martinez I, Wang XH. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging (Albany NY) 2014;6:160-75. [PMID: 24659628 DOI: 10.18632/aging.100643] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 9.9] [Reference Citation Analysis]
12 Demolli S, Doebele C, Doddaballapur A, Lang V, Fisslthaler B, Chavakis E, Vinciguerra M, Sciacca S, Henschler R, Hecker M, Savant S, Augustin HG, Kaluza D, Dimmeler S, Boon RA. MicroRNA-30 mediates anti-inflammatory effects of shear stress and KLF2 via repression of angiopoietin 2. J Mol Cell Cardiol 2015;88:111-9. [PMID: 26456066 DOI: 10.1016/j.yjmcc.2015.10.009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.9] [Reference Citation Analysis]
13 Moulin D, Salone V, Koufany M, Clément T, Behm-Ansmant I, Branlant C, Charpentier B, Jouzeau JY. MicroRNA-29b Contributes to Collagens Imbalance in Human Osteoarthritic and Dedifferentiated Articular Chondrocytes. Biomed Res Int 2017;2017:9792512. [PMID: 28612031 DOI: 10.1155/2017/9792512] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
14 Suh N. MicroRNA controls of cellular senescence. BMB Rep 2018;51:493-9. [PMID: 30269742 [PMID: 30269742 DOI: 10.5483/bmbrep.2018.51.10.209] [Cited by in Crossref: 17] [Article Influence: 5.7] [Reference Citation Analysis]
15 Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, Zöllner H, Munding J, Klein-Scory S, Reinacher-Schick A, Schwarte-Waldhoff I, Schmiegel W, Hahn SA. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis. 2012;33:732-739. [PMID: 22287560 DOI: 10.1093/carcin/bgs020] [Cited by in Crossref: 114] [Cited by in F6Publishing: 114] [Article Influence: 11.4] [Reference Citation Analysis]
16 Cai J, Qi H, Yao K, Yao Y, Jing D, Liao W, Zhao Z. Non-Coding RNAs Steering the Senescence-Related Progress, Properties, and Application of Mesenchymal Stem Cells. Front Cell Dev Biol 2021;9:650431. [PMID: 33816501 DOI: 10.3389/fcell.2021.650431] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Yang C, Pan Y. Fluorouracil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression. Tumour Biol 2015. [PMID: 26209295 DOI: 10.1007/s13277-015-3775-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
18 Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, Yang F, Wei J, Wang L, Dykxhoorn DM, Hare JM, Goldschmidt-Clermont PJ, Dong C. MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res 2013;112:152-64. [PMID: 23072816 DOI: 10.1161/CIRCRESAHA.112.280016] [Cited by in Crossref: 86] [Cited by in F6Publishing: 52] [Article Influence: 8.6] [Reference Citation Analysis]
19 Yang X, Zhong X, Tanyi JL, Shen J, Xu C, Gao P, Zheng TM, DeMichele A, Zhang L. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells. Biochem Biophys Res Commun. 2013;431:617-622. [PMID: 23274497 DOI: 10.1016/j.bbrc.2012.12.083] [Cited by in Crossref: 69] [Cited by in F6Publishing: 66] [Article Influence: 6.9] [Reference Citation Analysis]
20 Kaur A, Lim JYS, Sepramaniam S, Patnaik S, Harmston N, Lee MA, Petretto E, Virshup DM, Madan B. WNT inhibition creates a BRCA-like state in Wnt-addicted cancer. EMBO Mol Med 2021;13:e13349. [PMID: 33660437 DOI: 10.15252/emmm.202013349] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
21 Kurtz CL, Peck BC, Fannin EE, Beysen C, Miao J, Landstreet SR, Ding S, Turaga V, Lund PK, Turner S, Biddinger SB, Vickers KC, Sethupathy P. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes 2014;63:3141-8. [PMID: 24722248 DOI: 10.2337/db13-1015] [Cited by in Crossref: 68] [Cited by in F6Publishing: 68] [Article Influence: 8.5] [Reference Citation Analysis]
22 Xu C, He Z, Lin C, Shen Z. MiR-30b-5p inhibits proliferation and promotes apoptosis of medulloblastoma cells via targeting MYB proto-oncogene like 2 (MYBL2). J Investig Med 2020;68:1179-85. [DOI: 10.1136/jim-2020-001354] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Aure MR, Leivonen SK, Fleischer T, Zhu Q, Overgaard J, Alsner J, Tramm T, Louhimo R, Alnæs GI, Perälä M, Busato F, Touleimat N, Tost J, Børresen-Dale AL, Hautaniemi S, Troyanskaya OG, Lingjærde OC, Sahlberg KK, Kristensen VN. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol 2013;14:R126. [PMID: 24257477 DOI: 10.1186/gb-2013-14-11-r126] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 6.4] [Reference Citation Analysis]
24 Zhao X, Liu Y, Li Z, Zheng S, Wang Z, Li W, Bi Z, Li L, Jiang Y, Luo Y, Lin Q, Fu Z, Rufu C. Linc00511 acts as a competing endogenous RNA to regulate VEGFA expression through sponging hsa-miR-29b-3p in pancreatic ductal adenocarcinoma. J Cell Mol Med. 2018;22:655-667. [PMID: 28984028 DOI: 10.1111/jcmm.13351] [Cited by in Crossref: 69] [Cited by in F6Publishing: 75] [Article Influence: 13.8] [Reference Citation Analysis]
25 Yu N, Yong S, Kim HK, Choi YL, Jung Y, Kim D, Seo J, Lee YE, Baek D, Lee J, Lee S, Lee JE, Kim J, Kim J, Lee S. Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma. Mol Oncol 2019;13:1356-68. [PMID: 30913346 DOI: 10.1002/1878-0261.12478] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
