BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Laroussi M, Lu X, Keidar M. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. Journal of Applied Physics 2017;122:020901. [DOI: 10.1063/1.4993710] [Cited by in Crossref: 127] [Cited by in F6Publishing: 22] [Article Influence: 25.4] [Reference Citation Analysis]
Number Citing Articles
1 Barman K, Mudgal M, Rane R, Bhattacharjee S. Effect of magnetic field on optical emission from cold atmospheric pressure micro-plasma jet. Physics of Plasmas 2021;28:123503. [DOI: 10.1063/5.0069126] [Reference Citation Analysis]
2 Behmani D, Barman K, Bhattacharjee S. Fluctuations of the plasma potential in atmospheric pressure micro-plasma jets. AIP Advances 2021;11:085128. [DOI: 10.1063/5.0049322] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Liu Y, Zhang S, Huang B, Dai D, Murphy AB, Shao T. Temporal evolution of electron energy distribution function and its correlation with hydrogen radical generation in atmospheric-pressure methane needle–plane discharge plasmas. J Phys D: Appl Phys 2020;54:095202. [DOI: 10.1088/1361-6463/abca61] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Srivastava N, Wang C. Effect of N 2 and O 2 on OH radical production in an atmospheric helium microwave plasma jet. Plasma Sci Technol 2019;21:115401. [DOI: 10.1088/2058-6272/ab3248] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
5 Keidar M. A prospectus on innovations in the plasma treatment of cancer. Physics of Plasmas 2018;25:083504. [DOI: 10.1063/1.5034355] [Cited by in Crossref: 43] [Cited by in F6Publishing: 12] [Article Influence: 10.8] [Reference Citation Analysis]
6 Zhao Y, Wang C, Li L, Wang L, Pan J. Reaction pathways of producing and losing particles in atmospheric pressure methane nanosecond pulsed needle-plane discharge plasma. Physics of Plasmas 2018;25:033504. [DOI: 10.1063/1.5018667] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
7 Jurov A, Kos Š, Hojnik N, Sremački I, Nikiforov A, Leys C, Serša G, Cvelbar U. Analysing Mouse Skin Cell Behaviour under a Non-Thermal kHz Plasma Jet. Applied Sciences 2021;11:1266. [DOI: 10.3390/app11031266] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Gilmore BF, Flynn PB, O'Brien S, Hickok N, Freeman T, Bourke P. Cold Plasmas for Biofilm Control: Opportunities and Challenges. Trends Biotechnol 2018;36:627-38. [PMID: 29729997 DOI: 10.1016/j.tibtech.2018.03.007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 51] [Article Influence: 15.8] [Reference Citation Analysis]
9 Xiong Q, Xu L, Xiong L, Huang Q, Chen Q, Chen Y, Wang X, Jiang X. Heat deposition in the thermal field of a micro-glow discharge: effect of humidity. Plasma Sources Sci Technol 2018;27:095010. [DOI: 10.1088/1361-6595/aacf30] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang Q, Ning W, Dai D, Zhang Y. How does the moderate wavy surface affect the discharge behavior in an atmospheric helium dielectric barrier discharge model? Plasma Process Polym 2019;17:1900182. [DOI: 10.1002/ppap.201900182] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
11 Jia B, Liu J, Yin S, Liu Z, Zheng S, Yan K. Low Temperature Plasma Treatment of Rat Blood is Accompanied by Platelet Aggregation. Plasma Chem Plasma Process 2021;41:955-72. [DOI: 10.1007/s11090-021-10176-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Shuaibov OK, Minya OY, Chuchman MP, Malinina AO, Malinin OM, Danilo VV, Gomoki ZT. Parameters of Nanosecond Overvoltage Discharge Plasma in a Narrow Air Gap between the Electrodes Containing Electrode Material Vapor. Ukr J Phys 2018;63:790. [DOI: 10.15407/ujpe63.9.790] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
