BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Asher G, Lotem J, Cohen B, Sachs L, Shaul Y. Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc Natl Acad Sci USA. 2001;98:1188-1193. [PMID: 11158615 DOI: 10.1073/pnas.021558898] [Cited by in Crossref: 53] [Cited by in F6Publishing: 122] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, Majumdar D, Cunningham E, Das Gupta TK, Chakrabarty AM. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci U S A 2002;99:14098-103. [PMID: 12393814 DOI: 10.1073/pnas.222539699] [Cited by in Crossref: 110] [Cited by in F6Publishing: 98] [Article Influence: 5.5] [Reference Citation Analysis]
2 Mick E, Titov DV, Skinner OS, Sharma R, Jourdain AA, Mootha VK. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. Elife 2020;9:e49178. [PMID: 32463360 DOI: 10.7554/eLife.49178] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
3 Magnone MC, Langmesser S, Bezdek AC, Tallone T, Rusconi S, Albrecht U. The Mammalian circadian clock gene per2 modulates cell death in response to oxidative stress. Front Neurol 2014;5:289. [PMID: 25628599 DOI: 10.3389/fneur.2014.00289] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
4 Watson IR, Irwin MS. Ubiquitin and ubiquitin-like modifications of the p53 family. Neoplasia 2006;8:655-66. [PMID: 16925948 DOI: 10.1593/neo.06439] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 2.8] [Reference Citation Analysis]
5 Medina-Carmona E, Palomino-Morales RJ, Fuchs JE, Padín-Gonzalez E, Mesa-Torres N, Salido E, Timson DJ, Pey AL. Conformational dynamics is key to understanding loss-of-function of NQO1 cancer-associated polymorphisms and its correction by pharmacological ligands. Sci Rep 2016;6:20331. [PMID: 26838129 DOI: 10.1038/srep20331] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
6 Abdel-Malek ZA, Kadekaro AL, Swope VB. Stepping up melanocytes to the challenge of UV exposure. Pigment Cell Melanoma Res 2010;23:171-86. [PMID: 20128873 DOI: 10.1111/j.1755-148X.2010.00679.x] [Cited by in Crossref: 80] [Cited by in F6Publishing: 43] [Article Influence: 6.7] [Reference Citation Analysis]
7 Kolesar JM, Dahlberg SE, Marsh S, McLeod HL, Johnson DH, Keller SM, Schiller JH. The NQO1*2/*2 polymorphism is associated with poor overall survival in patients following resection of stages II and IIIa non-small cell lung cancer. Oncol Rep 2011;25:1765-72. [PMID: 21479364 DOI: 10.3892/or.2011.1249] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 0.3] [Reference Citation Analysis]
8 Jen KY, Cheung VG. Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res. 2003;13:2092-2100. [PMID: 12915489 DOI: 10.1101/gr.1240103] [Cited by in Crossref: 97] [Cited by in F6Publishing: 85] [Article Influence: 5.1] [Reference Citation Analysis]
9 Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ, Ross D. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol. 2004;65:1238-1247. [PMID: 15102952 DOI: 10.1124/mol.65.5.1238] [Cited by in Crossref: 320] [Cited by in F6Publishing: 308] [Article Influence: 17.8] [Reference Citation Analysis]
10 Ross D, Siegel D. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch. Front Physiol 2017;8:595. [PMID: 28883796 DOI: 10.3389/fphys.2017.00595] [Cited by in Crossref: 113] [Cited by in F6Publishing: 108] [Article Influence: 22.6] [Reference Citation Analysis]
11 Park MT, Song MJ, Lee H, Oh ET, Choi BH, Jeong SY, Choi EK, Park HJ. β-lapachone significantly increases the effect of ionizing radiation to cause mitochondrial apoptosis via JNK activation in cancer cells. PLoS One 2011;6:e25976. [PMID: 21998736 DOI: 10.1371/journal.pone.0025976] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
12 Ali A, Banerjea AC. Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci Rep. 2016;6:27539. [PMID: 27283735 DOI: 10.1038/srep27539] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 8.8] [Reference Citation Analysis]
13 Wang L, Dai W, Lu L. Ultraviolet irradiation-induced K(+) channel activity involving p53 activation in corneal epithelial cells. Oncogene 2005;24:3020-7. [PMID: 15750624 DOI: 10.1038/sj.onc.1208547] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 0.9] [Reference Citation Analysis]
14 Kachuri L, Johansson M, Rashkin SR, Graff RE, Bossé Y, Manem V, Caporaso NE, Landi MT, Christiani DC, Vineis P, Liu G, Scelo G, Zaridze D, Shete SS, Albanes D, Aldrich MC, Tardón A, Rennert G, Chen C, Goodman GE, Doherty JA, Bickeböller H, Field JK, Davies MP, Dawn Teare M, Kiemeney LA, Bojesen SE, Haugen A, Zienolddiny S, Lam S, Le Marchand L, Cheng I, Schabath MB, Duell EJ, Andrew AS, Manjer J, Lazarus P, Arnold S, McKay JD, Emami NC, Warkentin MT, Brhane Y, Obeidat M, Martin RM, Relton C, Davey Smith G, Haycock PC, Amos CI, Brennan P, Witte JS, Hung RJ. Immune-mediated genetic pathways resulting in pulmonary function impairment increase lung cancer susceptibility. Nat Commun 2020;11:27. [PMID: 31911640 DOI: 10.1038/s41467-019-13855-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
