BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, Galán JE, Flavell RA, Alexopoulou L. Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci USA. 2006;103:12487-12492. [PMID: 16891416 DOI: 10.1073/pnas.0605200103] [Cited by in Crossref: 217] [Cited by in F6Publishing: 209] [Article Influence: 14.5] [Reference Citation Analysis]
Number Citing Articles
1 Choi YJ, Jung J, Chung HK, Im E, Rhee SH. PTEN regulates TLR5-induced intestinal inflammation by controlling Mal/TIRAP recruitment. FASEB J 2013;27:243-54. [PMID: 23038756 DOI: 10.1096/fj.12-217596] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
2 Yang X, Murani E, Ponsuksili S, Wimmers K. Association of TLR5 sequence variants and mRNA level with cytokine transcription in pigs. Immunogenetics 2013;65:125-32. [PMID: 23132291 DOI: 10.1007/s00251-012-0662-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
3 Pan H, Fatima M, Li A, Lee H, Cai W, Horwitz L, Hor CC, Zaher N, Cin M, Slade H, Huang T, Xu XZS, Duan B. Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch. Neuron 2019;103:1135-1149.e6. [PMID: 31324538 DOI: 10.1016/j.neuron.2019.06.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 15.5] [Reference Citation Analysis]
4 Stockhammer OW, Zakrzewska A, Hegedûs Z, Spaink HP, Meijer AH. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J Immunol 2009;182:5641-53. [PMID: 19380811 DOI: 10.4049/jimmunol.0900082] [Cited by in F6Publishing: 148] [Reference Citation Analysis]
5 Cigana C, Lorè NI, Bernardini ML, Bragonzi A. Dampening Host Sensing and Avoiding Recognition in Pseudomonas aeruginosa Pneumonia. J Biomed Biotechnol 2011;2011:852513. [PMID: 21785567 DOI: 10.1155/2011/852513] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
6 Döring G, Pier GB. Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine 2008;26:1011-24. [DOI: 10.1016/j.vaccine.2007.12.007] [Cited by in Crossref: 123] [Cited by in F6Publishing: 96] [Article Influence: 9.5] [Reference Citation Analysis]
7 Chaudhuri N, Whyte MK, Sabroe I. Reducing the toll of inflammatory lung disease. Chest 2007;131:1550-6. [PMID: 17494804 DOI: 10.1378/chest.06-2869] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
8 Moon JY, Nam B, Kong HJ, Kim Y, Kim W, Kim B, Kim KK, Lee S. Maximal transcriptional activation of piscine soluble Toll-like receptor 5 by the NF-κB subunit p65 and flagellin. Fish & Shellfish Immunology 2011;31:881-6. [DOI: 10.1016/j.fsi.2011.08.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
9 Zhu A, Wei L, Hu S, Yang C, Chen C, Zhou Z, Pan Z. Characterisation and functional analysis of canine TLR5. Innate Immun 2020;26:451-8. [PMID: 31986950 DOI: 10.1177/1753425920901862] [Reference Citation Analysis]
10 Lavoie EG, Wangdi T, Kazmierczak BI. Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 2011;13:1133-45. [PMID: 21839853 DOI: 10.1016/j.micinf.2011.07.011] [Cited by in Crossref: 110] [Cited by in F6Publishing: 107] [Article Influence: 11.0] [Reference Citation Analysis]
11 LeibundGut-Landmann S, Weidner K, Hilbi H, Oxenius A. Nonhematopoietic cells are key players in innate control of bacterial airway infection. J Immunol 2011;186:3130-7. [PMID: 21270399 DOI: 10.4049/jimmunol.1003565] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 3.8] [Reference Citation Analysis]
12 Petes C, Odoardi N, Plater SM, Martin NL, Gee K. IL-27 amplifies cytokine responses to Gram-negative bacterial products and Salmonella typhimurium infection. Sci Rep 2018;8:13704. [PMID: 30209294 DOI: 10.1038/s41598-018-32007-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog 2013;9:e1003582. [PMID: 24039572 DOI: 10.1371/journal.ppat.1003582] [Cited by in Crossref: 112] [Cited by in F6Publishing: 98] [Article Influence: 14.0] [Reference Citation Analysis]
14 Issac JM, Sarawathiamma D, Al-Ketbi MI, Azimullah S, Al-Ojali SM, Mohamed YA, Flavell RA, Fernandez-Cabezudo MJ, al-Ramadi BK. Differential outcome of infection with attenuated Salmonella in MyD88-deficient mice is dependent on the route of administration. Immunobiology 2013;218:52-63. [PMID: 22386951 DOI: 10.1016/j.imbio.2012.02.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
15 Basak S, Deb D, Narsaria U, Kar T, Castiglione F, Sanyal I, Bade PD, Srivastava AP. In silico designing of vaccine candidate against Clostridium difficile. Sci Rep 2021;11:14215. [PMID: 34244557 DOI: 10.1038/s41598-021-93305-6] [Reference Citation Analysis]
16 Schmitt S, Tahk S, Lohner A, Hänel G, Maiser A, Hauke M, Patel L, Rothe M, Josenhans C, Leonhardt H, Griffioen M, Deiser K, Fenn NC, Hopfner KP, Subklewe M. Fusion of Bacterial Flagellin to a Dendritic Cell-Targeting αCD40 Antibody Construct Coupled With Viral or Leukemia-Specific Antigens Enhances Dendritic Cell Maturation and Activates Peptide-Responsive T Cells. Front Immunol 2020;11:602802. [PMID: 33281829 DOI: 10.3389/fimmu.2020.602802] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Didierlaurent A, Goulding J, Patel S, Snelgrove R, Low L, Bebien M, Lawrence T, van Rijt LS, Lambrecht BN, Sirard JC, Hussell T. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 2008;205:323-9. [PMID: 18227219 DOI: 10.1084/jem.20070891] [Cited by in Crossref: 268] [Cited by in F6Publishing: 266] [Article Influence: 20.6] [Reference Citation Analysis]
18 Reiniger N, Lee MM, Coleman FT, Ray C, Golan DE, Pier GB. Resistance to Pseudomonas aeruginosa chronic lung infection requires cystic fibrosis transmembrane conductance regulator-modulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor. Infect Immun 2007;75:1598-608. [PMID: 17283089 DOI: 10.1128/IAI.01980-06] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
19 Simon R, Samuel CE. Activation of NF-kappaB-dependent gene expression by Salmonella flagellins FliC and FljB. Biochem Biophys Res Commun 2007;355:280-5. [PMID: 17292856 DOI: 10.1016/j.bbrc.2007.01.148] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 2.4] [Reference Citation Analysis]
20 Li H, Liu D, Yang X. Identification and functional analysis of a novel single nucleotide polymorphism (SNP) in the porcine Toll like receptor (TLR) 5 gene. Acta Agriculturae Scandinavica, Section A - Animal Science 2011;61:161-7. [DOI: 10.1080/09064702.2012.656140] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
21 Baker S, Holt K, Whitehead S, Goodhead I, Perkins T, Stocker B, Hardy J, Dougan G. A linear plasmid truncation induces unidirectional flagellar phase change in H:z66 positive Salmonella Typhi. Mol Microbiol 2007;66:1207-18. [PMID: 17976161 DOI: 10.1111/j.1365-2958.2007.05995.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
22 Kaur J, Jain S. Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiological Research 2012;167:199-210. [DOI: 10.1016/j.micres.2011.08.001] [Cited by in Crossref: 66] [Cited by in F6Publishing: 51] [Article Influence: 7.3] [Reference Citation Analysis]
23 Shikhagaie MM, Andersson CK, Mori M, Kortekaas Krohn I, Bergqvist A, Dahl R, Ekblad E, Hoffmann HJ, Bjermer L, Erjefält JS. Mapping of TLR5 and TLR7 in central and distal human airways and identification of reduced TLR expression in severe asthma. Clin Exp Allergy 2014;44:184-96. [PMID: 24447081 DOI: 10.1111/cea.12176] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
24 Vicente-suarez I, Takahashi Y, Cheng F, Horna P, Wang H, Wang H, Sotomayor E. Identification of a novel negative role of flagellin in regulating IL-10 production. Eur J Immunol 2007;37:3164-75. [DOI: 10.1002/eji.200737306] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
25 Lane MC, Alteri CJ, Smith SN, Mobley HL. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci USA. 2007;104:16669-16674. [PMID: 17925449 DOI: 10.1073/pnas.0607898104] [Cited by in Crossref: 260] [Cited by in F6Publishing: 237] [Article Influence: 18.6] [Reference Citation Analysis]
26 Faham A, Altin JG. Antigen-containing liposomes engrafted with flagellin-related peptides are effective vaccines that can induce potent antitumor immunity and immunotherapeutic effect. J Immunol 2010;185:1744-54. [PMID: 20610649 DOI: 10.4049/jimmunol.1000027] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.1] [Reference Citation Analysis]