13 Li Y, Bai Q, Yao C, Zhang P, Shen R, Liu H, Lu L, Jiang Y, Yuan X, Miao X, Han W. Long-lasting antifogging mechanism for large-aperture optical surface in low-pressure air plasma in-situ treated. Applied Surface Science 2022;581:152358. [DOI: 10.1016/j.apsusc.2021.152358] [Reference Citation Analysis]
14 Xiang Q, Huangfu L, Dong S, Ma Y, Li K, Niu L, Bai Y. Feasibility of atmospheric cold plasma for the elimination of food hazards: Recent advances and future trends. Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 34761962 DOI: 10.1080/10408398.2021.2002257] [Reference Citation Analysis]
15 Liu J, Wang X, Tian S, Yao X, Fan Y, Zhang Y. Comprehensive study on interactions of cold atmospheric plasma and perilla seed oil. Physics of Plasmas 2022;29:053507. [DOI: 10.1063/5.0088363] [Reference Citation Analysis]
16 Flynn PB, Gilmore BF. Understanding plasma biofilm interactions for controlling infection and virulence. J Phys D: Appl Phys 2018;51:263001. [DOI: 10.1088/1361-6463/aac475] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
17 Piskarev IM. Effect of Spark Discharge Plasma on Water, Physiological Saline, and Hanks’ Solution. High Energy Chem 2018;52:348-54. [DOI: 10.1134/s0018143918040124] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
18 Li X, Wang D, Chen J, Wu J, Zhao N, Jia P, Wu K. Numerically simulated influence of positive ions on the propagation of a positive streamer initiated in an argon plasma jet. Physics of Fluids 2022;34:027112. [DOI: 10.1063/5.0077972] [Reference Citation Analysis]
19 Ouyang W, Ding C, Liu Q, Deng W, Wu Z. Effect of material properties on electron density and electron energy in helium atmospheric pressure plasma jet. Results in Physics 2022;33:105215. [DOI: 10.1016/j.rinp.2022.105215] [Reference Citation Analysis]
20 Brandenburg R, Jahanbakhsh S, Schiorlin M, Schmidt M. About the Development and Dynamics of Microdischarges in Toluene-Containing Air. Plasma Chem Plasma Process 2019;39:667-82. [DOI: 10.1007/s11090-019-09971-y] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Lu C, Dai J, Dong N, Zhu Y, Xiong Z. Investigation of air plasma generated by surface microdischarge for decellularized porcine aortic valve leaflets modification. Plasma Process Polym 2020;17:2000100. [DOI: 10.1002/ppap.202000100] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
22 Garner AL, Mehlhorn TA. A Review of Cold Atmospheric Pressure Plasmas for Trauma and Acute Care. Front Phys 2021;9:786381. [DOI: 10.3389/fphy.2021.786381] [Reference Citation Analysis]
23 Wu S, Liu X, Mao W, Chen W, Liu C, Zhang C. Non-thermal air plasma jets at atmospheric pressure: The flow-dependent propagation in the afterglow. Journal of Applied Physics 2018;124:243302. [DOI: 10.1063/1.5052187] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Choi EH, Hong YJ, Kaushik NK. Plasma Bioscience and Medicines. Appl Sci Converg Technol 2021;30:118-36. [DOI: 10.5757/asct.2021.30.5.118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Li G, Qian M, Kang J, Liu S, Ren C, Zhang J, Wang D. A mechanistic study on partial oxidation of methane to methanol with hydrogen peroxide vapor in atmospheric dielectric barrier discharge. Jpn J Appl Phys 2018;57:096204. [DOI: 10.7567/jjap.57.096204] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
26 Morabit Y, Hasan MI, Whalley RD, Robert E, Modic M, Walsh JL. A review of the gas and liquid phase interactions in low-temperature plasma jets used for biomedical applications. Eur Phys J D 2021;75. [DOI: 10.1140/epjd/s10053-020-00004-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
27 Kaushik NK, Ghimire B, Li Y, Adhikari M, Veerana M, Kaushik N, Jha N, Adhikari B, Lee SJ, Masur K, von Woedtke T, Weltmann KD, Choi EH. Biological and medical applications of plasma-activated media, water and solutions. Biol Chem 2018;400:39-62. [PMID: 30044757 DOI: 10.1515/hsz-2018-0226] [Cited by in Crossref: 106] [Cited by in F6Publishing: 60] [Article Influence: 35.3] [Reference Citation Analysis]