26 Gorospe M, Abdelmohsen K. MicroRegulators come of age in senescence. Trends Genet 2011;27:233-41. [PMID: 21592610 DOI: 10.1016/j.tig.2011.03.005] [Cited by in Crossref: 80] [Cited by in F6Publishing: 84] [Article Influence: 7.3] [Reference Citation Analysis]
27 Muther C, Jobeili L, Garion M, Heraud S, Thepot A, Damour O, Lamartine J. An expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis. Aging (Albany NY) 2017;9:2376-96. [PMID: 29165315 DOI: 10.18632/aging.101326] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
28 D'Aiuto F, Callari M, Dugo M, Merlino G, Musella V, Miodini P, Paolini B, Cappelletti V, Daidone MG. miR-30e* is an independent subtype-specific prognostic marker in breast cancer. Br J Cancer 2015;113:290-8. [PMID: 26057454 DOI: 10.1038/bjc.2015.206] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
29 Zhang K, Fu G, Pan G, Li C, Shen L, Hu R, Zhu S, Chen Y, Cui H. Demethylzeylasteral inhibits glioma growth by regulating the miR-30e-5p/MYBL2 axis. Cell Death Dis 2018;9:1035. [PMID: 30305611 DOI: 10.1038/s41419-018-1086-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
30 Hanin G, Soreq H. Cholinesterase-Targeting microRNAs Identified in silico Affect Specific Biological Processes. Front Mol Neurosci 2011;4:28. [PMID: 22007158 DOI: 10.3389/fnmol.2011.00028] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
31 Xie F, Stewart CN Jr, Taki FA, He Q, Liu H, Zhang B. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnol J 2014;12:354-66. [PMID: 24283289 DOI: 10.1111/pbi.12142] [Cited by in Crossref: 97] [Cited by in F6Publishing: 77] [Article Influence: 10.8] [Reference Citation Analysis]
32 Kim SE, Mori R, Shimokawa I. Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors? Nutrients 2020;12:E1959. [PMID: 32630045 DOI: 10.3390/nu12071959] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Scian MJ, Maluf DG, Mas VR. MiRNAs in kidney transplantation: potential role as new biomarkers. Expert Review of Molecular Diagnostics 2014;13:93-104. [DOI: 10.1586/erm.12.131] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
34 Dolz S, García P, Llop M, Fuster Ó, Luna I, Ibáñez M, Gómez I, López M, Such E, Cervera J, Sanz MA, De Juan I, Palanca S, Murria R, Bolufer P, Barragán E. Study of the S427G polymorphism and of MYBL2 variants in patients with acute myeloid leukemia. Leuk Lymphoma 2016;57:429-35. [PMID: 26014440 DOI: 10.3109/10428194.2015.1049167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
35 Zhang S, Liu H, Liu Y, Zhang J, Li H, Liu W, Cao G, Xv P, Zhang J, Lv C, Song X. miR-30a as Potential Therapeutics by Targeting TET1 through Regulation of Drp-1 Promoter Hydroxymethylation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2017;18:E633. [PMID: 28294974 DOI: 10.3390/ijms18030633] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
36 Liu Y, Song Y, Ma W, Zheng W, Yin H. Decreased microRNA-30a levels are associated with enhanced ABL1 and BCR-ABL1 expression in chronic myeloid leukemia. Leuk Res 2013;37:349-56. [PMID: 23287430 DOI: 10.1016/j.leukres.2012.12.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
37 Wang K, Jia Z, Zou J, Zhang A, Wang G, Hao J, Wang Y, Yang S, Pu P. Analysis of hsa-miR-30a-5p expression in human gliomas. Pathol Oncol Res 2013;19:405-11. [PMID: 23606081 DOI: 10.1007/s12253-012-9593-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
38 Majidinia M, Mir SM, Mirza-Aghazadeh-Attari M, Asghari R, Kafil HS, Safa A, Mahmoodpoor A, Yousefi B. MicroRNAs, DNA damage response and ageing. Biogerontology 2020;21:275-91. [PMID: 32067137 DOI: 10.1007/s10522-020-09862-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
39 Takahashi M, Eda A, Fukushima T, Hohjoh H. Reduction of type IV collagen by upregulated miR-29 in normal elderly mouse and klotho-deficient, senescence-model mouse. PLoS One 2012;7:e48974. [PMID: 23139829 DOI: 10.1371/journal.pone.0048974] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
40 Harries LW. MicroRNAs as Mediators of the Ageing Process. Genes (Basel). 2014;5:656-670. [PMID: 25140888 DOI: 10.3390/genes5030656] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 8.0] [Reference Citation Analysis]
41 Mcgregor RA, Poppitt SD, Cameron-smith D. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans. Ageing Research Reviews 2014;17:25-33. [DOI: 10.1016/j.arr.2014.05.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
42 Le Guillou S, Sdassi N, Laubier J, Passet B, Vilotte M, Castille J, Laloë D, Polyte J, Bouet S, Jaffrézic F. Overexpression of miR-30b in the developing mouse mammary gland causes a lactation defect and delays involution. PLoS One. 2012;7:e45727. [PMID: 23029204 DOI: 10.1371/journal.pone.0045727] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.9] [Reference Citation Analysis]