27 Raza S, McDerment N, Lacaze PA, Robertson K, Watterson S, Chen Y, Chisholm M, Eleftheriadis G, Monk S, O'Sullivan M, Turnbull A, Roy D, Theocharidis A, Ghazal P, Freeman TC. Construction of a large scale integrated map of macrophage pathogen recognition and effector systems. BMC Syst Biol 2010;4:63. [PMID: 20470404 DOI: 10.1186/1752-0509-4-63] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 2.7] [Reference Citation Analysis]
28 Descamps D, Le Gars M, Balloy V, Barbier D, Maschalidi S, Tohme M, Chignard M, Ramphal R, Manoury B, Sallenave JM. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing. Proc Natl Acad Sci U S A 2012;109:1619-24. [PMID: 22307620 DOI: 10.1073/pnas.1108464109] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 6.6] [Reference Citation Analysis]
29 Gómez MI, Prince A. Airway epithelial cell signaling in response to bacterial pathogens. Pediatr Pulmonol 2008;43:11-9. [PMID: 18041080 DOI: 10.1002/ppul.20735] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 3.8] [Reference Citation Analysis]
30 Yuki K, Mitsui Y, Shibamura-Fujiogi M, Hou L, Odegard KC, Soriano SG, Priebe GP, Koutsogiannaki S. Anesthetics isoflurane and sevoflurane attenuate flagellin-mediated inflammation in the lung. Biochem Biophys Res Commun 2021;557:254-60. [PMID: 33894411 DOI: 10.1016/j.bbrc.2021.04.045] [Reference Citation Analysis]
31 Hawn TR, Berrington WR, Smith IA, Uematsu S, Akira S, Aderem A, Smith KD, Skerrett SJ. Altered inflammatory responses in TLR5-deficient mice infected with Legionella pneumophila. J Immunol 2007;179:6981-7. [PMID: 17982089 DOI: 10.4049/jimmunol.179.10.6981] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 5.6] [Reference Citation Analysis]
32 Campodónico VL, Llosa NJ, Grout M, Döring G, Maira-Litrán T, Pier GB. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines. Infect Immun 2010;78:746-55. [PMID: 19995892 DOI: 10.1128/IAI.00806-09] [Cited by in Crossref: 79] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
33 Gerold G, Zychlinsky A, de Diego JL. What is the role of Toll-like receptors in bacterial infections? Seminars in Immunology 2007;19:41-7. [DOI: 10.1016/j.smim.2006.12.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 3.1] [Reference Citation Analysis]
34 Kaihami GH, Almeida JR, Santos SS, Netto LE, Almeida SR, Baldini RL. Involvement of a 1-Cys peroxiredoxin in bacterial virulence. PLoS Pathog 2014;10:e1004442. [PMID: 25329795 DOI: 10.1371/journal.ppat.1004442] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
35 Muñoz N, Van Maele L, Marqués JM, Rial A, Sirard JC, Chabalgoity JA. Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection. Infect Immun 2010;78:4226-33. [PMID: 20643849 DOI: 10.1128/IAI.00224-10] [Cited by in Crossref: 87] [Cited by in F6Publishing: 52] [Article Influence: 7.9] [Reference Citation Analysis]
36 Porte R, Fougeron D, Muñoz-Wolf N, Tabareau J, Georgel AF, Wallet F, Paget C, Trottein F, Chabalgoity JA, Carnoy C, Sirard JC. A Toll-Like Receptor 5 Agonist Improves the Efficacy of Antibiotics in Treatment of Primary and Influenza Virus-Associated Pneumococcal Mouse Infections. Antimicrob Agents Chemother 2015;59:6064-72. [PMID: 26195519 DOI: 10.1128/AAC.01210-15] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
37 Moreira CG, Weinshenker D, Sperandio V. QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun. 2010;78:914-926. [PMID: 20028809 DOI: 10.1128/iai.01038-09] [Cited by in Crossref: 110] [Cited by in F6Publishing: 73] [Article Influence: 9.2] [Reference Citation Analysis]
38 Gat O, Galen JE, Tennant S, Simon R, Blackwelder WC, Silverman DJ, Pasetti MF, Levine MM. Cell-associated flagella enhance the protection conferred by mucosally-administered attenuated Salmonella Paratyphi A vaccines. PLoS Negl Trop Dis 2011;5:e1373. [PMID: 22069504 DOI: 10.1371/journal.pntd.0001373] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 3.7] [Reference Citation Analysis]
39 Pearson MM, Yep A, Smith SN, Mobley HL. Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 2011;79:2619-31. [PMID: 21505083 DOI: 10.1128/IAI.05152-11] [Cited by in Crossref: 53] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
40 Py BF, Gonzalez SF, Long K, Kim MS, Kim YA, Zhu H, Yao J, Degauque N, Villet R, Ymele-Leki P, Gadjeva M, Pier GB, Carroll MC, Yuan J. Cochlin produced by follicular dendritic cells promotes antibacterial innate immunity. Immunity 2013;38:1063-72. [PMID: 23684986 DOI: 10.1016/j.immuni.2013.01.015] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 4.5] [Reference Citation Analysis]
41 Anwar MA, Shah M, Kim J, Choi S. Recent clinical trends in Toll-like receptor targeting therapeutics. Med Res Rev 2019;39:1053-90. [PMID: 30450666 DOI: 10.1002/med.21553] [Cited by in Crossref: 89] [Cited by in F6Publishing: 90] [Article Influence: 29.7] [Reference Citation Analysis]
42 Baker S, Hardy J, Sanderson KE, Quail M, Goodhead I, Kingsley RA, Parkhill J, Stocker B, Dougan G. A novel linear plasmid mediates flagellar variation in Salmonella Typhi. PLoS Pathog 2007;3:e59. [PMID: 17500588 DOI: 10.1371/journal.ppat.0030059] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
43 Basso P, Wallet P, Elsen S, Soleilhac E, Henry T, Faudry E, Attrée I. Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death. Environ Microbiol 2017;19:4045-64. [PMID: 28654176 DOI: 10.1111/1462-2920.13841] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
44 Saha S, Takeshita F, Matsuda T, Jounai N, Kobiyama K, Matsumoto T, Sasaki S, Yoshida A, Xin K, Klinman DM, Uematsu S, Ishii KJ, Akira S, Okuda K. Blocking of the TLR5 Activation Domain Hampers Protective Potential of Flagellin DNA Vaccine. J Immunol 2007;179:1147-54. [DOI: 10.4049/jimmunol.179.2.1147] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 2.7] [Reference Citation Analysis]
45 Zgair AK, Chhibber S. Stenotrophomonas maltophilia flagellin restricts bacterial colonization in BALB/c mouse lung in vivo. FEMS Immunol Med Microbiol 2012;66:191-200. [DOI: 10.1111/j.1574-695x.2012.00999.x] [Cited by in Crossref: 6] [Article Influence: 0.7] [Reference Citation Analysis]
46 Chiu K, Bashir ST, Chiu J, Nowak RA, Flaws JA. The Impact of Di-Isononyl Phthalate Exposure on Specialized Epithelial Cells in the Colon. Toxicol Sci 2021;184:142-53. [PMID: 34453847 DOI: 10.1093/toxsci/kfab105] [Reference Citation Analysis]
47 Kumar V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. EXCLI J 2021;20:52-79. [PMID: 33510592 DOI: 10.17179/excli2020-3114] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Hedl M, Lahiri A, Ning K, Cho JH, Abraham C. Pattern recognition receptor signaling in human dendritic cells is enhanced by ICOS ligand and modulated by the Crohn's disease ICOSLG risk allele. Immunity. 2014;40:734-746. [PMID: 24837102 DOI: 10.1016/j.immuni.2014.04.011] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
49 Pena J, Fu Z, Schwarzer C, Machen TE. Pseudomonas aeruginosa Inhibition of Flagellin-activated NF-kappaB and interleukin-8 by human airway epithelial cells. Infect Immun 2009;77:2857-65. [PMID: 19451246 DOI: 10.1128/IAI.01355-08] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
50 Zhang W, Hartmann R, Tun HM, Elson CO, Khafipour E, Garvey WT. Deletion of the Toll-Like Receptor 5 Gene Per Se Does Not Determine the Gut Microbiome Profile That Induces Metabolic Syndrome: Environment Trumps Genotype. PLoS One. 2016;11:e0150943. [PMID: 26950299 DOI: 10.1371/journal.pone.0150943] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
51 Hashizume-Takizawa T, Yamamoto M. Toll-like receptor 5 is not essential for the promotion of secretory immunoglobulin A antibody responses to flagellated bacteria. Microbiol Immunol 2015;59:716-23. [PMID: 26564803 DOI: 10.1111/1348-0421.12336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