28 Liu F, Zhuang Y, Chu H, Fang Z, Wang W. The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry. Plasma Sci Technol 2021;23:064002. [DOI: 10.1088/2058-6272/abe3e1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Bai C, Wang L, Wan H, Li L, Liu L, Pan J. Effects of CF 4 content on particle densities and reaction pathways in atmospheric-pressure Ar/CF 4 pulsed dielectric barrier discharge plasma. J Phys D: Appl Phys 2018;51:255201. [DOI: 10.1088/1361-6463/aac3e7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
30 Xu G, Geng Y, Li X, Shi X, Zhang G. Characteristics of a kHz helium atmospheric pressure plasma jet interacting with two kinds of targets. Plasma Sci Technol 2021;23:095401. [DOI: 10.1088/2058-6272/ac071a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Aggelopoulos CA, Christodoulou A, Tachliabouri M, Meropoulis S, Christopoulou M, Karalis TT, Chatzopoulos A, Skandalis SS. Cold Atmospheric Plasma Attenuates Breast Cancer Cell Growth Through Regulation of Cell Microenvironment Effectors. Front Oncol 2022;11:826865. [DOI: 10.3389/fonc.2021.826865] [Reference Citation Analysis]
32 Bekeschus S, Poschkamp B, van der Linde J. Medical gas plasma promotes blood coagulation via platelet activation. Biomaterials 2021;278:120433. [PMID: 34562836 DOI: 10.1016/j.biomaterials.2020.120433] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
33 Chen Z, Zhong A, Dai D, Ning W. Effect of the flow rate of the shielding gas on the species fluxes in the coaxial double-tube helium atmospheric pressure plasma jet. J Phys D: Appl Phys 2022;55:305201. [DOI: 10.1088/1361-6463/ac6b63] [Reference Citation Analysis]
34 Wang B, Li W, Zhang B, Liu K, Peng P, Wang D, Luo R, Zhang J, Feng J, Yu H. Numerical study of discharge characteristics of an atmospheric pressure plasma jet with a coaxial dual-channel inlet. Journal of Applied Physics 2022;131:113303. [DOI: 10.1063/5.0073577] [Reference Citation Analysis]
35 Gandhirajan RK, Endlich N, Bekeschus S. Zebrafish larvae as a toxicity model in plasma medicine. Plasma Process Polym 2021;18:2000188. [DOI: 10.1002/ppap.202000188] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Niu G, Knodel A, Burhenn S, Brandt S, Franzke J. Review: Miniature dielectric barrier discharge (DBD) in analytical atomic spectrometry. Analytica Chimica Acta 2021;1147:211-39. [DOI: 10.1016/j.aca.2020.11.034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
37 Wolff CM, Steuer A, Stoffels I, von Woedtke T, Weltmann K, Bekeschus S, Kolb JF. Combination of cold plasma and pulsed electric fields – A rationale for cancer patients in palliative care. Clinical Plasma Medicine 2019;16:100096. [DOI: 10.1016/j.cpme.2020.100096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Du J, Liu Z, Bai C, Li L, Zhao Y, Wang L, Pan J. Concentration distributions and reaction pathways of species in the mass transfer process from atmospheric pressure plasma jet to water. Eur Phys J D 2018;72. [DOI: 10.1140/epjd/e2018-90138-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Kettlitz M, van Rooij O, Höft H, Brandenburg R, Sobota A. Effect of a high-voltage mesh electrode on the volume and surface characteristics of pulsed dielectric barrier discharges. Journal of Applied Physics 2020;128:233302. [DOI: 10.1063/5.0032342] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Nakamura K, Yoshikawa N, Yoshihara M, Ikeda Y, Higashida A, Niwa A, Jindo T, Tanaka H, Ishikawa K, Mizuno M, Toyokuni S, Hori M, Kikkawa F, Kajiyama H. Adjusted multiple gases in the plasma flow induce differential antitumor potentials of plasma‐activated solutions. Plasma Process Polym 2020;17:1900259. [DOI: 10.1002/ppap.201900259] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