15 Sollner S, Schober M, Wagner A, Prem A, Lorkova L, Palfey BA, Groll M, Macheroux P. Quinone reductase acts as a redox switch of the 20S yeast proteasome. EMBO Rep 2009;10:65-70. [PMID: 19029946 DOI: 10.1038/embor.2008.218] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
16 Kim JH, Hong YC. Interactive effect of smoking and NQO1 haplotypes on lung cancer risk. J Korean Med Sci 2015;30:221-6. [PMID: 25729241 DOI: 10.3346/jkms.2015.30.3.221] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
17 Wu JM, Oraee A, Doonan BB, Pinto JT, Hsieh TC. Activation of NQO1 in NQO1*2 polymorphic human leukemic HL-60 cells by diet-derived sulforaphane. Exp Hematol Oncol 2015;5:27. [PMID: 27625902 DOI: 10.1186/s40164-016-0056-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
18 Zhang Y, Dayalan Naidu S, Samarasinghe K, Van Hecke GC, Pheely A, Boronina TN, Cole RN, Benjamin IJ, Cole PA, Ahn YH, Dinkova-Kostova AT. Sulphoxythiocarbamates modify cysteine residues in HSP90 causing degradation of client proteins and inhibition of cancer cell proliferation. Br J Cancer 2014;110:71-82. [PMID: 24322890 DOI: 10.1038/bjc.2013.710] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
19 Yamada T, Hiraoka Y, Ikehata M, Kimbara K, Avner BS, Das Gupta TK, Chakrabarty AM. Apoptosis or growth arrest: Modulation of tumor suppressor p53's specificity by bacterial redox protein azurin. Proc Natl Acad Sci U S A 2004;101:4770-5. [PMID: 15044691 DOI: 10.1073/pnas.0400899101] [Cited by in Crossref: 63] [Cited by in F6Publishing: 55] [Article Influence: 3.5] [Reference Citation Analysis]
20 Ma Q. Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 2010;125:376-93. [PMID: 19945483 DOI: 10.1016/j.pharmthera.2009.11.004] [Cited by in Crossref: 150] [Cited by in F6Publishing: 141] [Article Influence: 11.5] [Reference Citation Analysis]
21 Srijiwangsa P, Ponnikorn S, Na-Bangchang K. Effect of β-Eudesmol on NQO1 suppression-enhanced sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. BMC Pharmacol Toxicol 2018;19:32. [PMID: 29914576 DOI: 10.1186/s40360-018-0223-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
22 Asher G, Tsvetkov P, Kahana C, Shaul Y. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev. 2005;19:316-321. [PMID: 15687255 DOI: 10.1101/gad.319905] [Cited by in Crossref: 267] [Cited by in F6Publishing: 252] [Article Influence: 15.7] [Reference Citation Analysis]
23 Kimura A, Kitajima M, Nishida K, Serada S, Fujimoto M, Naka T, Fujii-Kuriyama Y, Sakamato S, Ito T, Handa H, Tanaka T, Yoshimura A, Suzuki H. NQO1 inhibits the TLR-dependent production of selective cytokines by promoting IκB-ζ degradation. J Exp Med 2018;215:2197-209. [PMID: 29934320 DOI: 10.1084/jem.20172024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
24 Kurfurstova D, Bartkova J, Vrtel R, Mickova A, Burdova A, Majera D, Mistrik M, Kral M, Santer FR, Bouchal J, Bartek J. DNA damage signalling barrier, oxidative stress and treatment-relevant DNA repair factor alterations during progression of human prostate cancer. Mol Oncol 2016;10:879-94. [PMID: 26987799 DOI: 10.1016/j.molonc.2016.02.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
25 Asher G, Lotem J, Kama R, Sachs L, Shaul Y. NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci U S A 2002;99:3099-104. [PMID: 11867746 DOI: 10.1073/pnas.052706799] [Cited by in Crossref: 185] [Cited by in F6Publishing: 177] [Article Influence: 9.3] [Reference Citation Analysis]
26 Ross D, Zhou H, Siegel D. Benzene toxicity: The role of the susceptibility factor NQO1 in bone marrow endothelial cell signaling and function. Chem Biol Interact 2011;192:145-9. [PMID: 20970411 DOI: 10.1016/j.cbi.2010.10.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
27 Yamada T, Goto M, Punj V, Zaborina O, Kimbara K, Das Gupta TK, Chakrabarty AM. The bacterial redox protein azurin induces apoptosis in J774 macrophages through complex formation and stabilization of the tumor suppressor protein p53. Infect Immun 2002;70:7054-62. [PMID: 12438386 DOI: 10.1128/IAI.70.12.7054-7062.2002] [Cited by in Crossref: 52] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
28 Park MT, Song MJ, Oh ET, Lee H, Choi BH, Jeong SY, Choi EK, Park HJ. The anti-tumour compound, RH1, causes mitochondria-mediated apoptosis by activating c-Jun N-terminal kinase. Br J Pharmacol 2011;163:567-85. [PMID: 21250978 DOI: 10.1111/j.1476-5381.2011.01233.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
29 Lu L. Stress-induced corneal epithelial apoptosis mediated by K+ channel activation. Prog Retin Eye Res 2006;25:515-38. [PMID: 16962363 DOI: 10.1016/j.preteyeres.2006.07.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 1.6] [Reference Citation Analysis]