43 Maroni L, Pinto C, Giordano DM, Saccomanno S, Banales JM, Spallacci D, Albertini MC, Orlando F, Provinciali M, Milkiewicz M, Melum E, Labiano I, Milkiewicz P, Rychlicki C, Trozzi L, Scarpelli M, Benedetti A, Svegliati Baroni G, Marzioni M. Aging-Related Expression of Twinfilin-1 Regulates Cholangiocyte Biological Response to Injury. Hepatology 2019;70:883-98. [PMID: 30561764 DOI: 10.1002/hep.30466] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
44 Le P, Romano G, Nana-Sinkam P, Acunzo M. Non-Coding RNAs in Cancer Diagnosis and Therapy: Focus on Lung Cancer. Cancers (Basel) 2021;13:1372. [PMID: 33803619 DOI: 10.3390/cancers13061372] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Mowla SN, Lam EW, Jat PS. Cellular senescence and aging: the role of B-MYB. Aging Cell 2014;13:773-9. [PMID: 24981831 DOI: 10.1111/acel.12242] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 5.5] [Reference Citation Analysis]
46 Wu H, Jiang W, Ji G, Xu R, Zhou G, Yu H. Exploring microRNA target genes and identifying hub genes in bladder cancer based on bioinformatic analysis. BMC Urol 2021;21:90. [PMID: 34112125 DOI: 10.1186/s12894-021-00857-w] [Reference Citation Analysis]
47 Feliciano A, Sánchez-Sendra B, Kondoh H, Lleonart ME. MicroRNAs Regulate Key Effector Pathways of Senescence. J Aging Res 2011;2011:205378. [PMID: 21629746 DOI: 10.4061/2011/205378] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
48 Lee H, Hong Y, Kim M. Structural and Functional Changes and Possible Molecular Mechanisms in Aged Skin. Int J Mol Sci 2021;22:12489. [PMID: 34830368 DOI: 10.3390/ijms222212489] [Reference Citation Analysis]
49 Schraml E, Grillari J. From cellular senescence to age-associated diseases: the miRNA connection. Longev Healthspan 2012;1:10. [PMID: 24472232 DOI: 10.1186/2046-2395-1-10] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
50 Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, Patient R, Boshoff C. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120:5063-5072. [PMID: 23086751 DOI: 10.1182/blood-2012-04-423004] [Cited by in Crossref: 123] [Cited by in F6Publishing: 117] [Article Influence: 12.3] [Reference Citation Analysis]
51 Meng X, Xue M, Xu P, Hu F, Sun B, Xiao Z. MicroRNA profiling analysis revealed different cellular senescence mechanisms in human mesenchymal stem cells derived from different origin. Genomics 2017;109:147-57. [DOI: 10.1016/j.ygeno.2017.02.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
52 Li ZH, Xiong QY, Xu L, Duan P, Yang QO, Zhou P, Tu JH. miR-29a regulated ER-positive breast cancer cell growth and invasion and is involved in the insulin signaling pathway. Oncotarget 2017;8:32566-75. [PMID: 28427228 DOI: 10.18632/oncotarget.15928] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
53 Bai X, Zhang X, Fang R, Wang J, Ma Y, Liu Z, Dong H, Li Q, Ge J, Yu M, Fei J, Sun R, Huang F. Deficiency of miR-29b2/c leads to accelerated aging and neuroprotection in MPTP-induced Parkinson's disease mice. Aging (Albany NY) 2021;13:22390-411. [PMID: 34543233 DOI: 10.18632/aging.203545] [Reference Citation Analysis]
54 Rivera HM, Muñoz EN, Osuna D, Florez M, Carvajal M, Gómez LA. Reciprocal Changes in miRNA Expression with Pigmentation and Decreased Proliferation Induced in Mouse B16F1 Melanoma Cells by L-Tyrosine and 5-Bromo-2'-Deoxyuridine. Int J Mol Sci 2021;22:1591. [PMID: 33562431 DOI: 10.3390/ijms22041591] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Ouzounova M, Vuong T, Ancey PB, Ferrand M, Durand G, Le-Calvez Kelm F, Croce C, Matar C, Herceg Z, Hernandez-Vargas H. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics. 2013;14:139. [PMID: 23445407 DOI: 10.1186/1471-2164-14-139] [Cited by in Crossref: 94] [Cited by in F6Publishing: 89] [Article Influence: 10.4] [Reference Citation Analysis]
56 Franzetti GA, Laud-Duval K, Bellanger D, Stern MH, Sastre-Garau X, Delattre O. MiR-30a-5p connects EWS-FLI1 and CD99, two major therapeutic targets in Ewing tumor. Oncogene. 2013;32:3915-3921. [PMID: 22986530 DOI: 10.1038/onc.2012.403] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 5.1] [Reference Citation Analysis]
57 Wu J, Zheng C, Fan Y, Zeng C, Chen Z, Qin W, Zhang C, Zhang W, Wang X, Zhu X, Zhang M, Zen K, Liu Z. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J Am Soc Nephrol 2014;25:92-104. [PMID: 24029422 DOI: 10.1681/ASN.2012111101] [Cited by in Crossref: 114] [Cited by in F6Publishing: 64] [Article Influence: 12.7] [Reference Citation Analysis]
58 Mancini M, Lena AM, Saintigny G, Mahé C, Di Daniele N, Melino G, Candi E. MicroRNAs in human skin ageing. Ageing Res Rev 2014;17:9-15. [PMID: 24784027 DOI: 10.1016/j.arr.2014.04.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