41 Lee SJ, Yan D, Zhou X, Cui H, Esworthy T, Hann SY, Keidar M, Zhang LG. Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration. Mater Sci Eng C Mater Biol Appl 2020;111:110844. [PMID: 32279780 DOI: 10.1016/j.msec.2020.110844] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
42 Porteanu H, Wolf D, Heinrich W. Frequency dependence of the capacitive excitation of plasma: An experimental proof. Journal of Applied Physics 2020;127:183301. [DOI: 10.1063/5.0005045] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Laroussi M. Plasma Medicine: A Brief Introduction. Plasma 2018;1:47-60. [DOI: 10.3390/plasma1010005] [Cited by in Crossref: 64] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
44 Peng S, Qi M, Zhang H, Zhang J, Liu R, Pang B, Zhang X, Liu Z, Zhang H, Liu D, Xu D. Discharge characteristics of a microsecond pulse power supply driven air plasma jet and its anticancer cell effect. Physics of Plasmas 2022;29:013504. [DOI: 10.1063/5.0069851] [Reference Citation Analysis]
45 Moniruzzaman R, Rehman MU, Zhao Q, Jawaid P, Mitsuhashi Y, Imaue S, Fujiwara K, Ogawa R, Tomihara K, Saitoh J, Noguchi K, Kondo T, Noguchi M. Roles of intracellular and extracellular ROS formation in apoptosis induced by cold atmospheric helium plasma and X-irradiation in the presence of sulfasalazine. Free Radical Biology and Medicine 2018;129:537-47. [DOI: 10.1016/j.freeradbiomed.2018.10.434] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
46 Siddique SS, Hardy GESJ, Bayliss KL. Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol 2018;67:1011-21. [DOI: 10.1111/ppa.12825] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 4.8] [Reference Citation Analysis]
47 Zhao T, Shi L, Zhang YT, Zou L, Zhang L. A ReaxFF-based molecular dynamics study of the mechanisms of interactions between reactive oxygen plasma species and the Candida albicans cell wall. Physics of Plasmas 2017;24:103518. [DOI: 10.1063/1.4997331] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
48 Qian M, Li G, Kang J, Liu S, Ren C, Zhang J, Wang D. Fluid modeling of radical species generation mechanism in dense methane-air mixture streamer discharge. Physics of Plasmas 2018;25:013519. [DOI: 10.1063/1.5016855] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
49 Laroussi M. Cold Plasma in Medicine and Healthcare: The New Frontier in Low Temperature Plasma Applications. Front Phys 2020;8:74. [DOI: 10.3389/fphy.2020.00074] [Cited by in Crossref: 29] [Cited by in F6Publishing: 3] [Article Influence: 14.5] [Reference Citation Analysis]
50 Hathaway HJ, Patenall BL, Thet NT, Sedgwick AC, Williams GT, Jenkins ATA, Allinson SL, Short RD. Delivery and quantification of hydrogen peroxide generated via cold atmospheric pressure plasma through biological material. J Phys D: Appl Phys 2019;52:505203. [DOI: 10.1088/1361-6463/ab4539] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
51 Ryu T, Wang D, Namihira T. Behavioral characteristics of nanosecond pulsed discharge in coaxial electrodes. Electr Eng Jpn 2020;210:19-28. [DOI: 10.1002/eej.23254] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Bekeschus S, Seebauer C, Wende K, Schmidt A. Physical plasma and leukocytes - immune or reactive? Biol Chem 2018;400:63-75. [PMID: 30030959 DOI: 10.1515/hsz-2018-0224] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
53 Li X, Chen J, Wu K, Wu J, Zhang F, Zhao N, Jia P, Yin Z, Wang Y, Ren C. A compound plume with solid and hollow parts formed downstream of an argon plasma jet at atmospheric pressure. Physics of Plasmas 2021;28:103507. [DOI: 10.1063/5.0056626] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Kapaldo J, Han X, Ptasinska S. Shielding‐gas‐controlled atmospheric pressure plasma jets: Optical emission, reactive oxygen species, and the effect on cancer cells. Plasma Process Polym 2019;16:1800169. [DOI: 10.1002/ppap.201800169] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