52 Otterbeck A, Hanslin K, Lantz EL, Larsson A, Stålberg J, Lipcsey M. Inhalation of specific anti-Pseudomonas aeruginosa IgY antibodies transiently decreases P. aeruginosa colonization of the airway in mechanically ventilated piglets. Intensive Care Med Exp 2019;7:21. [PMID: 30963317 DOI: 10.1186/s40635-019-0246-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
53 Nakamoto K, Watanabe M, Sada M, Inui T, Nakamura M, Honda K, Wada H, Ishii H, Takizawa H. Pseudomonas aeruginosa-derived flagellin stimulates IL-6 and IL-8 production in human bronchial epithelial cells: A potential mechanism for progression and exacerbation of COPD. Exp Lung Res 2019;45:255-66. [PMID: 31517562 DOI: 10.1080/01902148.2019.1665147] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
54 Xiong D, Song L, Pan Z, Jiao X. Molecular cloning, characterization, and functional analysis of pigeon (Columba livia) Toll-like receptor 5. Poult Sci 2018;97:4031-9. [PMID: 29945253 DOI: 10.3382/ps/pey244] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
55 Demaria O, Pagni PP, Traub S, de Gassart A, Branzk N, Murphy AJ, Valenzuela DM, Yancopoulos GD, Flavell RA, Alexopoulou L. TLR8 deficiency leads to autoimmunity in mice. J Clin Invest 2010;120:3651-62. [PMID: 20811154 DOI: 10.1172/JCI42081] [Cited by in Crossref: 30] [Cited by in F6Publishing: 77] [Article Influence: 2.7] [Reference Citation Analysis]
56 Koné B, Pérez-Cruz M, Porte R, Hennegrave F, Carnoy C, Gosset P, Trottein F, Sirard JC, Pichavant M, Gosset P. Boosting the IL-22 response using flagellin prevents bacterial infection in cigarette smoke-exposed mice. Clin Exp Immunol 2020;201:171-86. [PMID: 32324274 DOI: 10.1111/cei.13445] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
57 Morris AE, Liggitt HD, Hawn TR, Skerrett SJ. Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol 2009;297:L1112-9. [PMID: 19801452 DOI: 10.1152/ajplung.00155.2009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 3.8] [Reference Citation Analysis]
58 McIsaac SM, Stadnyk AW, Lin TJ. Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis. J Leukoc Biol 2012;92:977-85. [PMID: 22892106 DOI: 10.1189/jlb.0811410] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 3.9] [Reference Citation Analysis]
59 Shi Z, Cai Z, Yu J, Zhang T, Zhao S, Smeds E, Zhang Q, Wang F, Zhao C, Fu S, Ghosh S, Zhang D. Toll-like receptor 11 (TLR11) prevents Salmonella penetration into the murine Peyer patches. J Biol Chem 2012;287:43417-23. [PMID: 23135279 DOI: 10.1074/jbc.M112.411009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
60 Duan D, Sun Z, Jia S, Chen Y, Feng X, Lu Q. Characterization and expression analysis of common carp Cyprinus carpio TLR5M. DNA Cell Biol 2013;32:611-20. [PMID: 23930591 DOI: 10.1089/dna.2013.2051] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
61 D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019;7. [PMID: 31124430 DOI: 10.1128/microbiolspec.GPP3-0065-2019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
62 Skerrett SJ, Wilson CB, Liggitt HD, Hajjar AM. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2007;292:L312-22. [PMID: 16936244 DOI: 10.1152/ajplung.00250.2006] [Cited by in Crossref: 85] [Cited by in F6Publishing: 97] [Article Influence: 5.7] [Reference Citation Analysis]
63 Mathur R, Oh H, Zhang D, Park SG, Seo J, Koblansky A, Hayden MS, Ghosh S. A mouse model of Salmonella typhi infection. Cell 2012;151:590-602. [PMID: 23101627 DOI: 10.1016/j.cell.2012.08.042] [Cited by in Crossref: 135] [Cited by in F6Publishing: 121] [Article Influence: 16.9] [Reference Citation Analysis]
64 Janot L, Sirard JC, Secher T, Noulin N, Fick L, Akira S, Uematsu S, Didierlaurent A, Hussell T, Ryffel B, Erard F. Radioresistant cells expressing TLR5 control the respiratory epithelium's innate immune responses to flagellin. Eur J Immunol 2009;39:1587-96. [PMID: 19424969 DOI: 10.1002/eji.200838907] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 2.8] [Reference Citation Analysis]
65 Balloy V, Thévenot G, Bienvenu T, Morand P, Corvol H, Clement A, Ramphal R, Hubert D, Chignard M. Flagellin concentrations in expectorations from cystic fibrosis patients. BMC Pulm Med 2014;14:100. [PMID: 24909229 DOI: 10.1186/1471-2466-14-100] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
66 Tolle L, Yu FS, Kovach MA, Ballinger MN, Newstead MW, Zeng X, Nunez G, Standiford TJ. Redundant and cooperative interactions between TLR5 and NLRC4 in protective lung mucosal immunity against Pseudomonas aeruginosa. J Innate Immun 2015;7:177-86. [PMID: 25402425 DOI: 10.1159/000367790] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
67 Lai MA, Quarles EK, López-Yglesias AH, Zhao X, Hajjar AM, Smith KD. Innate immune detection of flagellin positively and negatively regulates salmonella infection. PLoS One 2013;8:e72047. [PMID: 23977202 DOI: 10.1371/journal.pone.0072047] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
68 Emal D, Rampanelli E, Claessen N, Bemelman FJ, Leemans JC, Florquin S, Dessing MC. Calcineurin inhibitor Tacrolimus impairs host immune response against urinary tract infection. Sci Rep 2019;9:106. [PMID: 30643171 DOI: 10.1038/s41598-018-37482-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
69 Ajamian L, Melnychuk L, Jean-Pierre P, Zaharatos GJ. DNA Vaccine-Encoded Flagellin Can Be Used as an Adjuvant Scaffold to Augment HIV-1 gp41 Membrane Proximal External Region Immunogenicity. Viruses 2018;10:E100. [PMID: 29495537 DOI: 10.3390/v10030100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
70 Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore TD. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development. Proc Natl Acad Sci U S A 2017;114:E10122-31. [PMID: 29109290 DOI: 10.1073/pnas.1711530114] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
71 Franchi L, Stoolman J, Kanneganti T, Verma A, Ramphal R, Núñez G. Critical role for Ipaf inPseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 2007;37:3030-9. [DOI: 10.1002/eji.200737532] [Cited by in Crossref: 190] [Cited by in F6Publishing: 188] [Article Influence: 13.6] [Reference Citation Analysis]
72 Qin W, Brands X, Van't Veer C, F de Vos A, Sirard JC, J T H Roelofs J, P Scicluna B, van der Poll T. Bronchial epithelial DNA methyltransferase 3b dampens pulmonary immune responses during Pseudomonas aeruginosa infection. PLoS Pathog 2021;17:e1009491. [PMID: 33793661 DOI: 10.1371/journal.ppat.1009491] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
73 Miao EA, Rajan JV. Salmonella and Caspase-1: A complex Interplay of Detection and Evasion. Front Microbiol. 2011;2:85. [PMID: 21833326 DOI: 10.3389/fmicb.2011.00085] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.4] [Reference Citation Analysis]
74 Kim S, Lalani S, Parekh VV, Vincent TL, Wu L, Van Kaer L. Impact of bacteria on the phenotype, functions, and therapeutic activities of invariant NKT cells in mice. J Clin Invest. 2008;118:2301-2315. [PMID: 18451996 DOI: 10.1172/jci33071] [Cited by in Crossref: 12] [Cited by in F6Publishing: 39] [Article Influence: 0.9] [Reference Citation Analysis]
75 Balamayooran T, Balamayooran G, Jeyaseelan S. Review: Toll-like receptors and NOD-like receptors in pulmonary antibacterial immunity. Innate Immun 2010;16:201-10. [PMID: 20418253 DOI: 10.1177/1753425910366058] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
76 Qian F, Wang X, Zhang L, Chen S, Piecychna M, Allore H, Bockenstedt L, Malawista S, Bucala R, Shaw AC, Fikrig E, Montgomery RR. Age-associated elevation in TLR5 leads to increased inflammatory responses in the elderly. Aging Cell 2012;11:104-10. [PMID: 22023165 DOI: 10.1111/j.1474-9726.2011.00759.x] [Cited by in Crossref: 90] [Cited by in F6Publishing: 85] [Article Influence: 9.0] [Reference Citation Analysis]
77 Gao N, Kumar A, Jyot J, Yu FS. Flagellin-induced corneal antimicrobial peptide production and wound repair involve a novel NF-kappaB-independent and EGFR-dependent pathway. PLoS One 2010;5:e9351. [PMID: 20195469 DOI: 10.1371/journal.pone.0009351] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 2.4] [Reference Citation Analysis]