30 Zhang X, Zhu Y, Geng L, Wang H, Legerski RJ. Artemis is a negative regulator of p53 in response to oxidative stress. Oncogene 2009;28:2196-204. [PMID: 19398950 DOI: 10.1038/onc.2009.100] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.2] [Reference Citation Analysis]
31 Krishnamurthy N, Hu Y, Siedlak S, Doughman YQ, Watanabe M, Montano MM. Induction of quinone reductase by tamoxifen or DPN protects against mammary tumorigenesis. FASEB J 2012;26:3993-4002. [PMID: 22700872 DOI: 10.1096/fj.12-208330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
32 Yang J, Liu RH. Induction of phase II enzyme, quinone reductase, in murine hepatoma cells in vitro by grape extracts and selected phytochemicals. Food Chemistry 2009;114:898-904. [DOI: 10.1016/j.foodchem.2008.10.045] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
33 Patrick BA, Jaiswal AK. Stress-induced NQO1 controls stability of C/EBPα against 20S proteasomal degradation to regulate p63 expression with implications in protection against chemical-induced skin cancer. Oncogene 2012;31:4362-71. [PMID: 22249251 DOI: 10.1038/onc.2011.600] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
34 Ryan A. Azoreductases in drug metabolism. Br J Pharmacol. 2017;174:2161-2173. [PMID: 27487252 DOI: 10.1111/bph.13571] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
35 Giovannucci TA, Salomons FA, Haraldsson M, Elfman LHM, Wickström M, Young P, Lundbäck T, Eirich J, Altun M, Jafari R, Gustavsson AL, Johnsen JI, Dantuma NP. Inhibition of the ubiquitin-proteasome system by an NQO1-activatable compound. Cell Death Dis 2021;12:914. [PMID: 34615851 DOI: 10.1038/s41419-021-04191-9] [Reference Citation Analysis]
36 Liu X, Zhang Y, Tong M, Liu XY, Luo GZ, Xie DF, Ren SF, Bai DH, Wang L, Zhou Q, Wang XJ. Identification of a small molecule 1,4-bis-[4-(3-phenoxy-propoxy)-but-2-ynyl]-piperazine as a novel inhibitor of the transcription factor p53. Acta Pharmacol Sin 2013;34:805-10. [PMID: 23736005 DOI: 10.1038/aps.2013.61] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
37 Giuliano CJ, Freemantle SJ, Spinella MJ. Testicular Germ Cell Tumors: A Paradigm for the Successful Treatment of Solid Tumor Stem Cells. Curr Cancer Ther Rev 2006;2:255-70. [PMID: 24482633 DOI: 10.2174/157339406777934681] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
38 Muller M. Polyphenol cytotoxicity induced by the bacterial toxin pyocyanin: role of NQO1. Free Radical Biology and Medicine 2009;47:84-91. [DOI: 10.1016/j.freeradbiomed.2009.04.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
39 Hershkovitz Rokah O, Shpilberg O, Granot G. NAD(P)H quinone oxidoreductase protects TAp63gamma from proteasomal degradation and regulates TAp63gamma-dependent growth arrest. PLoS One 2010;5:e11401. [PMID: 20613985 DOI: 10.1371/journal.pone.0011401] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
40 Hainaut P, Mann K. Zinc Binding and Redox Control of p53 Structure and Function. Antioxidants & Redox Signaling 2001;3:611-23. [DOI: 10.1089/15230860152542961] [Cited by in Crossref: 123] [Cited by in F6Publishing: 109] [Article Influence: 5.9] [Reference Citation Analysis]
41 Ross D, Zhou H. Relationships between metabolic and non-metabolic susceptibility factors in benzene toxicity. Chem Biol Interact 2010;184:222-8. [PMID: 19941840 DOI: 10.1016/j.cbi.2009.11.017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
42 Pandith AA, Khan NP, Shah ZA, Shah AM, Wani SM, Siddiqi MA. Association of Bladder Cancer Risk with an NAD(P)H:Quinone Oxidoreductase Polymorphism in an Ethnic Kashmiri Population. Biochem Genet 2011;49:417-26. [DOI: 10.1007/s10528-011-9418-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
43 Rotblat B, Melino G, Knight RA. NRF2 and p53: Januses in cancer? Oncotarget 2012;3:1272-83. [PMID: 23174755 DOI: 10.18632/oncotarget.754] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 7.8] [Reference Citation Analysis]
44 Saldivar SJ, Wang Y, Zhao H, Shao L, Lin J, Spitz MR, Wu X. An association between a NQO1 genetic polymorphism and risk of lung cancer. Mutat Res 2005;582:71-8. [PMID: 15781212 DOI: 10.1016/j.mrgentox.2004.12.010] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
45 Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011;85:241-72. [PMID: 21365312 DOI: 10.1007/s00204-011-0674-5] [Cited by in Crossref: 616] [Cited by in F6Publishing: 595] [Article Influence: 56.0] [Reference Citation Analysis]
46 Jolma IW, Ni XY, Rensing L, Ruoff P. Harmonic oscillations in homeostatic controllers: Dynamics of the p53 regulatory system. Biophys J 2010;98:743-52. [PMID: 20197027 DOI: 10.1016/j.bpj.2009.11.013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