59 Goh SY, Chao YX, Dheen ST, Tan EK, Tay SS. Role of MicroRNAs in Parkinson's Disease. Int J Mol Sci 2019;20:E5649. [PMID: 31718095 DOI: 10.3390/ijms20225649] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 14.3] [Reference Citation Analysis]
60 Sudo R, Sato F, Azechi T, Wachi H. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells. Genes Cells 2015;20:1077-87. [DOI: 10.1111/gtc.12311] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
61 Zhao JJ, Lin J, Zhu D, Wang X, Brooks D, Chen M, Chu ZB, Takada K, Ciccarelli B, Admin S, Tao J, Tai YT, Treon S, Pinkus G, Kuo WP, Hideshima T, Bouxsein M, Munshi N, Anderson K, Carrasco R. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Res 2014;74:1801-13. [PMID: 24599134 DOI: 10.1158/0008-5472.CAN-13-3311-T] [Cited by in Crossref: 113] [Cited by in F6Publishing: 79] [Article Influence: 14.1] [Reference Citation Analysis]
62 Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64:311-336. [PMID: 25104502 DOI: 10.3322/caac.21244] [Cited by in Crossref: 303] [Cited by in F6Publishing: 301] [Article Influence: 37.9] [Reference Citation Analysis]
63 Huang YQ, Ling XH, Yuan RQ, Chen ZY, Yang SB, Huang HX, Zhong WD, Qiu SP. miR‑30c suppresses prostate cancer survival by targeting the ASF/SF2 splicing factor oncoprotein. Mol Med Rep 2017;16:2431-8. [PMID: 28677791 DOI: 10.3892/mmr.2017.6910] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
64 Ling XH, Chen ZY, Luo HW, Liu ZZ, Liang YK, Chen GX, Jiang FN, Zhong WD. BCL9, a coactivator for Wnt/β-catenin transcription, is targeted by miR-30c and is associated with prostate cancer progression. Oncol Lett 2016;11:2001-8. [PMID: 26998113 DOI: 10.3892/ol.2016.4161] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
65 Dimmeler S, Nicotera P. MicroRNAs in age-related diseases. EMBO Mol Med 2013;5:180-90. [PMID: 23339066 DOI: 10.1002/emmm.201201986] [Cited by in Crossref: 119] [Cited by in F6Publishing: 105] [Article Influence: 13.2] [Reference Citation Analysis]
66 Guijarro MV, Carnero A. Genome-Wide miRNA Screening for Genes Bypassing Oncogene-Induced Senescence. Methods Mol Biol 2017;1534:53-68. [PMID: 27812867 DOI: 10.1007/978-1-4939-6670-7_5] [Reference Citation Analysis]
67 Zhang X, Azhar G, Wei JY. The expression of microRNA and microRNA clusters in the aging heart. PLoS One 2012;7:e34688. [PMID: 22529925 DOI: 10.1371/journal.pone.0034688] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 7.3] [Reference Citation Analysis]
68 Zhang P, Huang B, Xu X, Sessa WC. Ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG), components of the demethylation pathway, are direct targets of miRNA-29a. Biochem Biophys Res Commun 2013;437:368-73. [PMID: 23820384 DOI: 10.1016/j.bbrc.2013.06.082] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 7.2] [Reference Citation Analysis]
69 Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019;234:19280-97. [DOI: 10.1002/jcp.28607] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
70 Baumgart M, Groth M, Priebe S, Appelt J, Guthke R, Platzer M, Cellerino A. Age-dependent regulation of tumor-related microRNAs in the brain of the annual fish Nothobranchius furzeri. Mech Ageing Dev 2012;133:226-33. [PMID: 22487494 DOI: 10.1016/j.mad.2012.03.015] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
71 Yang S, Yang S, Wang D, Chen X, Shen H, Zhang X, Zhong S, Tang J, Zhao J. The miR-30 family: Versatile players in breast cancer. Tumour Biol 2017;39:101042831769220. [DOI: 10.1177/1010428317692204] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
72 Niu ZR, Han T, Sun XL, Luan LX, Gou WL, Zhu XM. MicroRNA-30a-3p is overexpressed in the placentas of patients with preeclampsia and affects trophoblast invasion and apoptosis by its effects on IGF-1. Am J Obstet Gynecol 2018;218:249.e1-249.e12. [PMID: 29155142 DOI: 10.1016/j.ajog.2017.11.568] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 8.4] [Reference Citation Analysis]
73 Rudolf E, John S, Cervinka M. Irinotecan induces senescence and apoptosis in colonic cells in vitro. Toxicol Lett 2012;214:1-8. [PMID: 22898888 DOI: 10.1016/j.toxlet.2012.08.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
74 Zhang N, Wang X, Huo Q, Sun M, Cai C, Liu Z, Hu G, Yang Q. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene. 2014;33:3119-3128. [PMID: 23851509 DOI: 10.1038/onc.2013.286] [Cited by in Crossref: 106] [Cited by in F6Publishing: 108] [Article Influence: 11.8] [Reference Citation Analysis]
75 Shang J, Yao Y, Fan X, Shangguan L, Li J, Liu H, Zhou Y. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. Biochim Biophys Acta. 2016;1863:520-532. [PMID: 26792405 DOI: 10.1016/j.bbamcr.2016.01.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