78 Bardoel BW, van Kessel KP, van Strijp JA, Milder FJ. Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA-AprI interface and species selectivity. J Mol Biol 2012;415:573-83. [PMID: 22154939 DOI: 10.1016/j.jmb.2011.11.039] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
79 Bagheri M, Zahmatkesh A. Evolution and species-specific conservation of toll-like receptors in terrestrial vertebrates. International Reviews of Immunology 2018;37:217-28. [DOI: 10.1080/08830185.2018.1506780] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
80 Salazar-Gonzalez RM, Srinivasan A, Griffin A, Muralimohan G, Ertelt JM, Ravindran R, Vella AT, McSorley SJ. Salmonella flagellin induces bystander activation of splenic dendritic cells and hinders bacterial replication in vivo. J Immunol 2007;179:6169-75. [PMID: 17947692 DOI: 10.4049/jimmunol.179.9.6169] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 3.6] [Reference Citation Analysis]
81 Rolli J, Rosenblatt-Velin N, Li J, Loukili N, Levrand S, Pacher P, Waeber B, Feihl F, Ruchat P, Liaudet L. Bacterial flagellin triggers cardiac innate immune responses and acute contractile dysfunction. PLoS One 2010;5:e12687. [PMID: 20856884 DOI: 10.1371/journal.pone.0012687] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.4] [Reference Citation Analysis]
82 Qi Y, Kang H, Zheng X, Wang H, Gao Y, Yang S, Xia X. Incorporation of membrane-anchored flagellin or Escherichia coli heat-labile enterotoxin B subunit enhances the immunogenicity of rabies virus-like particles in mice and dogs. Front Microbiol 2015;6:169. [PMID: 25784906 DOI: 10.3389/fmicb.2015.00169] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
83 Rhee SH. Basic and translational understandings of microbial recognition by toll-like receptors in the intestine. J Neurogastroenterol Motil. 2011;17:28-34. [PMID: 21369489 DOI: 10.5056/jnm.2011.17.1.28] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
84 Wang R, Ahmed J, Wang G, Hassan I, Strulovici-Barel Y, Salit J, Mezey JG, Crystal RG. Airway epithelial expression of TLR5 is downregulated in healthy smokers and smokers with chronic obstructive pulmonary disease. J Immunol 2012;189:2217-25. [PMID: 22855713 DOI: 10.4049/jimmunol.1101895] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
85 Kumar A, Yin J, Zhang J, Yu FS. Modulation of corneal epithelial innate immune response to pseudomonas infection by flagellin pretreatment. Invest Ophthalmol Vis Sci 2007;48:4664-70. [PMID: 17898290 DOI: 10.1167/iovs.07-0473] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 3.1] [Reference Citation Analysis]
86 Gupta SK, Bajwa P, Deb R, Chellappa MM, Dey S. Flagellin a toll-like receptor 5 agonist as an adjuvant in chicken vaccines. Clin Vaccine Immunol 2014;21:261-70. [PMID: 24451328 DOI: 10.1128/CVI.00669-13] [Cited by in Crossref: 38] [Cited by in F6Publishing: 14] [Article Influence: 5.4] [Reference Citation Analysis]
87 Brennan CA, Hunt JR, Kremer N, Krasity BC, Apicella MA, McFall-Ngai MJ, Ruby EG. A model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide. Elife 2014;3:e01579. [PMID: 24596150 DOI: 10.7554/eLife.01579] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 4.1] [Reference Citation Analysis]
88 Talbot S, Tötemeyer S, Yamamoto M, Akira S, Hughes K, Gray D, Barr T, Mastroeni P, Maskell DJ, Bryant CE. Toll-like receptor 4 signalling through MyD88 is essential to control Salmonella enterica serovar typhimurium infection, but not for the initiation of bacterial clearance. Immunology 2009;128:472-83. [PMID: 19930040 DOI: 10.1111/j.1365-2567.2009.03146.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 3.7] [Reference Citation Analysis]
89 Garcia M, Morello E, Garnier J, Barrault C, Garnier M, Burucoa C, Lecron JC, Si-Tahar M, Bernard FX, Bodet C. Pseudomonas aeruginosa flagellum is critical for invasion, cutaneous persistence and induction of inflammatory response of skin epidermis. Virulence 2018;9:1163-75. [PMID: 30070169 DOI: 10.1080/21505594.2018.1480830] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
90 Jing CE, Du XJ, Li P, Wang S. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8. Appl Microbiol Biotechnol 2016;100:311-22. [PMID: 26481623 DOI: 10.1007/s00253-015-7053-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
91 Kalkanli Tas S, Kirkik D, Tanoglu A, Kahraman R, Ozturk K, Esen MF, Coskunpinar ME, Cagiltay E. Polymorphisms in Toll-like receptors 1, 2, 5, and 10 are associated with predisposition to Helicobacter pylori infection. Eur J Gastroenterol Hepatol 2020;32:1141-6. [PMID: 32541244 DOI: 10.1097/MEG.0000000000001797] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
92 Sivaji I, Duraisamy S, Balakrishnan S. Analysis of TLR polymorphisms in typhoid patients and asymptomatic typhoid carriers among the schoolchildren. Egyptian Journal of Medical Human Genetics 2016;17:353-7. [DOI: 10.1016/j.ejmhg.2015.12.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
93 Sharma V, Hecker N, Walther F, Stuckas H, Hiller M. Convergent Losses of TLR5 Suggest Altered Extracellular Flagellin Detection in Four Mammalian Lineages. Mol Biol Evol 2020;37:1847-54. [PMID: 32145026 DOI: 10.1093/molbev/msaa058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
94 Wu W, Li L, Liu Y, Huang T, Liang W, Chen M. Multiomics analyses reveal that NOD-like signaling pathway plays an important role against Streptococcus agalactiae in the spleen of tilapia. Fish Shellfish Immunol 2019;95:336-48. [PMID: 31586680 DOI: 10.1016/j.fsi.2019.10.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
95 Koh YS, Koo JE, Biswas A, Kobayashi KS. MyD88-dependent signaling contributes to host defense against ehrlichial infection. PLoS One 2010;5:e11758. [PMID: 20668698 DOI: 10.1371/journal.pone.0011758] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
96 Seifert S, Rodriguez Gómez M, Watzl B, Holzapfel WH, Franz CM, Vizoso Pinto MG. Differential Effect of Lactobacillus johnsonii BFE 6128 on Expression of Genes Related to TLR Pathways and Innate Immunity in Intestinal Epithelial Cells. Probiotics Antimicrob Proteins 2010;2:211-7. [PMID: 26781315 DOI: 10.1007/s12602-010-9055-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
97 Seabury CM, Cargill EJ, Womack JE. Sequence variability and protein domain architectures for bovine Toll-like receptors 1, 5, and 10. Genomics 2007;90:502-15. [PMID: 17719743 DOI: 10.1016/j.ygeno.2007.07.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 2.4] [Reference Citation Analysis]
98 Faber E, Tedin K, Speidel Y, Brinkmann MM, Josenhans C. Functional expression of TLR5 of different vertebrate species and diversification in intestinal pathogen recognition. Sci Rep 2018;8:11287. [PMID: 30050158 DOI: 10.1038/s41598-018-29371-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
99 Malash AH, Ali AA, Samy RM, Shamma RA. Association of TLR polymorphisms with bronchopulmonary dysplasia. Gene 2016;592:23-8. [PMID: 27457283 DOI: 10.1016/j.gene.2016.07.049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
100 Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD, Sitaraman SV, Neish AS, Uematsu S, Akira S, Williams IR, Gewirtz AT. Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 2007;117:3909-21. [PMID: 18008007 DOI: 10.1172/JCI33084] [Cited by in Crossref: 56] [Cited by in F6Publishing: 196] [Article Influence: 4.3] [Reference Citation Analysis]
101 Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM, Jones MB, Dracheva T, Peterson SN, Monack DM, Barton GM. TLR signaling is required for Salmonella typhimurium virulence. Cell 2011;144:675-88. [PMID: 21376231 DOI: 10.1016/j.cell.2011.01.031] [Cited by in Crossref: 155] [Cited by in F6Publishing: 149] [Article Influence: 15.5] [Reference Citation Analysis]
102 Carpenter S, O'neill LAJ. How important are Toll-like receptors for antimicrobial responses? Cell Microbiol 2007;9:1891-901. [DOI: 10.1111/j.1462-5822.2007.00965.x] [Cited by in Crossref: 109] [Cited by in F6Publishing: 99] [Article Influence: 7.8] [Reference Citation Analysis]