47 Zhang W, Go ML. Functionalized 3-benzylidene-indolin-2-ones: inducers of NAD(P)H-quinone oxidoreductase 1 (NQO1) with antiproliferative activity. Bioorg Med Chem 2009;17:2077-90. [PMID: 19200740 DOI: 10.1016/j.bmc.2008.12.052] [Cited by in Crossref: 74] [Cited by in F6Publishing: 60] [Article Influence: 5.3] [Reference Citation Analysis]
48 Jiang ZN, Ahmed SMU, Wang QC, Shi HF, Tang XW. Quinone oxidoreductase 1 is overexpressed in gastric cancer and associated with outcome of adjuvant chemotherapy and survival. World J Gastroenterol 2021; 27(22): 3085-3096 [PMID: 34168410 DOI: 10.3748/wjg.v27.i22.3085] [Reference Citation Analysis]
49 Zhu H, Li Y. NAD(P)H:Quinone Oxidoreductase 1 and its Potential Protective Role in Cardiovascular Diseases and Related Conditions. Cardiovasc Toxicol 2012;12:39-45. [DOI: 10.1007/s12012-011-9136-9] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
50 Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 2003;15:164-71. [PMID: 12648672 DOI: 10.1016/s0955-0674(03)00003-6] [Cited by in Crossref: 530] [Cited by in F6Publishing: 255] [Article Influence: 27.9] [Reference Citation Analysis]
51 Lajin B, Alachkar A, Alhaj Sakur A. A quadruplex tetra-primer ARMS-PCR method for the simultaneous detection of TP53 Arg72Pro, IVS3 16bp Del/Ins and IVS6+62A>G, and NQO1 C609T polymorphisms. Gene 2012;504:268-73. [PMID: 22633876 DOI: 10.1016/j.gene.2012.05.024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
52 Doroftei B, Ilie OD, Cojocariu RO, Ciobica A, Maftei R, Grab D, Anton E, McKenna J, Dhunna N, Simionescu G. Minireview Exploring the Biological Cycle of Vitamin B3 and Its Influence on Oxidative Stress: Further Molecular and Clinical Aspects. Molecules 2020;25:E3323. [PMID: 32707945 DOI: 10.3390/molecules25153323] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
53 Lotem J, Gal H, Kama R, Amariglio N, Rechavi G, Domany E, Sachs L, Givol D. Inhibition of p53-induced apoptosis without affecting expression of p53-regulated genes. Proc Natl Acad Sci U S A 2003;100:6718-23. [PMID: 12743373 DOI: 10.1073/pnas.1031695100] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
54 Diao J, Bao J, Peng J, Mo J, Ye Q, He J. Correlation between NAD(P)H: quinone oxidoreductase 1 C609T polymorphism and increased risk of esophageal cancer: evidence from a meta-analysis. Ther Adv Med Oncol 2017;9:13-21. [PMID: 28203294 DOI: 10.1177/1758834016668682] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
55 Wang Z, Hu J, Zhong J. Meta-analysis of the NAD(P)H: quinine oxidoreductase 1 gene 609 C>T polymorphism with esophageal cancer risk. DNA Cell Biol 2012;31:560-7. [PMID: 22017531 DOI: 10.1089/dna.2011.1332] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
56 Medina-Carmona E, Neira JL, Salido E, Fuchs JE, Palomino-Morales R, Timson DJ, Pey AL. Site-to-site interdomain communication may mediate different loss-of-function mechanisms in a cancer-associated NQO1 polymorphism. Sci Rep 2017;7:44532. [PMID: 28291250 DOI: 10.1038/srep44532] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
57 Park S, Zhao H, Spitz MR, Barton Grossman H, Wu X. An association between NQO1 genetic polymorphism and risk of bladder cancer. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2003;536:131-7. [DOI: 10.1016/s1383-5718(03)00041-x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
58 Song NY, Zhu F, Wang Z, Willette-Brown J, Xi S, Sun Z, Su L, Wu X, Ma B, Nussinov R, Xia X, Schrump DS, Johnson PF, Karin M, Hu Y. IKKα inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways. Proc Natl Acad Sci U S A 2018;115:E812-21. [PMID: 29311298 DOI: 10.1073/pnas.1717520115] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
59 Cleton-Jansen AM, van Eijk R, Lombaerts M, Schmidt MK, Van't Veer LJ, Philippo K, Zimmerman RM, Peterse JL, Smit VT, van Wezel T, Cornelisse CJ. ATBF1 and NQO1 as candidate targets for allelic loss at chromosome arm 16q in breast cancer: absence of somatic ATBF1 mutations and no role for the C609T NQO1 polymorphism. BMC Cancer 2008;8:105. [PMID: 18416817 DOI: 10.1186/1471-2407-8-105] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
60 Fryatt T, Pettersson HI, Gardipee WT, Bray KC, Green SJ, Slawin AM, Beall HD, Moody CJ. Novel quinolinequinone antitumor agents: structure-metabolism studies with NAD(P)H:quinone oxidoreductase (NQO1). Bioorganic & Medicinal Chemistry 2004;12:1667-87. [DOI: 10.1016/j.bmc.2004.01.021] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 3.0] [Reference Citation Analysis]
61 Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP, Kelso GF, Smith RA, Kinzler KW, Vogelstein B. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med. 2001;7:1111-1117. [PMID: 11590433 DOI: 10.1038/nm1001-1111] [Cited by in Crossref: 282] [Cited by in F6Publishing: 271] [Article Influence: 13.4] [Reference Citation Analysis]