76 Shankar S, Tien JC, Siebenaler RF, Chugh S, Dommeti VL, Zelenka-Wang S, Wang XM, Apel IJ, Waninger J, Eyunni S, Xu A, Mody M, Goodrum A, Zhang Y, Tesmer JJ, Mannan R, Cao X, Vats P, Pitchiaya S, Ellison SJ, Shi J, Kumar-Sinha C, Crawford HC, Chinnaiyan AM. An essential role for Argonaute 2 in EGFR-KRAS signaling in pancreatic cancer development. Nat Commun 2020;11:2817. [PMID: 32499547 DOI: 10.1038/s41467-020-16309-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
77 Yoo JK, Lee JM, Kang SH, Jeon SH, Kim CM, Oh S, Kim C, Kim NK, Kim JK. The novel microRNA hsa-miR-CHA1 regulates cell proliferation and apoptosis in human lung cancer by targeting XIAP. Lung Cancer 2019;132:99-106. [DOI: 10.1016/j.lungcan.2018.04.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
78 Xu D, Tahara H. The role of exosomes and microRNAs in senescence and aging. Adv Drug Deliv Rev 2013;65:368-75. [PMID: 22820533 DOI: 10.1016/j.addr.2012.07.010] [Cited by in Crossref: 73] [Cited by in F6Publishing: 71] [Article Influence: 7.3] [Reference Citation Analysis]
79 Wong JJ, Ritchie W, Gao D, Lau KA, Gonzalez M, Choudhary A, Taft RJ, Rasko JE, Holst J. Identification of nuclear-enriched miRNAs during mouse granulopoiesis. J Hematol Oncol 2014;7:42. [PMID: 24886830 DOI: 10.1186/1756-8722-7-42] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
80 Patel V, Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens. 2012;21:410-416. [PMID: 22622653 DOI: 10.1097/mnh.0b013e328354e559] [Cited by in Crossref: 120] [Cited by in F6Publishing: 60] [Article Influence: 12.0] [Reference Citation Analysis]
81 Jentzsch C, Leierseder S, Loyer X, Flohrschütz I, Sassi Y, Hartmann D, Thum T, Laggerbauer B, Engelhardt S. A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol 2012;52:13-20. [PMID: 21801730 DOI: 10.1016/j.yjmcc.2011.07.010] [Cited by in Crossref: 78] [Cited by in F6Publishing: 82] [Article Influence: 7.1] [Reference Citation Analysis]
82 Du Y, Gao C, Liu Z, Wang L, Liu B, He F, Zhang T, Wang Y, Wang X, Xu M, Luo G, Zhu Y, Xu Q, Wang X, Kong W. Upregulation of a Disintegrin and Metalloproteinase With Thrombospondin Motifs-7 by miR-29 Repression Mediates Vascular Smooth Muscle Calcification. Arterioscler Thromb Vasc Biol 2012;32:2580-8. [DOI: 10.1161/atvbaha.112.300206] [Cited by in Crossref: 84] [Cited by in F6Publishing: 52] [Article Influence: 8.4] [Reference Citation Analysis]
83 Ottley EC, Nicholson HD, Gold EJ. Activin A regulates microRNAs and gene expression in LNCaP cells. Prostate 2016;76:951-63. [PMID: 27018851 DOI: 10.1002/pros.23184] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
84 Zhu L, Li C, Liu Q, Xu W, Zhou X. Molecular biomarkers in cardiac hypertrophy. J Cell Mol Med 2019;23:1671-7. [PMID: 30648807 DOI: 10.1111/jcmm.14129] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
85 Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. Senescence-Associated MicroRNAs. Int Rev Cell Mol Biol 2017;334:177-205. [PMID: 28838538 DOI: 10.1016/bs.ircmb.2017.03.008] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
86 Ait-Aissa K, Nguyen QM, Gabani M, Kassan A, Kumar S, Choi SK, Gonzalez AA, Khataei T, Sahyoun AM, Chen C, Kassan M. MicroRNAs and obesity-induced endothelial dysfunction: key paradigms in molecular therapy. Cardiovasc Diabetol 2020;19:136. [PMID: 32907629 DOI: 10.1186/s12933-020-01107-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
87 Yang XJ, Si RH, Liang YH, Ma BQ, Jiang ZB, Wang B, Gao P. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway. World J Gastroenterol 2016; 22(15): 3978-3991 [PMID: 27099441 DOI: 10.3748/wjg.v22.i15.3978] [Cited by in CrossRef: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
88 Ekman M, Albinsson S, Uvelius B, Swärd K. MicroRNAs in Bladder Outlet Obstruction: Relationship to Growth and Matrix Remodelling. Basic Clin Pharmacol Toxicol 2016;119:5-17. [DOI: 10.1111/bcpt.12534] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
89 Ørom UA, Lim MK, Savage JE, Jin L, Saleh AD, Lisanti MP, Simone NL. MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction. Cell Cycle 2012;11:1291-5. [PMID: 22421148 DOI: 10.4161/cc.19704] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.5] [Reference Citation Analysis]
90 Ortiz-Quintero B, Buendía-Roldán I, Ramírez-Salazar EG, Balderas-Martínez YI, Ramírez-Rodríguez SL, Martínez-Espinosa K, Selman M. Circulating microRNA Signature Associated to Interstitial Lung Abnormalities in Respiratory Asymptomatic Subjects. Cells 2020;9:E1556. [PMID: 32604783 DOI: 10.3390/cells9061556] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Abraham KJ, Ostrowski LA, Mekhail K. Non-Coding RNA Molecules Connect Calorie Restriction and Lifespan. Journal of Molecular Biology 2017;429:3196-214. [DOI: 10.1016/j.jmb.2016.08.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
92 Bulvik R, Biton M, Berkman N, Breuer R, Wallach-Dayan SB. Forefront: MiR-34a-Knockout Mice with Wild Type Hematopoietic Cells, Retain Persistent Fibrosis Following Lung Injury. Int J Mol Sci 2020;21:E2228. [PMID: 32210149 DOI: 10.3390/ijms21062228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