103 Sanders CJ, Moore DA 3rd, Williams IR, Gewirtz AT. Both radioresistant and hemopoietic cells promote innate and adaptive immune responses to flagellin. J Immunol 2008;180:7184-92. [PMID: 18490717 DOI: 10.4049/jimmunol.180.11.7184] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 2.6] [Reference Citation Analysis]
104 Adams H, Horrevoets WM, Adema SM, Carr HE, van Woerden RE, Koster M, Tommassen J. Reprint of “Inhibition of biofilm formation by Camelid single-domainantibodies against the flagellum of Pseudomonas aeruginosa”. J Biotechnol 2014;191:131-8. [PMID: 25450637 DOI: 10.1016/j.jbiotec.2014.09.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
105 Parker D, Prince A. Epithelial uptake of flagella initiates proinflammatory signaling. PLoS One 2013;8:e59932. [PMID: 23527288 DOI: 10.1371/journal.pone.0059932] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
106 Otterbeck A, Skorup P, Hanslin K, Larsson A, Stålberg J, Hjelmqvist H, Lipcsey M. Bronchially instilled IgY-antibodies did not decrease pulmonary p. aeruginosa concentration in experimental porcine pneumonia. Acta Anaesthesiol Scand 2021;65:656-63. [PMID: 33481246 DOI: 10.1111/aas.13784] [Reference Citation Analysis]
107 Lee LM, Ji M, Sinha M, Dong MB, Ren X, Wang Y, Lowell CA, Ghosh S, Locksley RM, DeFranco AL. Determinants of Divergent Adaptive Immune Responses after Airway Sensitization with Ligands of Toll-Like Receptor 5 or Toll-Like Receptor 9. PLoS One 2016;11:e0167693. [PMID: 27977701 DOI: 10.1371/journal.pone.0167693] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
108 Lapaque N, Muller A, Alexopoulou L, Howard JC, Gorvel JP. Brucella abortus induces Irgm3 and Irga6 expression via type-I IFN by a MyD88-dependent pathway, without the requirement of TLR2, TLR4, TLR5 and TLR9. Microb Pathog 2009;47:299-304. [PMID: 19747534 DOI: 10.1016/j.micpath.2009.09.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
109 Shibata T, Takemura N, Motoi Y, Goto Y, Karuppuchamy T, Izawa K, Li X, Akashi-Takamura S, Tanimura N, Kunisawa J, Kiyono H, Akira S, Kitamura T, Kitaura J, Uematsu S, Miyake K. PRAT4A-dependent expression of cell surface TLR5 on neutrophils, classical monocytes and dendritic cells. Int Immunol 2012;24:613-23. [PMID: 22836022 DOI: 10.1093/intimm/dxs068] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
110 Roux D, Weatherholt M, Clark B, Gadjeva M, Renaud D, Scott D, Skurnik D, Priebe GP, Pier G, Gerard C, Yoder-Himes DR. Immune Recognition of the Epidemic Cystic Fibrosis Pathogen Burkholderia dolosa. Infect Immun 2017;85:e00765-16. [PMID: 28348057 DOI: 10.1128/IAI.00765-16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
111 Quesniaux V, Erard F, Ryffel B. Adjuvant activity on murine and human macrophages. Methods Mol Biol 2010;626:117-30. [PMID: 20099125 DOI: 10.1007/978-1-60761-585-9_9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
112 Zhang Z, Reenstra W, Weiner DJ, Louboutin JP, Wilson JM. The p38 mitogen-activated protein kinase signaling pathway is coupled to Toll-like receptor 5 to mediate gene regulation in response to Pseudomonas aeruginosa infection in human airway epithelial cells. Infect Immun 2007;75:5985-92. [PMID: 17908812 DOI: 10.1128/IAI.00678-07] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
113 Van Maele L, Fougeron D, Janot L, Didierlaurent A, Cayet D, Tabareau J, Rumbo M, Corvo-Chamaillard S, Boulenouar S, Jeffs S, Vande Walle L, Lamkanfi M, Lemoine Y, Erard F, Hot D, Hussell T, Ryffel B, Benecke AG, Sirard JC. Airway structural cells regulate TLR5-mediated mucosal adjuvant activity. Mucosal Immunol 2014;7:489-500. [PMID: 24064672 DOI: 10.1038/mi.2013.66] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
114 Dong N, Li X, Xue C, Wang C, Xu X, Bi C, Shan A, Li D. Astragalus polysaccharides attenuated inflammation and balanced the gut microflora in mice challenged with Salmonella typhimurium. Int Immunopharmacol 2019;74:105681. [PMID: 31220694 DOI: 10.1016/j.intimp.2019.105681] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
115 Sentausa E, Basso P, Berry A, Adrait A, Bellement G, Couté Y, Lory S, Elsen S, Attrée I. Insertion sequences drive the emergence of a highly adapted human pathogen. Microb Genom 2020;6. [PMID: 30946644 DOI: 10.1099/mgen.0.000265] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
116 Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019;332:16-30. [PMID: 30928868 DOI: 10.1016/j.jneuroim.2019.03.012] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 34.5] [Reference Citation Analysis]
117 Sun Y, Karmakar M, Roy S, Ramadan RT, Williams SR, Howell S, Shive CL, Han Y, Stopford CM, Rietsch A, Pearlman E. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. J Immunol 2010;185:4272-83. [PMID: 20826748 DOI: 10.4049/jimmunol.1000874] [Cited by in Crossref: 82] [Cited by in F6Publishing: 89] [Article Influence: 7.5] [Reference Citation Analysis]
118 Valiente E, Dawson LF, Cairns MD, Stabler RA, Wren BW. Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol 2012;61:49-56. [PMID: 21903827 DOI: 10.1099/jmm.0.036194-0] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 6.8] [Reference Citation Analysis]
119 Javaid N, Yasmeen F, Choi S. Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods. Pharmaceutics 2019;11:E441. [PMID: 31480568 DOI: 10.3390/pharmaceutics11090441] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
120 Keestra AM, de Zoete MR, van Aubel RA, van Putten JP. Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol 2008;45:1298-307. [PMID: 17964652 DOI: 10.1016/j.molimm.2007.09.013] [Cited by in Crossref: 93] [Cited by in F6Publishing: 91] [Article Influence: 6.6] [Reference Citation Analysis]
121 Faber E, Gripp E, Maurischat S, Kaspers B, Tedin K, Menz S, Zuraw A, Kershaw O, Yang I, Rautenschlein S, Josenhans C. Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere 2016;1:e00028-15. [PMID: 27303676 DOI: 10.1128/mSphere.00028-15] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
122 Ryu JC, Kim MJ, Kwon Y, Oh JH, Yoon SS, Shin SJ, Yoon JH, Ryu JH. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol 2017;10:757-74. [PMID: 27554297 DOI: 10.1038/mi.2016.73] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
123 Chen J, Qiao Y, Chen G, Chang C, Dong H, Tang B, Cheng X, Liu X, Hua Z. Salmonella flagella confer anti-tumor immunological effect via activating Flagellin/TLR5 signalling within tumor microenvironment. Acta Pharm Sin B 2021;11:3165-77. [PMID: 34729307 DOI: 10.1016/j.apsb.2021.04.019] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Kim K, McBride WH. Modifying radiation damage. Curr Drug Targets. 2010;11:1352-1365. [PMID: 20583981 DOI: 10.2174/1389450111009011352] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
125 Aschtgen MS, Brennan CA, Nikolakakis K, Cohen S, McFall-Ngai M, Ruby EG. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 2019;5:32. [PMID: 31666982 DOI: 10.1038/s41522-019-0106-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
126 Geng D, Kaczanowska S, Tsai A, Younger K, Ochoa A, Rapoport AP, Ostrand-Rosenberg S, Davila E. TLR5 Ligand-Secreting T Cells Reshape the Tumor Microenvironment and Enhance Antitumor Activity. Cancer Res 2015;75:1959-71. [PMID: 25795705 DOI: 10.1158/0008-5472.CAN-14-2467] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
127 Soumpasis I, Knapp L, Pitt T. A proof-of-concept model for the identification of the key events in the infection process with specific reference to Pseudomonas aeruginosa in corneal infections. Infect Ecol Epidemiol 2015;5:28750. [PMID: 26546946 DOI: 10.3402/iee.v5.28750] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
128 Adams H, Horrevoets WM, Adema SM, Carr HE, van Woerden RE, Koster M, Tommassen J. Inhibition of biofilm formation by Camelid single-domain antibodies against the flagellum of Pseudomonas aeruginosa. J Biotechnol 2014;186:66-73. [PMID: 24997356 DOI: 10.1016/j.jbiotec.2014.06.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
129 Roy S, Bonfield T, Tartakoff AM. Non-apoptotic toxicity of Pseudomonas aeruginosa toward murine cells. PLoS One 2013;8:e54245. [PMID: 23358229 DOI: 10.1371/journal.pone.0054245] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