62 Lienhart WD, Gudipati V, Uhl MK, Binter A, Pulido SA, Saf R, Zangger K, Gruber K, Macheroux P. Collapse of the native structure caused by a single amino acid exchange in human NAD(P)H:quinone oxidoreductase(1.). FEBS J 2014;281:4691-704. [PMID: 25143260 DOI: 10.1111/febs.12975] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
63 Jin M, Park SJ, Kim SW, Kim HR, Hyun JW, Lee JH. PIG3 Regulates p53 Stability by Suppressing Its MDM2-Mediated Ubiquitination. Biomol Ther (Seoul) 2017;25:396-403. [PMID: 28605833 DOI: 10.4062/biomolther.2017.086] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
64 Nioi P, Hayes JD. Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2004;555:149-71. [DOI: 10.1016/j.mrfmmm.2004.05.023] [Cited by in Crossref: 257] [Cited by in F6Publishing: 245] [Article Influence: 14.3] [Reference Citation Analysis]
65 Kim HJ, Zheng M, Kim SK, Cho JJ, Shin CH, Joe Y, Chung HT. CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation. Immune Netw 2011;11:376-82. [PMID: 22346778 DOI: 10.4110/in.2011.11.6.376] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
66 Ahn HJ, Kim KS, Shin KW, Lim KH, Kim JO, Lee JY, Kim J, Park JH, Yang KM, Baek KH, Ko JJ, Park KS. Ell3 stabilizes p53 following CDDP treatment via its effects on ubiquitin-dependent and -independent proteasomal degradation pathways in breast cancer cells. Oncotarget. 2015;6:44523-44537. [PMID: 26540344 DOI: 10.18632/oncotarget.5972] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
67 Han MJ, Wang H, Beer LA, Tang HY, Herlyn M, Speicher DW. A systems biology analysis of metastatic melanoma using in-depth three-dimensional protein profiling. Proteomics 2010;10:4450-62. [PMID: 21136598 DOI: 10.1002/pmic.200900549] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
68 Buranrat B, Prawan A, Kukongviriyapan U, Kongpetch S, Kukongviriyapan V. Dicoumarol enhances gemcitabine-induced cytotoxicity in high NQO1-expressing cholangiocarcinoma cells. World J Gastroenterol 2010; 16(19): 2362-2370 [PMID: 20480521 DOI: 10.3748/wjg.v16.i19.2362] [Cited by in CrossRef: 35] [Cited by in F6Publishing: 33] [Article Influence: 2.9] [Reference Citation Analysis]
69 Harris Z, Donovan MG, Branco GM, Limesand KH, Burd R. Quercetin as an Emerging Anti-Melanoma Agent: A Four-Focus Area Therapeutic Development Strategy. Front Nutr 2016;3:48. [PMID: 27843913 DOI: 10.3389/fnut.2016.00048] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
70 Lee WS, Ham W, Kim J. Roles of NAD(P)H:quinone Oxidoreductase 1 in Diverse Diseases. Life (Basel) 2021;11:1301. [PMID: 34947831 DOI: 10.3390/life11121301] [Reference Citation Analysis]
71 Nolan KA, Dunstan MS, Caraher MC, Scott KA, Leys D, Stratford IJ. In silico screening reveals structurally diverse, nanomolar inhibitors of NQO2 that are functionally active in cells and can modulate NF-κB signaling. Mol Cancer Ther 2012;11:194-203. [PMID: 22090421 DOI: 10.1158/1535-7163.MCT-11-0543] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
72 Darpolor MM, Yen YF, Chua MS, Xing L, Clarke-Katzenberg RH, Shi W, Mayer D, Josan S, Hurd RE, Pfefferbaum A, Senadheera L, So S, Hofmann LV, Glazer GM, Spielman DM. In vivo MRSI of hyperpolarized [1-(13)C]pyruvate metabolism in rat hepatocellular carcinoma. NMR Biomed 2011;24:506-13. [PMID: 21674652 DOI: 10.1002/nbm.1616] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 3.4] [Reference Citation Analysis]
73 Keum YS, Han YH, Liew C, Kim JH, Xu C, Yuan X, Shakarjian MP, Chong S, Kong AN. Induction of heme oxygenase-1 (HO-1) and NAD[P]H: quinone oxidoreductase 1 (NQO1) by a phenolic antioxidant, butylated hydroxyanisole (BHA) and its metabolite, tert-butylhydroquinone (tBHQ) in primary-cultured human and rat hepatocytes. Pharm Res 2006;23:2586-94. [PMID: 17048120 DOI: 10.1007/s11095-006-9094-2] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 3.8] [Reference Citation Analysis]
74 Adler J, Reuven N, Kahana C, Shaul Y. c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics. Mol Cell Biol 2010;30:3767-78. [PMID: 20498278 DOI: 10.1128/MCB.00899-09] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
75 Tsvetkov P, Asher G, Reiss V, Shaul Y, Sachs L, Lotem J. Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc Natl Acad Sci U S A 2005;102:5535-40. [PMID: 15809436 DOI: 10.1073/pnas.0501828102] [Cited by in Crossref: 107] [Cited by in F6Publishing: 109] [Article Influence: 6.3] [Reference Citation Analysis]
76 Liu L, Zhu H, Yan Y, Lv P, Wu W. Toxicity Evaluation and Biomarker Selection with Validated Reference Gene in Embryonic Zebrafish Exposed to Mitoxantrone. Int J Mol Sci 2018;19:E3516. [PMID: 30413070 DOI: 10.3390/ijms19113516] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