93 Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021. [PMID: 34756133 DOI: 10.1080/21655979.2021.2003667] [Reference Citation Analysis]
94 Wu Z, Huang X, Huang X, Zou Q, Guo Y. The inhibitory role of Mir-29 in growth of breast cancer cells. J Exp Clin Cancer Res 2013;32:98. [PMID: 24289849 DOI: 10.1186/1756-9966-32-98] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
95 van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 2015;17:21. [PMID: 25849621 DOI: 10.1186/s13058-015-0526-y] [Cited by in Crossref: 160] [Cited by in F6Publishing: 162] [Article Influence: 22.9] [Reference Citation Analysis]
96 Li N, Kaur S, Greshock J, Lassus H, Zhong X, Wang Y, Leminen A, Shao Z, Hu X, Liang S. A combined array-based comparative genomic hybridization and functional library screening approach identifies mir-30d as an oncomir in cancer. Cancer Res. 2012;72:154-164. [PMID: 22058146 DOI: 10.1158/0008-5472.can-11-2484] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
97 Garza-Manero S, Arias C, Bermúdez-Rattoni F, Vaca L, Zepeda A. Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease. Front Cell Neurosci 2015;9:53. [PMID: 25745387 DOI: 10.3389/fncel.2015.00053] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
98 Vera O, Bok I, Jasani N, Nakamura K, Xu X, Mecozzi N, Angarita A, Wang K, Tsai KY, Karreth FA. A MAPK/miR-29 Axis Suppresses Melanoma by Targeting MAFG and MYBL2. Cancers (Basel) 2021;13:1408. [PMID: 33808771 DOI: 10.3390/cancers13061408] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Liu P, Xie X, Yang A, Kong Y, Allen-Gipson D, Tian Z, Zhou L, Tang H, Xie X. Melatonin Regulates Breast Cancer Progression by the lnc010561/miR-30/FKBP3 Axis. Mol Ther Nucleic Acids 2020;19:765-74. [PMID: 31955008 DOI: 10.1016/j.omtn.2019.12.019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
100 Clarke M, Dumon S, Ward C, Jäger R, Freeman S, Dawood B, Sheriff L, Lorvellec M, Kralovics R, Frampton J, García P. MYBL2 haploinsufficiency increases susceptibility to age-related haematopoietic neoplasia. Leukemia 2013;27:661-70. [PMID: 22910183 DOI: 10.1038/leu.2012.241] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
101 Tu Z, Aird KM, Bitler BG, Nicodemus JP, Beeharry N, Xia B, Yen TJ, Zhang R. Oncogenic RAS regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence. Dev Cell. 2011;21:1077-1091. [PMID: 22137763 DOI: 10.1016/j.devcel.2011.10.010] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 5.7] [Reference Citation Analysis]
102 Toutfaire M, Bauwens E, Debacq-Chainiaux F. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies. Biochem Pharmacol 2017;142:1-12. [PMID: 28408343 DOI: 10.1016/j.bcp.2017.04.011] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 7.6] [Reference Citation Analysis]
103 Ghebre YT, Yakubov E, Wong WT, Krishnamurthy P, Sayed N, Sikora AG, Bonnen MD. Vascular Aging: Implications for Cardiovascular Disease and Therapy. Transl Med (Sunnyvale) 2016;6:183. [PMID: 28932625 DOI: 10.4172/2161-1025.1000183] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
104 Chen K, Juo SH. MicroRNAs in atherosclerosis. The Kaohsiung Journal of Medical Sciences 2012;28:631-40. [DOI: 10.1016/j.kjms.2012.04.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
105 Tang B, Li N, Gu J, Zhuang Y, Li Q, Wang HG, Fang Y, Yu B, Zhang JY, Xie QH. Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori. Autophagy. 2012;8:1045-1057. [PMID: 22647547 DOI: 10.4161/auto.20159] [Cited by in Crossref: 87] [Cited by in F6Publishing: 78] [Article Influence: 8.7] [Reference Citation Analysis]
106 Hysolli E, Tanaka Y, Su J, Kim KY, Zhong T, Janknecht R, Zhou XL, Geng L, Qiu C, Pan X, Jung YW, Cheng J, Lu J, Zhong M, Weissman SM, Park IH. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family. Stem Cell Reports 2016;7:43-54. [PMID: 27373925 DOI: 10.1016/j.stemcr.2016.05.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
107 Xu J, Wang Y, Tan X, Jing H. MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 2012;8:873-82. [PMID: 22441107 DOI: 10.4161/auto.19629] [Cited by in Crossref: 89] [Cited by in F6Publishing: 81] [Article Influence: 8.9] [Reference Citation Analysis]
108 Carnero A. Markers of cellular senescence. Methods Mol Biol. 2013;965:63-81. [PMID: 23296651 DOI: 10.1007/978-1-62703-239-1_4] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 5.2] [Reference Citation Analysis]
109 Nyholm AM, Lerche CM, Manfé V, Biskup E, Johansen P, Morling N, Thomsen BM, Glud M, Gniadecki R. miR-125b induces cellular senescence in malignant melanoma. BMC Dermatol 2014;14:8. [PMID: 24762088 DOI: 10.1186/1471-5945-14-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
