BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Motallebnejad P, Thomas A, Swisher SL, Azarin SM. An isogenic hiPSC-derived BBB-on-a-chip. Biomicrofluidics 2019;13:064119. [PMID: 31768205 DOI: 10.1063/1.5123476] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Yang S, Chen Z, Cheng Y, Liu T, Lihong Yin, Pu Y, Liang G. Environmental toxicology wars: Organ-on-a-chip for assessing the toxicity of environmental pollutants. Environmental Pollution 2021;268:115861. [DOI: 10.1016/j.envpol.2020.115861] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
2 Fernandes DC, Reis RL, Oliveira JM. Advances in 3D neural, vascular and neurovascular models for drug testing and regenerative medicine. Drug Discov Today 2021;26:754-68. [PMID: 33202252 DOI: 10.1016/j.drudis.2020.11.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Ma C, Peng Y, Li H, Chen W. Organ-on-a-Chip: A New Paradigm for Drug Development. Trends Pharmacol Sci 2021;42:119-33. [PMID: 33341248 DOI: 10.1016/j.tips.2020.11.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
4 Mir M, Palma-Florez S, Lagunas A, López-Martínez MJ, Samitier J. Biosensors Integration in Blood-Brain Barrier-on-a-Chip: Emerging Platform for Monitoring Neurodegenerative Diseases. ACS Sens 2022;7:1237-47. [PMID: 35559649 DOI: 10.1021/acssensors.2c00333] [Reference Citation Analysis]
5 Omidi Y, Kianinejad N, Kwon Y, Omidian H. Drug delivery and targeting to brain tumors: considerations for crossing the blood-brain barrier. Expert Rev Clin Pharmacol 2021;14:357-81. [PMID: 33554678 DOI: 10.1080/17512433.2021.1887729] [Reference Citation Analysis]
6 Neuhaus W. In Vitro Models of the Blood-Brain Barrier. Handb Exp Pharmacol 2021;265:75-110. [PMID: 32562060 DOI: 10.1007/164_2020_370] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
7 Seo HS, Motallebnejad P, Azarin SM. Advances and opportunities for hiPSC-derived models of the blood-brain barrier. Current Opinion in Chemical Engineering 2020;30:1-8. [DOI: 10.1016/j.coche.2020.05.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Offeddu GS, Shin Y, Kamm RD. Microphysiological models of neurological disorders for drug development. Current Opinion in Biomedical Engineering 2020;13:119-26. [DOI: 10.1016/j.cobme.2019.12.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
9 Wu YC, Sonninen TM, Peltonen S, Koistinaho J, Lehtonen Š. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells. Int J Mol Sci 2021;22:7710. [PMID: 34299328 DOI: 10.3390/ijms22147710] [Reference Citation Analysis]
10 Choi J, Mathew S, Oerter S, Appelt-Menzel A, Hansmann J, Schmitz T. Online Measurement System for Dynamic Flow Bioreactors to Study Barrier Integrity of hiPSC-Based Blood-Brain Barrier In Vitro Models. Bioengineering (Basel) 2022;9:39. [PMID: 35049748 DOI: 10.3390/bioengineering9010039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Gerasimenko T, Nikulin S, Zakharova G, Poloznikov A, Petrov V, Baranova A, Tonevitsky A. Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues. Front Bioeng Biotechnol 2019;7:474. [PMID: 32039179 DOI: 10.3389/fbioe.2019.00474] [Cited by in Crossref: 25] [Cited by in F6Publishing: 10] [Article Influence: 12.5] [Reference Citation Analysis]
12 Appelt-Menzel A, Oerter S, Mathew S, Haferkamp U, Hartmann C, Jung M, Neuhaus W, Pless O. Human iPSC-Derived Blood-Brain Barrier Models: Valuable Tools for Preclinical Drug Discovery and Development? Curr Protoc Stem Cell Biol 2020;55:e122. [PMID: 32956578 DOI: 10.1002/cpsc.122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Workman MJ, Svendsen CN. Recent advances in human iPSC-derived models of the blood-brain barrier. Fluids Barriers CNS 2020;17:30. [PMID: 32321511 DOI: 10.1186/s12987-020-00191-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
14 Keep RF, Jones HC, Drewes LR. This was the year that was: brain barriers and brain fluid research in 2019. Fluids Barriers CNS 2020;17:20. [PMID: 32138786 DOI: 10.1186/s12987-020-00181-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
15 Kriaučiūnaitė K, Kaušylė A, Pajarskienė J, Tunaitis V, Lim D, Verkhratsky A, Pivoriūnas A. Immortalised Hippocampal Astrocytes from 3xTG-AD Mice Fail to Support BBB Integrity In Vitro: Role of Extracellular Vesicles in Glial-Endothelial Communication. Cell Mol Neurobiol 2021;41:551-62. [PMID: 32440709 DOI: 10.1007/s10571-020-00871-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
16 Teixeira MI, Amaral MH, Costa PC, Lopes CM, Lamprou DA. Recent Developments in Microfluidic Technologies for Central Nervous System Targeted Studies. Pharmaceutics 2020;12:E542. [PMID: 32545276 DOI: 10.3390/pharmaceutics12060542] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wellens S, Gosselet F, Culot M. Challenges and opportunities in the use of transcriptomics characterization for human iPSC-derived BBB models. Toxicol In Vitro 2022;:105424. [PMID: 35760296 DOI: 10.1016/j.tiv.2022.105424] [Reference Citation Analysis]
18 Liang Y, Yoon J. In situ sensors for blood-brain barrier (BBB) on a chip. Sensors and Actuators Reports 2021;3:100031. [DOI: 10.1016/j.snr.2021.100031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
19 Motallebnejad P, Rajesh VV, Azarin SM. Evaluating the Role of IL-1β in Transmigration of Triple Negative Breast Cancer Cells Across the Brain Endothelium. Cel Mol Bioeng . [DOI: 10.1007/s12195-021-00710-y] [Reference Citation Analysis]
20 Lee CS, Leong KW. Advances in microphysiological blood-brain barrier (BBB) models towards drug delivery. Curr Opin Biotechnol 2020;66:78-87. [PMID: 32711361 DOI: 10.1016/j.copbio.2020.06.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
21 Urbanczyk M, Zbinden A, Schenke-Layland K. Organ-specific endothelial cell heterogenicity and its impact on regenerative medicine and biomedical engineering applications. Adv Drug Deliv Rev 2022;186:114323. [PMID: 35568103 DOI: 10.1016/j.addr.2022.114323] [Reference Citation Analysis]
22 Neal EH, Katdare KA, Shi Y, Marinelli NA, Hagerla KA, Lippmann ES. Influence of basal media composition on barrier fidelity within human pluripotent stem cell-derived blood-brain barrier models. J Neurochem 2021. [PMID: 34716922 DOI: 10.1111/jnc.15532] [Reference Citation Analysis]
23 Staicu CE, Jipa F, Axente E, Radu M, Radu BM, Sima F. Lab-on-a-Chip Platforms as Tools for Drug Screening in Neuropathologies Associated with Blood-Brain Barrier Alterations. Biomolecules 2021;11:916. [PMID: 34205550 DOI: 10.3390/biom11060916] [Reference Citation Analysis]
24 Matthiesen I, Voulgaris D, Nikolakopoulou P, Winkler TE, Herland A. Continuous Monitoring Reveals Protective Effects of N-Acetylcysteine Amide on an Isogenic Microphysiological Model of the Neurovascular Unit. Small 2021;17:e2101785. [PMID: 34174140 DOI: 10.1002/smll.202101785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]