77 Pey AL, Megarity CF, Timson DJ. NAD(P)H quinone oxidoreductase (NQO1): an enzyme which needs just enough mobility, in just the right places. Biosci Rep 2019;39:BSR20180459. [PMID: 30518535 DOI: 10.1042/BSR20180459] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
78 Guryanova OA, Drazba JA, Frolova EI, Chumakov PM. Actin cytoskeleton remodeling by the alternatively spliced isoform of PDLIM4/RIL protein. J Biol Chem 2011;286:26849-59. [PMID: 21636573 DOI: 10.1074/jbc.M111.241554] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
79 Liu LK, Becker DF, Tanner JJ. Structure, function, and mechanism of proline utilization A (PutA). Arch Biochem Biophys 2017;632:142-57. [PMID: 28712849 DOI: 10.1016/j.abb.2017.07.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 7.6] [Reference Citation Analysis]
80 Li Z, Zhang Y, Jin T, Men J, Lin Z, Qi P, Piao Y, Yan G. NQO1 protein expression predicts poor prognosis of non-small cell lung cancers. BMC Cancer. 2015;15:207. [PMID: 25880877 DOI: 10.1186/s12885-015-1227-8] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 6.6] [Reference Citation Analysis]
81 Zou T, Lin Z. The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021;22:5754. [PMID: 34072267 DOI: 10.3390/ijms22115754] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Liu X, Fan L, Lu C, Yin S, Hu H. Functional Role of p53 in the Regulation of Chemical-Induced Oxidative Stress. Oxid Med Cell Longev 2020;2020:6039769. [PMID: 32190175 DOI: 10.1155/2020/6039769] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
83 Tsvetkov P, Adler J, Strobelt R, Adamovich Y, Asher G, Reuven N, Shaul Y. NQO1 Binds and Supports SIRT1 Function. Front Pharmacol 2021;12:671929. [PMID: 34234670 DOI: 10.3389/fphar.2021.671929] [Reference Citation Analysis]
84 Jamshidi M, Bartkova J, Greco D, Tommiska J, Fagerholm R, Aittomäki K, Mattson J, Villman K, Vrtel R, Lukas J, Heikkilä P, Blomqvist C, Bartek J, Nevanlinna H. NQO1 expression correlates inversely with NFκB activation in human breast cancer. Breast Cancer Res Treat 2012;132:955-68. [DOI: 10.1007/s10549-011-1629-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
85 Ding R, Lin S, Chen D. Association of NQO1 rs1800566 polymorphism and the risk of colorectal cancer: a meta-analysis. Int J Colorectal Dis 2012;27:885-92. [PMID: 22215148 DOI: 10.1007/s00384-011-1396-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
86 Milković L, Tomljanović M, Čipak Gašparović A, Novak Kujundžić R, Šimunić D, Konjevoda P, Mojzeš A, Đaković N, Žarković N, Gall Trošelj K. Nutritional Stress in Head and Neck Cancer Originating Cell Lines: The Sensitivity of the NRF2-NQO1 Axis. Cells 2019;8:E1001. [PMID: 31470592 DOI: 10.3390/cells8091001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
87 Kriegenburg F, Poulsen EG, Koch A, Krüger E, Hartmann-petersen R. Redox Control of the Ubiquitin-Proteasome System: From Molecular Mechanisms to Functional Significance. Antioxidants & Redox Signaling 2011;15:2265-99. [DOI: 10.1089/ars.2010.3590] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 4.7] [Reference Citation Analysis]
88 Das L, Vinayak M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS One 2015;10:e0124000. [PMID: 25860911 DOI: 10.1371/journal.pone.0124000] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 8.3] [Reference Citation Analysis]
89 Siegel D, Ryder J, Ross D. NAD(P)H: quinone oxidoreductase 1 expression in human bone marrow endothelial cells. Toxicology Letters 2001;125:93-8. [DOI: 10.1016/s0378-4274(01)00426-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
90 Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. Dual roles of Nrf2 in cancer. Pharmacol Res. 2008;58:262-270. [PMID: 18838122 DOI: 10.1016/j.phrs.2008.09.003] [Cited by in Crossref: 464] [Cited by in F6Publishing: 454] [Article Influence: 33.1] [Reference Citation Analysis]
91 Siegel D, Kepa JK, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) localizes to the mitotic spindle in human cells. PLoS One. 2012;7:e44861. [PMID: 22984577 DOI: 10.1371/journal.pone.0044861] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
92 Asher G, Lotem J, Tsvetkov P, Reiss V, Sachs L, Shaul Y. P53 hot-spot mutants are resistant to ubiquitin-independent degradation by increased binding to NAD(P)H: quinone oxidoreductase 1. Proc Natl Acad Sci USA. 2003;100:15065-15070. [PMID: 14634213 DOI: 10.1073/pnas.2436329100] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 2.4] [Reference Citation Analysis]
93 Asher G, Lotem J, Sachs L, Kahana C, Shaul Y. Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc Natl Acad Sci USA. 2002;99:13125-13130. [PMID: 12232053 DOI: 10.1073/pnas.202480499] [Cited by in Crossref: 162] [Cited by in F6Publishing: 146] [Article Influence: 8.1] [Reference Citation Analysis]