130 Mantis NJ, Bry L. The Intestinal Epithelium: The Interface Between Host and Pathogen. In: Vajdy M, editor. Immunity Against Mucosal Pathogens. Dordrecht: Springer Netherlands; 2008. pp. 3-22. [DOI: 10.1007/978-1-4020-8412-6_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
131 Simon R, Heithoff DM, Mahan MJ, Samuel CE. Comparison of tissue-selective proinflammatory gene induction in mice infected with wild-type, DNA adenine methylase-deficient, and flagellin-deficient Salmonella enterica. Infect Immun 2007;75:5627-39. [PMID: 17893133 DOI: 10.1128/IAI.01021-07] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
132 Yu FS, Cornicelli MD, Kovach MA, Newstead MW, Zeng X, Kumar A, Gao N, Yoon SG, Gallo RL, Standiford TJ. Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide. J Immunol 2010;185:1142-9. [PMID: 20566829 DOI: 10.4049/jimmunol.1000509] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 6.3] [Reference Citation Analysis]
133 Jerke S, Srinivasan A, McSorley SJ. Expression of Toll/IL-1R domain-containing adaptor protein (TIRAP) is detrimental to primary clearance of Salmonella and is not required for the generation of protective immunity. Immunol Lett 2008;116:64-71. [PMID: 18096248 DOI: 10.1016/j.imlet.2007.11.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
134 Salcedo SP, Alexopoulou L. Investigating TLR signaling responses in murine dendritic cells upon bacterial infection. Methods Mol Biol 2014;1197:209-25. [PMID: 25172283 DOI: 10.1007/978-1-4939-1261-2_12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
135 Simon R, Samuel CE. Interleukin-1 beta secretion is activated comparably by FliC and FljB flagellins but differentially by wild-type and DNA adenine methylase-deficient salmonella. J Interferon Cytokine Res 2008;28:661-6. [PMID: 18844581 DOI: 10.1089/jir.2008.0022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
136 Terwagne M, Ferooz J, Rolán HG, Sun YH, Atluri V, Xavier MN, Franchi L, Núñez G, Legrand T, Flavell RA, De Bolle X, Letesson JJ, Tsolis RM. Innate immune recognition of flagellin limits systemic persistence of Brucella. Cell Microbiol 2013;15:942-60. [PMID: 23227931 DOI: 10.1111/cmi.12088] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
137 Flores-Langarica A, Bobat S, Marshall JL, Yam-Puc JC, Cook CN, Serre K, Kingsley RA, Flores-Romo L, Uematsu S, Akira S, Henderson IR, Toellner KM, Cunningham AF. Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. Eur J Immunol 2015;45:2299-311. [PMID: 26036767 DOI: 10.1002/eji.201545564] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
138 Edwards LA, Bajaj-Elliott M, Klein NJ, Murch SH, Phillips AD. Bacterial-epithelial contact is a key determinant of host innate immune responses to enteropathogenic and enteroaggregative Escherichia coli. PLoS One 2011;6:e27030. [PMID: 22046438 DOI: 10.1371/journal.pone.0027030] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
139 Albiger B, Dahlberg S, Henriques-Normark B, Normark S. Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors. J Intern Med 2007;261:511-28. [PMID: 17547708 DOI: 10.1111/j.1365-2796.2007.01821.x] [Cited by in Crossref: 100] [Cited by in F6Publishing: 99] [Article Influence: 7.1] [Reference Citation Analysis]
140 Mijares LA, Wangdi T, Sokol C, Homer R, Medzhitov R, Kazmierczak BI. Airway epithelial MyD88 restores control of Pseudomonas aeruginosa murine infection via an IL-1-dependent pathway. J Immunol 2011;186:7080-8. [PMID: 21572023 DOI: 10.4049/jimmunol.1003687] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 4.8] [Reference Citation Analysis]
141 Letran SE, Lee SJ, Atif SM, Uematsu S, Akira S, McSorley SJ. TLR5 functions as an endocytic receptor to enhance flagellin-specific adaptive immunity. Eur J Immunol. 2011;41:29-38. [PMID: 21182074 DOI: 10.1002/eji.201040717] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 5.2] [Reference Citation Analysis]
142 Li Y, Liu F, Han C, Yan H. Monoclonal antibody that blocks the Toll-like receptor 5 binding region of flagellin. Hybridoma (Larchmt) 2012;31:60-2. [PMID: 22316487 DOI: 10.1089/hyb.2011.0083] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
143 Nijnik A, Pistolic J, Filewod NC, Hancock RE. Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun 2012;4:377-86. [PMID: 22516952 DOI: 10.1159/000335901] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
144 Bandyopadhaya A, Sarkar M, Chaudhuri K. IL-1β expression in Int407 is induced by flagellin of Vibrio cholerae through TLR5 mediated pathway. Microbial Pathogenesis 2008;44:524-36. [DOI: 10.1016/j.micpath.2008.01.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
145 Birnie E, Weehuizen TAF, Lankelma JM, de Jong HK, Koh GCKW, van Lieshout MHP, Roelofs JJTH, Budding AE, de Vos AF, van der Poll T, Wiersinga WJ. Role of Toll-Like Receptor 5 (TLR5) in Experimental Melioidosis. Infect Immun 2019;87:e00409-18. [PMID: 31109950 DOI: 10.1128/IAI.00409-18] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
146 Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637-650. [PMID: 21616434 DOI: 10.1016/j.immuni.2011.05.006] [Cited by in Crossref: 2169] [Cited by in F6Publishing: 2061] [Article Influence: 216.9] [Reference Citation Analysis]
147 Baron RM, Choi AJ, Owen CA, Choi AM. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol 2012;302:L485-97. [PMID: 22198907 DOI: 10.1152/ajplung.00085.2011] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 4.1] [Reference Citation Analysis]
148 Sampath V, Garland JS, Le M, Patel AL, Konduri GG, Cohen JD, Simpson PM, Hines RN. A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatr Pulmonol 2012;47:460-8. [PMID: 22058078 DOI: 10.1002/ppul.21568] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
149 Sun Y, Nie P, Zhao L, Huang L, Qin Y, Xu X, Zhang J, Yan Q. Dual RNA-Seq Unveils the Role of the Pseudomonas plecoglossicida fliA Gene in Pathogen-Host Interaction with Larimichthys crocea. Microorganisms 2019;7:E443. [PMID: 31614635 DOI: 10.3390/microorganisms7100443] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
150 Muneta Y, Minagawa Y, Kusumoto M, Shinkai H, Uenishi H, Splichal I. Allele-specific primer polymerase chain reaction for a single nucleotide polymorphism (C1205T) of swine toll-like receptor 5 and comparison of the allelic frequency among several pig breeds in Japan and the Czech Republic. Microbiol Immunol 2012;56:385-91. [PMID: 22420886 DOI: 10.1111/j.1348-0421.2012.00450.x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
151 Espinosa-Riquer ZP, Segura-Villalobos D, Ramírez-Moreno IG, Pérez Rodríguez MJ, Lamas M, Gonzalez-Espinosa C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020;9:E2411. [PMID: 33158024 DOI: 10.3390/cells9112411] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
152 Sanders CJ, Franchi L, Yarovinsky F, Uematsu S, Akira S, Núñez G, Gewirtz AT. Induction of adaptive immunity by flagellin does not require robust activation of innate immunity. Eur J Immunol 2009;39:359-71. [PMID: 19152336 DOI: 10.1002/eji.200838804] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 4.5] [Reference Citation Analysis]
153 Singh VK, Seed TM. Entolimod as a radiation countermeasure for acute radiation syndrome. Drug Discov Today 2021;26:17-30. [PMID: 33065293 DOI: 10.1016/j.drudis.2020.10.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
154 Raoust E, Balloy V, Garcia-Verdugo I, Touqui L, Ramphal R, Chignard M. Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLR-dependent signaling in murine alveolar macrophages and airway epithelial cells. PLoS One 2009;4:e7259. [PMID: 19806220 DOI: 10.1371/journal.pone.0007259] [Cited by in Crossref: 106] [Cited by in F6Publishing: 108] [Article Influence: 8.8] [Reference Citation Analysis]
155 Andonova M, Urumova V. Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa—Review. Comparative Immunology, Microbiology and Infectious Diseases 2013;36:433-48. [DOI: 10.1016/j.cimid.2013.03.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
