BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shvalya V, Filipič G, Zavašnik J, Abdulhalim I, Cvelbar U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Applied Physics Reviews 2020;7:031307. [DOI: 10.1063/5.0015246] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Ramachandran K, Daoudi K, columbus S, Gaidi M, Hammouche J, Chidambaram S. Facile, Flexible, Fast’: Highly sensitive and Low-cost paper sensor for real time spike protein sensing with SERS. Materials Science and Engineering: B 2022;286:115984. [DOI: 10.1016/j.mseb.2022.115984] [Reference Citation Analysis]
2 Weng G, Yang J, Li J, Zhu J, Zhao J. Etching-dependent SERS activity of Ag triangular nanoplates: From decrease to increase. Physica E: Low-dimensional Systems and Nanostructures 2022;144:115426. [DOI: 10.1016/j.physe.2022.115426] [Reference Citation Analysis]
3 Carvalho DF, Martins MA, Fernandes PA, Correia MRP. Coupling of plasmonic nanoparticles on a semiconductor substrate via a modified discrete dipole approximation method. Phys Chem Chem Phys 2022. [PMID: 35811566 DOI: 10.1039/d2cp02446b] [Reference Citation Analysis]
4 Bai C, Niu Q, Yang G, Zhang G, Yang Y. Surface-enhanced Raman spectroscopy substrate based on silver/titanium dioxide nanocomposites and demonstration on rhodamine 6G and severe acute respiratory syndrome coronavirus 2 spike-1 protein. Spectroscopy Letters. [DOI: 10.1080/00387010.2022.2085751] [Reference Citation Analysis]
5 Li H, Merkl P, Sommertune J, Thersleff T, Sotiriou GA. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance. Adv Sci (Weinh) 2022;:e2201133. [PMID: 35670133 DOI: 10.1002/advs.202201133] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Pfeiffer P, Eisener J, Reese H, Li M, Ma X, Sun C, Ohl C. Thermally Assisted Heterogeneous Cavitation through Gas Supersaturation. Phys Rev Lett 2022;128. [DOI: 10.1103/physrevlett.128.194501] [Reference Citation Analysis]
7 Mai QD, Nguyen HA, Phung TLH, Xuan Dinh N, Tran QH, Doan TQ, Le A. Silver Nanoparticles-Based SERS Platform towards Detecting Chloramphenicol and Amoxicillin: An Experimental Insight into the Role of HOMO–LUMO Energy Levels of the Analyte in the SERS Signal and Charge Transfer Process. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c01818] [Reference Citation Analysis]
8 Wang M, Yan Y, Mi Y, Jiang Y. Flexible microsphere‐coupled surface‐enhanced Raman spectroscopy (McSERS) by dielectric microsphere cavity array with random plasmonic nanoparticles. J Raman Spectroscopy. [DOI: 10.1002/jrs.6351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Kamal S, Yang TC. A novel Ag2SO3 microcrystal substrate for highly sensitive SERS sensing of multifold organic pollutants. Journal of Alloys and Compounds 2022;898:162919. [DOI: 10.1016/j.jallcom.2021.162919] [Reference Citation Analysis]
10 Anh NT, Dinh NX, Van Tuan H, Doan MQ, Anh NH, Khi NT, Trang VT, Tri DQ, Le A. Eco-friendly copper nanomaterials-based dual-mode optical nanosensors for ultrasensitive trace determination of amoxicillin antibiotics residue in tap water samples. Materials Research Bulletin 2022;147:111649. [DOI: 10.1016/j.materresbull.2021.111649] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Ma H, Tian Y, Jiao A, Wang C, Zhang M, Zheng L, Li G, Li S, Chen M. Extraordinary approach to further boost plasmonic NIR-SERS by cryogenic temperature-suppressed non-radiative recombination. Opt Lett 2022;47:670. [DOI: 10.1364/ol.447995] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Achadu OJ, Nwaji N, Lee D, Lee J, Akinoglu EM, Giersig M, Park EY. 3D hierarchically porous magnetic molybdenum trioxide@gold nanospheres as a nanogap-enhanced Raman scattering biosensor for SARS-CoV-2. Nanoscale Adv . [DOI: 10.1039/d1na00746g] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Panarin AY, Abakshonok AV, Mojzes P, Terekhov SN. Plasmonic Structures Based on Hydroxyapatite/Silver Nanocomposite for Surface-Enhanced Raman Spectroscopy. J Appl Spectrosc 2021;88:980-6. [DOI: 10.1007/s10812-021-01269-2] [Reference Citation Analysis]
14 M Santhosh N, Shvalya V, Modic M, Hojnik N, Zavašnik J, Olenik J, Košiček M, Filipič G, Abdulhalim I, Cvelbar U. Label-Free Mycotoxin Raman Identification by High-Performing Plasmonic Vertical Carbon Nanostructures. Small 2021;:e2103677. [PMID: 34636140 DOI: 10.1002/smll.202103677] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Daoudi K, Ramachandran K, Columbus S, Tlili A, Mahfood M, Khakani MAE, Gaidi M. Tuning the nanostructural properties of silver nanoparticles for optimised surface enhanced Raman scattering sensing of SARS CoV-2 spike protein. Adv Nat Sci: Nanosci Nanotechnol 2021;12:035011. [DOI: 10.1088/2043-6262/ac2745] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Sajitha M, Abraham B, Nelliyil RB, Yoosaf K. Chemically Etched Nanoporous Copper and Galvanically Displaced Silver Nanoflowers for SERS Sensing. ACS Appl Nano Mater 2021;4:10038-46. [DOI: 10.1021/acsanm.1c01089] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Gullace S, Montes-García V, Martín V, Larios D, Girelli Consolaro V, Obelleiro F, Calogero G, Casalini S, Samorì P. Universal Fabrication of Highly Efficient Plasmonic Thin-Films for Label-Free SERS Detection. Small 2021;17:e2100755. [PMID: 34288390 DOI: 10.1002/smll.202100755] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
18 Zhao Y, Li L, Yan X, Wang L, Ma R, Qi X, Wang S, Mao X. Emerging roles of the aptasensors as superior bioaffinity sensors for monitoring shellfish toxins in marine food chain. J Hazard Mater 2021;421:126690. [PMID: 34315019 DOI: 10.1016/j.jhazmat.2021.126690] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 Roy D, Rajendra R, Tripathi S, Ballav N. Controlling the Aspect Ratios of Au Nanocrystals with Ag + Addition Time in Seed-Mediated Synthesis: Implications for Surface-Enhanced Raman Scattering. ACS Appl Nano Mater 2021;4:7426-34. [DOI: 10.1021/acsanm.1c01345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M. Plasmonic biosensors for food control. Trends in Food Science & Technology 2021;111:128-40. [DOI: 10.1016/j.tifs.2021.02.057] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
21 Lin Y, Wang L, Zhang H, Wu L, Fan H, Liu X, Zheng R, Tian X, He H. Widely tunable surface plasmon resonance and uniquely superior SERS performance of Au nanotube network films. Nanotechnology 2021;32. [PMID: 33823499 DOI: 10.1088/1361-6528/abf511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Paloly AR, Bushiri MJ. Fabrication of antireflective silver-capped tin oxide nano-obelisk arrays as high sensitive SERS substrate. Nanotechnology 2021;32:205504. [PMID: 33561839 DOI: 10.1088/1361-6528/abe48b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]