94 Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, Zhang C, Hansen KC, Burlingame AL, Trautman JK, Shokat KM, Adams CL. An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol 2005;3:e128. [PMID: 15799708 DOI: 10.1371/journal.pbio.0030128] [Cited by in Crossref: 174] [Cited by in F6Publishing: 160] [Article Influence: 10.2] [Reference Citation Analysis]
95 Jariel-Encontre I, Bossis G, Piechaczyk M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta. 2008;1786:153-177. [PMID: 18558098 DOI: 10.1016/j.bbcan.2008.05.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 95] [Article Influence: 2.1] [Reference Citation Analysis]
96 Dinkova-kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT, Stephenson KK, Wade KL, Talalay P. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Letters 2006;240:243-52. [DOI: 10.1016/j.canlet.2005.09.012] [Cited by in Crossref: 163] [Cited by in F6Publishing: 142] [Article Influence: 10.2] [Reference Citation Analysis]
97 Hubackova M, Vaclavikova R, Ehrlichova M, Mrhalova M, Kodet R, Kubackova K, Vrána D, Gut I, Soucek P. Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas. Int J Cancer 2012;130:338-48. [PMID: 21351093 DOI: 10.1002/ijc.26006] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 3.7] [Reference Citation Analysis]
98 Long DJ 2nd, Waikel RL, Wang XJ, Roop DR, Jaiswal AK. NAD(P)H:quinone oxidoreductase 1 deficiency and increased susceptibility to 7,12-dimethylbenz[a]-anthracene-induced carcinogenesis in mouse skin. J Natl Cancer Inst 2001;93:1166-70. [PMID: 11481389 DOI: 10.1093/jnci/93.15.1166] [Cited by in Crossref: 93] [Cited by in F6Publishing: 82] [Article Influence: 4.4] [Reference Citation Analysis]
99 Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 2010;501:116-23. [PMID: 20361926 DOI: 10.1016/j.abb.2010.03.019] [Cited by in Crossref: 440] [Cited by in F6Publishing: 417] [Article Influence: 36.7] [Reference Citation Analysis]
100 Kang KA, Piao MJ, Hyun YJ, Zhen AX, Cho SJ, Ahn MJ, Yi JM, Hyun JW. Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells. Exp Mol Med 2019;51:1-14. [PMID: 30988303 DOI: 10.1038/s12276-019-0238-y] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
101 Casanova EA, Okoniewski MJ, Cinelli P. Cross-species genome wide expression analysis during pluripotent cell determination in mouse and rat preimplantation embryos. PLoS One 2012;7:e47107. [PMID: 23077551 DOI: 10.1371/journal.pone.0047107] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
102 Zeekpudsa P, Kukongviriyapan V, Senggunprai L, Sripa B, Prawan A. Suppression of NAD(P)H-quinone oxidoreductase 1 enhanced the susceptibility of cholangiocarcinoma cells to chemotherapeutic agents. J Exp Clin Cancer Res 2014;33:11. [PMID: 24460787 DOI: 10.1186/1756-9966-33-11] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
103 Siegel D, Dehn DD, Bokatzian SS, Quinn K, Backos DS, Di Francesco A, Bernier M, Reisdorph N, de Cabo R, Ross D. Redox modulation of NQO1. PLoS One 2018;13:e0190717. [PMID: 29298345 DOI: 10.1371/journal.pone.0190717] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
104 Forthoffer N, Gómez-Díaz C, Bello RI, Burón MI, Martín SF, Rodríguez-Aguilera JC, Navas P, Villalba JM. A novel plasma membrane quinone reductase and NAD(P)H:quinone oxidoreductase 1 are upregulated by serum withdrawal in human promyelocytic HL-60 cells. J Bioenerg Biomembr 2002;34:209-19. [PMID: 12171070 DOI: 10.1023/a:1016035504049] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
105 Song SY, Jeong S, Park HJ, Park S, Kim DK, Kim YH, Shin SS, Lee S, Ahn SD, Kim JH, Lee JS, Choi EK. Clinical significance of NQO1 C609T polymorphisms after postoperative radiation therapy in completely resected non-small cell lung cancer. Lung Cancer 2010;68:278-82. [DOI: 10.1016/j.lungcan.2009.06.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
106 Zhang X, Han K, Yuan D, Meng C. Overexpression of NAD(P)H: Quinone Oxidoreductase 1 Inhibits Hepatocellular Carcinoma Cell Proliferation and Induced Apoptosis by Activating AMPK/PGC-1α Pathway. DNA and Cell Biology 2017;36:256-63. [DOI: 10.1089/dna.2016.3588] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
107 Huang EY, Wang FS, Chen YM, Chen YF, Wang CC, Lin IH, Huang YJ, Yang KD. Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3σ-mediated nuclear p53 accumulation. Oncotarget 2014;5:9756-69. [PMID: 25230151 DOI: 10.18632/oncotarget.2386] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
108 Niwa Y, Hirose K, Nakanishi T, Nawa A, Kuzuya K, Tajima K, Hamajima N. Association of the NAD(P)H: quinone oxidoreductase C609T polymorphism and the risk of cervical cancer in Japanese subjects. Gynecol Oncol 2005;96:423-9. [PMID: 15661231 DOI: 10.1016/j.ygyno.2004.10.015] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