156 Li Y, Liu M, Zuo Z, Liu J, Yu X, Guan Y, Zhan R, Han Q, Zhang J, Zhou R, Sun R, Tian Z, Zhang C. TLR9 Regulates the NF-κB-NLRP3-IL-1β Pathway Negatively in Salmonella-Induced NKG2D-Mediated Intestinal Inflammation. J Immunol 2017;199:761-73. [PMID: 28576980 DOI: 10.4049/jimmunol.1601416] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
157 Leal MT, Camacho AG, Teixeira LH, Bargieri DY, Soares IS, Tararam CA, Rodrigues MM. Immunogenicity of recombinant proteins consisting of Plasmodium vivax circumsporozoite protein allelic variant-derived epitopes fused with Salmonella enterica Serovar Typhimurium flagellin. Clin Vaccine Immunol 2013;20:1418-25. [PMID: 23863502 DOI: 10.1128/CVI.00312-13] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
158 Ramphal R, Balloy V, Jyot J, Verma A, Si-Tahar M, Chignard M. Control of Pseudomonas aeruginosa in the lung requires the recognition of either lipopolysaccharide or flagellin. J Immunol 2008;181:586-92. [PMID: 18566425 DOI: 10.4049/jimmunol.181.1.586] [Cited by in Crossref: 91] [Cited by in F6Publishing: 85] [Article Influence: 7.0] [Reference Citation Analysis]
159 Butela K, Lawrence J. Population Genetics of Salmonella : Selection for Antigenic Diversity. In: Robinson DA, Falush D, Feil EJ, editors. Bacterial Population Genetics in Infectious Disease. Hoboken: John Wiley & Sons, Inc.; 2010. pp. 287-319. [DOI: 10.1002/9780470600122.ch15] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
160 Bucior I, Pielage JF, Engel JN. Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog 2012;8:e1002616. [PMID: 22496644 DOI: 10.1371/journal.ppat.1002616] [Cited by in Crossref: 101] [Cited by in F6Publishing: 94] [Article Influence: 11.2] [Reference Citation Analysis]
161 Kolbe U, Yi B, Poth T, Saunders A, Boutin S, Dalpke AH. Early Cytokine Induction Upon Pseudomonas aeruginosa Infection in Murine Precision Cut Lung Slices Depends on Sensing of Bacterial Viability. Front Immunol 2020;11:598636. [PMID: 33250899 DOI: 10.3389/fimmu.2020.598636] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
162 Xu Q, Katz J, Zhang P, Ashtekar AR, Gaddis DE, Fan M, Michalek SM. Contribution of a Streptococcus mutans antigen expressed by a Salmonella vector vaccine in dendritic cell activation. Infect Immun 2011;79:3792-800. [PMID: 21746857 DOI: 10.1128/IAI.05338-11] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
163 Mizgerd JP. Acute lower respiratory tract infection. N Engl J Med 2008;358:716-27. [PMID: 18272895 DOI: 10.1056/NEJMra074111] [Cited by in Crossref: 276] [Cited by in F6Publishing: 166] [Article Influence: 21.2] [Reference Citation Analysis]
164 Lahiri A, Hedl M, Yan J, Abraham C. Human LACC1 increases innate receptor-induced responses and a LACC1 disease-risk variant modulates these outcomes. Nat Commun 2017;8:15614. [PMID: 28593945 DOI: 10.1038/ncomms15614] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
165 Stecher B, Barthel M, Schlumberger MC, Haberli L, Rabsch W, Kremer M, Hardt WD. Motility allows S. Typhimurium to benefit from the mucosal defence. Cell Microbiol. 2008;10:1166-1180. [PMID: 18241212 DOI: 10.1111/j.1462-5822.2008.01118.x] [Cited by in Crossref: 135] [Cited by in F6Publishing: 131] [Article Influence: 10.4] [Reference Citation Analysis]
166 Im E, Jung J, Rhee SH. Toll-like receptor 5 engagement induces interleukin-17C expression in intestinal epithelial cells. J Interferon Cytokine Res 2012;32:583-91. [PMID: 22994872 DOI: 10.1089/jir.2012.0053] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
167 Archer KA, Alexopoulou L, Flavell RA, Roy CR. Multiple MyD88-dependent responses contribute to pulmonary clearance of Legionella pneumophila. Cell Microbiol 2009;11:21-36. [PMID: 18782351 DOI: 10.1111/j.1462-5822.2008.01234.x] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
168 Campodónico VL, Gadjeva M, Paradis-Bleau C, Uluer A, Pier GB. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol Med 2008;14:120-33. [PMID: 18262467 DOI: 10.1016/j.molmed.2008.01.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 68] [Article Influence: 5.8] [Reference Citation Analysis]
169 Chatzi M, Papanikolaou J, Makris D, Papathanasiou I, Tsezou A, Karvouniaris M, Zakynthinos E. Toll-like receptor 2, 4 and 9 polymorphisms and their association with ICU-acquired infections in Central Greece. J Crit Care 2018;47:1-8. [PMID: 29860039 DOI: 10.1016/j.jcrc.2018.05.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
170 Valentine CD, Zhang H, Phuan PW, Nguyen J, Verkman AS, Haggie PM. Small molecule screen yields inhibitors of Pseudomonas homoserine lactone-induced host responses. Cell Microbiol 2014;16:1-14. [PMID: 23910799 DOI: 10.1111/cmi.12176] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
171 Kordjazy N, Haj-Mirzaian A, Haj-Mirzaian A, Rohani MM, Gelfand EW, Rezaei N, Abdolghaffari AH. Role of toll-like receptors in inflammatory bowel disease. Pharmacol Res 2018;129:204-15. [PMID: 29155256 DOI: 10.1016/j.phrs.2017.11.017] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 11.3] [Reference Citation Analysis]
172 Chang ZL. Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res. 2010;59:791-808. [PMID: 20593217 DOI: 10.1007/s00011-010-0208-2] [Cited by in Crossref: 141] [Cited by in F6Publishing: 139] [Article Influence: 12.8] [Reference Citation Analysis]
173 Fang Q, Pan Z, Geng S, Kang X, Huang J, Sun X, Li Q, Cai Y, Jiao X. Molecular cloning, characterization and expression of goose Toll-like receptor 5. Molecular Immunology 2012;52:117-24. [DOI: 10.1016/j.molimm.2012.05.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
174 Blohmke CJ, Victor RE, Hirschfeld AF, Elias IM, Hancock DG, Lane CR, Davidson AG, Wilcox PG, Smith KD, Overhage J, Hancock RE, Turvey SE. Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. J Immunol 2008;180:7764-73. [PMID: 18490781 DOI: 10.4049/jimmunol.180.11.7764] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 5.2] [Reference Citation Analysis]
175 Letran SE, Lee SJ, Atif SM, Flores-Langarica A, Uematsu S, Akira S, Cunningham AF, McSorley SJ. TLR5-deficient mice lack basal inflammatory and metabolic defects but exhibit impaired CD4 T cell responses to a flagellated pathogen. J Immunol. 2011;186:5406-5412. [PMID: 21451112 DOI: 10.4049/jimmunol.1003576] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 5.5] [Reference Citation Analysis]
176 McDonald EM, Pilonieta MC, Nick HJ, Detweiler CS. Bacterial Stimulation of Toll-Like Receptor 4 Drives Macrophages To Hemophagocytose. Infect Immun 2016;84:47-55. [PMID: 26459510 DOI: 10.1128/IAI.01149-15] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
177 Abdul-Cader MS, Amarasinghe A, Abdul-Careem MF. Activation of toll-like receptor signaling pathways leading to nitric oxide-mediated antiviral responses. Arch Virol 2016;161:2075-86. [PMID: 27233799 DOI: 10.1007/s00705-016-2904-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
178 Zhou M, Mcfarland-mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother 2009;58:1375-85. [DOI: 10.1007/s00262-008-0650-y] [Cited by in Crossref: 98] [Cited by in F6Publishing: 95] [Article Influence: 8.2] [Reference Citation Analysis]
179 Metcalfe HJ, La Ragione RM, Smith DG, Werling D. Functional characterisation of bovine TLR5 indicates species-specific recognition of flagellin. Vet Immunol Immunopathol 2014;157:197-205. [PMID: 24461722 DOI: 10.1016/j.vetimm.2013.12.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
180 Gilchrist JJ, MacLennan CA, Hill AV. Genetic susceptibility to invasive Salmonella disease. Nat Rev Immunol. 2015;15:452-463. [PMID: 26109132 DOI: 10.1038/nri3858] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 8.8] [Reference Citation Analysis]
181 Shim JU, Rhee JH, Koh YI. TLR4, 5, and 9 Agonists Inhibit Murine Airway Invariant Natural Killer T Cells in an IL-12-Dependent Manner. Allergy Asthma Immunol Res 2012;4:295-304. [PMID: 22950036 DOI: 10.4168/aair.2012.4.5.295] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