110 Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, deVere White RW, Kung HJ. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene. 2014;33:2495-2503. [PMID: 23728339 DOI: 10.1038/onc.2013.200] [Cited by in Crossref: 94] [Cited by in F6Publishing: 102] [Article Influence: 10.4] [Reference Citation Analysis]
111 Ling H, Girnita L, Buda O, Calin GA. Non-coding RNAs: the cancer genome dark matter that matters! Clin Chem Lab Med 2017;55:705-14. [PMID: 27988500 DOI: 10.1515/cclm-2016-0740] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
112 Shao J, Cao J, Wang J, Ren X, Su S, Li M, Li Z, Zhao Q, Zang W. MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat. Mol Pain 2016;12:1744806916671523. [PMID: 27765894 DOI: 10.1177/1744806916671523] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
113 Li XH, Ha CT, Fu D, Xiao M. Micro-RNA30c negatively regulates REDD1 expression in human hematopoietic and osteoblast cells after gamma-irradiation. PLoS One 2012;7:e48700. [PMID: 23144934 DOI: 10.1371/journal.pone.0048700] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
114 Voic H, Li X, Jang JH, Zou C, Sundd P, Alder J, Rojas M, Chandra D, Randell S, Mallampalli RK, Tesfaigzi Y, Ryba T, Nyunoya T. RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia. BMC Genomics 2019;20:22. [PMID: 30626320 DOI: 10.1186/s12864-018-5409-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
115 Leal JA, Feliciano A, Lleonart ME. Stem cell microRNAs in senescence and immortalization: novel players in cancer therapy. Med Res Rev 2013;33:112-38. [PMID: 21793013 DOI: 10.1002/med.20246] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
116 Zhong K, Chen K, Han L, Li B. MicroRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer 2014;14:703. [PMID: 25249344 DOI: 10.1186/1471-2407-14-703] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 8.4] [Reference Citation Analysis]
117 Suh EJ, Remillard MY, Legesse-Miller A, Johnson EL, Lemons JM, Chapman TR, Forman JJ, Kojima M, Silberman ES, Coller HA. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts. Genome Biol 2012;13:R121. [PMID: 23259597 DOI: 10.1186/gb-2012-13-12-r121] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 4.2] [Reference Citation Analysis]
118 Li XH, Ha CT, Fu D, Landauer MR, Ghosh SP, Xiao M. Delta-tocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34+ cells from radiation injury. PLoS One 2015;10:e0122258. [PMID: 25815474 DOI: 10.1371/journal.pone.0122258] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
119 Florio MC, Magenta A, Beji S, Lakatta EG, Capogrossi MC. Aging, MicroRNAs, and Heart Failure. Current Problems in Cardiology 2020;45:100406. [DOI: 10.1016/j.cpcardiol.2018.12.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
120 Martinez I, Almstead LL, DiMaio D. MicroRNAs and senescence. Aging (Albany NY) 2011;3:77-8. [PMID: 21304181 DOI: 10.18632/aging.100282] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
121 Victoria Martinez B, Dhahbi JM, Nunez Lopez YO, Lamperska K, Golusinski P, Luczewski L, Kolenda T, Atamna H, Spindler SR, Golusinski W, Masternak MM. Circulating small non-coding RNA signature in head and neck squamous cell carcinoma. Oncotarget 2015;6:19246-63. [PMID: 26057471 DOI: 10.18632/oncotarget.4266] [Cited by in Crossref: 51] [Cited by in F6Publishing: 60] [Article Influence: 8.5] [Reference Citation Analysis]
122 Gerasymchuk M, Cherkasova V, Kovalchuk O, Kovalchuk I. The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020;21:E5281. [PMID: 32722415 DOI: 10.3390/ijms21155281] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
123 Fuster O, Llop M, Dolz S, García P, Such E, Ibáñez M, Luna I, Gómez I, López M, Cervera J, Montesinos P, Moscardó F, Cordón L, Solves P, de Juan I, Palanca S, Bolufer P, Sanz MÁ, Barragán E. Adverse prognostic value of MYBL2 overexpression and association with microRNA-30 family in acute myeloid leukemia patients. Leuk Res 2013;37:1690-6. [PMID: 24199710 DOI: 10.1016/j.leukres.2013.09.015] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
124 Xu S, Zhang B, Zhu Y, Huang H, Yang W, Huang H, Zheng H, Liu X. miR-194 functions as a novel modulator of cellular senescence in mouse embryonic fibroblasts: miR-194 promotes cellular senescence. Cell Biol Int 2017;41:249-57. [DOI: 10.1002/cbin.10715] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
125 Fiserova B, Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. The miR-29 family in hematological malignancies. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015;159:184-91. [PMID: 25004911 DOI: 10.5507/bp.2014.037] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
126 Sohn D, Peters D, Piekorz RP, Budach W, Jänicke RU. miR-30e controls DNA damage-induced stress responses by modulating expression of the CDK inhibitor p21WAF1/CIP1 and caspase-3. Oncotarget 2016;7:15915-29. [PMID: 26895377 DOI: 10.18632/oncotarget.7432] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