109 Ni Y, He X, Chen J, Moline J, Mester J, Orloff MS, Ringel MD, Eng C. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet 2012;21:300-10. [PMID: 21979946 DOI: 10.1093/hmg/ddr459] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 6.0] [Reference Citation Analysis]
110 Lee H, Oh ET, Choi BH, Park MT, Lee JK, Lee JS, Park HJ. NQO1-induced activation of AMPK contributes to cancer cell death by oxygen-glucose deprivation. Sci Rep 2015;5:7769. [PMID: 25586669 DOI: 10.1038/srep07769] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
111 Lee C, Chew E, Go M. Functionalized aurones as inducers of NAD(P)H:quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR. European Journal of Medicinal Chemistry 2010;45:2957-71. [DOI: 10.1016/j.ejmech.2010.03.023] [Cited by in Crossref: 59] [Cited by in F6Publishing: 41] [Article Influence: 4.9] [Reference Citation Analysis]
112 Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, Ozdian T, Bartkova J, Turi Z, Moudry P, Kraus M, Michalova M, Vaclavkova J, Dzubak P, Vrobel I, Pouckova P, Sedlacek J, Miklovicova A, Kutt A, Li J, Mattova J, Driessen C, Dou QP, Olsen J, Hajduch M, Cvek B, Deshaies RJ, Bartek J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 2017;552:194-9. [PMID: 29211715 DOI: 10.1038/nature25016] [Cited by in Crossref: 240] [Cited by in F6Publishing: 220] [Article Influence: 48.0] [Reference Citation Analysis]
113 Holtzclaw W, Dinkova-kostova AT, Talalay P. Protection against electrophile and oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers. Advances in Enzyme Regulation 2004;44:335-67. [DOI: 10.1016/j.advenzreg.2003.11.013] [Cited by in Crossref: 108] [Cited by in F6Publishing: 100] [Article Influence: 6.0] [Reference Citation Analysis]
114 Zhao XZ, Wu XH. A small compound spindlactone A sensitizes human endometrial cancer cells to TRAIL-induced apoptosis via the inhibition of NAD(P)H dehydrogenase quinone 1. Onco Targets Ther 2018;11:3609-17. [PMID: 29950865 DOI: 10.2147/OTT.S165723] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
115 Yamamoto Y, Kiyohara C, Suetsugu-Ogata S, Hamada N, Nakanishi Y. Biological interaction of cigarette smoking on the association between genetic polymorphisms involved in inflammation and the risk of lung cancer: A case-control study in Japan. Oncol Lett 2017;13:3873-81. [PMID: 28529598 DOI: 10.3892/ol.2017.5867] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Zhuang J, Ma W, Lago CU, Hwang PM. Metabolic regulation of oxygen and redox homeostasis by p53: lessons from evolutionary biology? Free Radic Biol Med 2012;53:1279-85. [PMID: 22841759 DOI: 10.1016/j.freeradbiomed.2012.07.026] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
117 Hadley KE, Hendricks DT. Use of NQO1 status as a selective biomarker for oesophageal squamous cell carcinomas with greater sensitivity to 17-AAG. BMC Cancer 2014;14:334. [PMID: 24886060 DOI: 10.1186/1471-2407-14-334] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
118 Megarity CF, Gill JR, Caraher MC, Stratford IJ, Nolan KA, Timson DJ. The two common polymorphic forms of human NRH-quinone oxidoreductase 2 (NQO2) have different biochemical properties. FEBS Lett 2014;588:1666-72. [PMID: 24631540 DOI: 10.1016/j.febslet.2014.02.063] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
119 Manandhar S, Cho JM, Kim JA, Kensler TW, Kwak MK. Induction of Nrf2-regulated genes by 3H-1, 2-dithiole-3-thione through the ERK signaling pathway in murine keratinocytes. Eur J Pharmacol 2007;577:17-27. [PMID: 17854798 DOI: 10.1016/j.ejphar.2007.08.018] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 3.2] [Reference Citation Analysis]
120 Leung KK, Shilton BH. Chloroquine binding reveals flavin redox switch function of quinone reductase 2. J Biol Chem 2013;288:11242-51. [PMID: 23471972 DOI: 10.1074/jbc.M113.457002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 3.1] [Reference Citation Analysis]
121 Das A, Dey N, Ghosh A, Das T, Chatterjee IB. NAD(P)H: quinone oxidoreductase 1 deficiency conjoint with marginal vitamin C deficiency causes cigarette smoke induced myelodysplastic syndromes. PLoS One 2011;6:e20590. [PMID: 21655231 DOI: 10.1371/journal.pone.0020590] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
122 Tamilselvan J, Jayaraman G, Sivarajan K, Panneerselvam C. Age-dependent upregulation of p53 and cytochrome c release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid. Free Radic Biol Med 2007;43:1656-69. [PMID: 18037131 DOI: 10.1016/j.freeradbiomed.2007.08.028] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.1] [Reference Citation Analysis]
123 Muller M. Cellular Senescence: Molecular Mechanisms, In Vivo Significance, and Redox Considerations. Antioxidants & Redox Signaling 2009;11:59-98. [DOI: 10.1089/ars.2008.2104] [Cited by in Crossref: 167] [Cited by in F6Publishing: 152] [Article Influence: 12.8] [Reference Citation Analysis]