182 Blohmke CJ, Park J, Hirschfeld AF, Victor RE, Schneiderman J, Stefanowicz D, Chilvers MA, Durie PR, Corey M, Zielenski J, Dorfman R, Sandford AJ, Daley D, Turvey SE. TLR5 as an anti-inflammatory target and modifier gene in cystic fibrosis. J Immunol 2010;185:7731-8. [PMID: 21068401 DOI: 10.4049/jimmunol.1001513] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 3.9] [Reference Citation Analysis]
183 Gonzales AM, Wilde S, Roland KL. New Insights into the Roles of Long Polar Fimbriae and Stg Fimbriae in Salmonella Interactions with Enterocytes and M Cells. Infect Immun 2017;85:e00172-17. [PMID: 28630073 DOI: 10.1128/IAI.00172-17] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
184 Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis. 2010;201:534-543. [PMID: 20064069 DOI: 10.1086/650203] [Cited by in Crossref: 165] [Cited by in F6Publishing: 161] [Article Influence: 15.0] [Reference Citation Analysis]
185 Johanns TM, Ertelt JM, Rowe JH, Way SS. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection. PLoS Pathog 2010;6:e1001043. [PMID: 20714351 DOI: 10.1371/journal.ppat.1001043] [Cited by in Crossref: 97] [Cited by in F6Publishing: 97] [Article Influence: 8.8] [Reference Citation Analysis]
186 Alhazmi A. NOD-like receptor(s) and host immune responses with Pseudomonas aeruginosa infection. Inflamm Res 2018;67:479-93. [PMID: 29353310 DOI: 10.1007/s00011-018-1132-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
187 Randhawa AK, Hawn TR. Toll-like receptors: their roles in bacterial recognition and respiratory infections. Expert Rev Anti Infect Ther 2008;6:479-95. [PMID: 18662115 DOI: 10.1586/14787210.6.4.479] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
188 Sallenave JM. Phagocytic and signaling innate immune receptors: are they dysregulated in cystic fibrosis in the fight against Pseudomonas aeruginosa? Int J Biochem Cell Biol 2014;52:103-7. [PMID: 24508137 DOI: 10.1016/j.biocel.2014.01.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
189 Goyal S, Dubey P, Sahoo B, Mishra S, Niranjan S, Singh S, Mahajan R, Kataria R. Sequence based structural characterization and genetic diversity analysis across coding and promoter regions of goat Toll-like receptor 5 gene. Gene 2014;540:238-45. [DOI: 10.1016/j.gene.2014.01.076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
190 van 't Veer C, van den Pangaart PS, Kruijswijk D, Florquin S, de Vos AF, van der Poll T. Delineation of the role of Toll-like receptor signaling during peritonitis by a gradually growing pathogenic Escherichia coli. J Biol Chem 2011;286:36603-18. [PMID: 21690093 DOI: 10.1074/jbc.M110.189126] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
191 Shen A, Higgins DE, Panne D. Recognition of AT-rich DNA binding sites by the MogR repressor. Structure 2009;17:769-77. [PMID: 19446532 DOI: 10.1016/j.str.2009.02.018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.9] [Reference Citation Analysis]
192 Ralhan A, Laval J, Lelis F, Ballbach M, Grund C, Hector A, Hartl D. Current Concepts and Controversies in Innate Immunity of Cystic Fibrosis Lung Disease. J Innate Immun 2016;8:531-40. [PMID: 27362371 DOI: 10.1159/000446840] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
193 Park JH, Kim YG, Núñez G. RICK promotes inflammation and lethality after gram-negative bacterial infection in mice stimulated with lipopolysaccharide. Infect Immun 2009;77:1569-78. [PMID: 19188356 DOI: 10.1128/IAI.01505-08] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
194 Huh JW, Shibata T, Hwang M, Kwon EH, Jang MS, Fukui R, Kanno A, Jung DJ, Jang MH, Miyake K, Kim YM. UNC93B1 is essential for the plasma membrane localization and signaling of Toll-like receptor 5. Proc Natl Acad Sci U S A 2014;111:7072-7. [PMID: 24778236 DOI: 10.1073/pnas.1322838111] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 4.9] [Reference Citation Analysis]
195 Vijay-Kumar M, Aitken JD, Gewirtz AT. Toll like receptor-5: protecting the gut from enteric microbes. Semin Immunopathol 2008;30:11-21. [PMID: 18066550 DOI: 10.1007/s00281-007-0100-5] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 3.0] [Reference Citation Analysis]
196 Miao EA, Andersen-Nissen E, Warren SE, Aderem A. TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 2007;29:275-88. [PMID: 17690885 DOI: 10.1007/s00281-007-0078-z] [Cited by in Crossref: 183] [Cited by in F6Publishing: 184] [Article Influence: 13.1] [Reference Citation Analysis]
197 Camacho AGA, Teixeira LH, Bargieri DY, Boscardin SB, Soares IDS, Nussenzweig RS, Nussenzweig V, Rodrigues MM. TLR5-dependent immunogenicity of a recombinant fusion protein containing an immunodominant epitope of malarial circumsporozoite protein and the FliC flagellin of Salmonella Typhimurium. Mem Inst Oswaldo Cruz 2011;106:167-71. [DOI: 10.1590/s0074-02762011000900021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
198 Zgair AK. Escherichia coli flagellin stimulates pro-inflammatory immune response. World J Microbiol Biotechnol 2012;28:2139-46. [DOI: 10.1007/s11274-012-1019-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
199 Anas AA, van Lieshout MH, Claushuis TA, de Vos AF, Florquin S, de Boer OJ, Hou B, Van't Veer C, van der Poll T. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2016;311:L219-28. [PMID: 27288486 DOI: 10.1152/ajplung.00078.2016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
200 Cai Y, Varasteh S, van Putten JPM, Folkerts G, Braber S. Mannheimia haemolytica and lipopolysaccharide induce airway epithelial inflammatory responses in an extensively developed ex vivo calf model. Sci Rep 2020;10:13042. [PMID: 32747652 DOI: 10.1038/s41598-020-69982-0] [Reference Citation Analysis]
201 Eom JS, Kim JS, Jang JI, Kim HG, Bang IS, Park YK. Effect of iacP mutation on flagellar phase variation in Salmonella enterica serovar typhimurium strain UK-1. J Bacteriol 2012;194:4332-41. [PMID: 22685287 DOI: 10.1128/JB.00076-12] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
202 Bardoel BW, van der Ent S, Pel MJ, Tommassen J, Pieterse CM, van Kessel KP, van Strijp JA. Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog 2011;7:e1002206. [PMID: 21901099 DOI: 10.1371/journal.ppat.1002206] [Cited by in Crossref: 93] [Cited by in F6Publishing: 78] [Article Influence: 9.3] [Reference Citation Analysis]
203 Opitz B, van Laak V, Eitel J, Suttorp N. Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med 2010;181:1294-309. [PMID: 20167850 DOI: 10.1164/rccm.200909-1427SO] [Cited by in Crossref: 162] [Cited by in F6Publishing: 96] [Article Influence: 14.7] [Reference Citation Analysis]
204 Miao EA, Ernst RK, Dors M, Mao DP, Aderem A. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci U S A 2008;105:2562-7. [PMID: 18256184 DOI: 10.1073/pnas.0712183105] [Cited by in Crossref: 205] [Cited by in F6Publishing: 207] [Article Influence: 15.8] [Reference Citation Analysis]
205 Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020;89:107087. [PMID: 33075714 DOI: 10.1016/j.intimp.2020.107087] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
206 Hansen AK, Hansen CHF, Krych L, Nielsen DS. Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol 2014; 20(47): 17727-17736 [PMID: 25548471 DOI: 10.3748/wjg.v20.i47.17727] [Cited by in CrossRef: 47] [Cited by in F6Publishing: 45] [Article Influence: 6.7] [Reference Citation Analysis]
207 Layton AN, Galyov EE. Salmonella-induced enteritis: molecular pathogenesis and therapeutic implications. Expert Rev Mol Med 2007;9:1-17. [PMID: 17605831 DOI: 10.1017/S1462399407000373] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
208 Krivokrysenko VI, Toshkov IA, Gleiberman AS, Krasnov P, Shyshynova I, Bespalov I, Maitra RK, Narizhneva NV, Singh VK, Whitnall MH, Purmal AA, Shakhov AN, Gudkov AV, Feinstein E. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates. PLoS One 2015;10:e0135388. [PMID: 26367124 DOI: 10.1371/journal.pone.0135388] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
209 Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 2007;297:277-95. [PMID: 17466590 DOI: 10.1016/j.ijmm.2007.03.012] [Cited by in Crossref: 137] [Cited by in F6Publishing: 129] [Article Influence: 9.8] [Reference Citation Analysis]