127 Ugalde AP, Español Y, López-Otín C. Micromanaging aging with miRNAs: new messages from the nuclear envelope. Nucleus 2011;2:549-55. [PMID: 22064465 DOI: 10.4161/nucl.2.6.17986] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
128 Martinez I, Dimaio D. B-Myb, cancer, senescence, and microRNAs. Cancer Res 2011;71:5370-3. [PMID: 21828240 DOI: 10.1158/0008-5472.CAN-11-1044] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
129 Dhahbi JM, Atamna H, Boffelli D, Magis W, Spindler SR, Martin DI. Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence. PLoS One 2011;6:e20509. [PMID: 21637828 DOI: 10.1371/journal.pone.0020509] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 5.3] [Reference Citation Analysis]
130 Bjersing JL, Lundborg C, Bokarewa MI, Mannerkorpi K. Profile of cerebrospinal microRNAs in fibromyalgia. PLoS One 2013;8:e78762. [PMID: 24205312 DOI: 10.1371/journal.pone.0078762] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 6.8] [Reference Citation Analysis]
131 Rhodes LV, Tilghman SL, Boue SM, Wang S, Khalili H, Muir SE, Bratton MR, Zhang Q, Wang G, Burow ME, Collins-Burow BM. Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer. Oncol Lett 2012;3:163-71. [PMID: 22740874 DOI: 10.3892/ol.2011.460] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
132 Anfossi S, Fu X, Nagvekar R, Calin GA. MicroRNAs, Regulatory Messengers Inside and Outside Cancer Cells. Adv Exp Med Biol 2018;1056:87-108. [PMID: 29754176 DOI: 10.1007/978-3-319-74470-4_6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
133 Garg D, Cohen SM. miRNAs and aging: a genetic perspective. Ageing Res Rev 2014;17:3-8. [PMID: 24755363 DOI: 10.1016/j.arr.2014.04.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
134 Neault M, Couteau F, Bonneau É, De Guire V, Mallette FA. Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. MiRNAs in Aging and Cancer. Elsevier; 2017. pp. 27-98. [DOI: 10.1016/bs.ircmb.2017.04.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
135 Pan W, Zhong Y, Cheng C, Liu B, Wang L, Li A, Xiong L, Liu S. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy. PLoS One 2013;8:e53950. [PMID: 23326547 DOI: 10.1371/journal.pone.0053950] [Cited by in Crossref: 111] [Cited by in F6Publishing: 117] [Article Influence: 12.3] [Reference Citation Analysis]
136 Luceri C, Bigagli E, Pitozzi V, Giovannelli L. A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. Eur J Nutr 2017;56:865-77. [DOI: 10.1007/s00394-015-1134-4] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
137 Olivieri F, Rippo MR, Monsurrò V, Salvioli S, Capri M, Procopio AD, Franceschi C. MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev. 2013; May 17. [Epub ahead of print]. [PMID: 23688930 DOI: 10.1016/j.arr.2013.05.001] [Cited by in Crossref: 133] [Cited by in F6Publishing: 124] [Article Influence: 14.8] [Reference Citation Analysis]
138 Xu S, Huang H, Li N, Zhang B, Jia Y, Yang Y, Yuan Y, Xiong XD, Wang D, Zheng HL, Liu X. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6. Biochem Biophys Res Commun 2016;473:1064-70. [PMID: 27059142 DOI: 10.1016/j.bbrc.2016.04.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
139 Martinez I, Hayes KE, Barr JA, Harold AD, Xie M, Bukhari SIA, Vasudevan S, Steitz JA, DiMaio D. An Exportin-1-dependent microRNA biogenesis pathway during human cell quiescence. Proc Natl Acad Sci U S A 2017;114:E4961-70. [PMID: 28584122 DOI: 10.1073/pnas.1618732114] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
140 Han W, Mu Y, Zhang Z, Su X. Expression of miR-30c and BCL-9 in gastric carcinoma tissues and their function in the development of gastric cancer. Oncol Lett 2018;16:2416-26. [PMID: 30013632 DOI: 10.3892/ol.2018.8934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
141 Heinrichs S, Conover LF, Bueso-Ramos CE, Kilpivaara O, Stevenson K, Neuberg D, Loh ML, Wu WS, Rodig SJ, Garcia-Manero G, Kantarjian HM, Look AT. MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy. Elife 2013;2:e00825. [PMID: 23878725 DOI: 10.7554/eLife.00825] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
142 Starlard-Davenport A, Smith A, Vu L, Li B, Pace BS. MIR29B mediates epigenetic mechanisms of HBG gene activation. Br J Haematol 2019;186:91-100. [PMID: 30891745 DOI: 10.1111/bjh.15870] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
143 Hou X, Tang Z, Liu H, Wang N, Ju H, Li K. Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS One 2012;7:e52123. [PMID: 23284895 DOI: 10.1371/journal.pone.0052123] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
144 Li T, Yan X, Jiang M, Xiang L. The comparison of microRNA profile of the dermis between the young and elderly. Journal of Dermatological Science 2016;82:75-83. [DOI: 10.1016/j.jdermsci.2016.01.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]