55 Athanasopoulos D, Svarnas P, Ladas S, Kennou S, Koutsoukos P. On the wetting properties of human stratum corneum epidermidis surface exposed to cold atmospheric-pressure pulsed plasma. Appl Phys Lett 2018;112:213703. [DOI: 10.1063/1.5027901] [Cited by in Crossref: 14] [Article Influence: 3.5] [Reference Citation Analysis]
56 Sohbatzadeh F, Farhadi M, Shakerinasab E. A new DBD apparatus for super-hydrophobic coating deposition on cotton fabric. Surface and Coatings Technology 2019;374:944-56. [DOI: 10.1016/j.surfcoat.2019.06.086] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 4.7] [Reference Citation Analysis]
57 Mohamed H, Nayak G, Rendine N, Wigdahl B, Krebs FC, Bruggeman PJ, Miller V. Non-Thermal Plasma as a Novel Strategy for Treating or Preventing Viral Infection and Associated Disease. Front Phys 2021;9:683118. [DOI: 10.3389/fphy.2021.683118] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
58 Madigan CD, O'sullivan D, O'neill L, Kavanagh DF. A comparison of two cold atmospheric helium plasma devices which utilise the same RF power generator. Clinical Plasma Medicine 2020;19-20:100108. [DOI: 10.1016/j.cpme.2020.100108] [Reference Citation Analysis]
59 Zhongqi Chen, An Zhong, Dong Dai, Wenjun Ning; 1) (School of Electric Power, South China University of Technology, Guangzhou 510641, China);, 2) College of Electrical Engineering, Sichuan University, Chengdu 610065, China). . Acta Phys Sin 2022;0:0. [DOI: 10.7498/aps.71.20220421] [Reference Citation Analysis]
60 Yin H, Gao G, Yang Y, Liu K, Wu G. A ReaxFF molecular dynamics study of insulation paper modification by plasma ROS. Physics of Plasmas 2022;29:033508. [DOI: 10.1063/5.0068505] [Reference Citation Analysis]
61 Lu X, Keidar M, Laroussi M, Choi E, Szili E, Ostrikov K. Transcutaneous plasma stress: From soft-matter models to living tissues. Materials Science and Engineering: R: Reports 2019;138:36-59. [DOI: 10.1016/j.mser.2019.04.002] [Cited by in Crossref: 55] [Cited by in F6Publishing: 11] [Article Influence: 18.3] [Reference Citation Analysis]
62 Zhao S, Han R, Li Y, Lu C, Chen X, Xiong Z, Mao X. Investigation of the mechanism of enhanced and directed differentiation of neural stem cells by an atmospheric plasma jet: A gene-level study. Journal of Applied Physics 2019;125:163301. [DOI: 10.1063/1.5060650] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
63 Adhikari M, Adhikari B, Adhikari A, Yan D, Soni V, Sherman J, Keidar M. Cold Atmospheric Plasma as a Novel Therapeutic Tool for the Treatment of Brain Cancer. Curr Pharm Des 2020;26:2195-206. [PMID: 32116185 DOI: 10.2174/1381612826666200302105715] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
64 Tian S, Wang X, Zhang Y. Numerical study on interactions of atmospheric plasmas and vegetable oils by reactive molecular dynamic simulations. Plasma Process Polym 2021;18:2100124. [DOI: 10.1002/ppap.202100124] [Reference Citation Analysis]
65 Yan D, Horkowitz A, Wang Q, Keidar M. On the selective killing of cold atmospheric plasma cancer treatment: Status and beyond. Plasma Process Polym 2021;18:2100020. [DOI: 10.1002/ppap.202100020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Barakat MM, Dallal Bashi YH, Carson L, Graham WG, Gilmore BF, Flynn PB. Atmospheric pressure non-thermal plasma exposure reduces Pseudomonas aeruginosa lipopolysaccharide toxicity in vitro and in vivo. Microb Pathog 2019;136:103679. [PMID: 31437578 DOI: 10.1016/j.micpath.2019.103679] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Vass M, Wilczek S, Schulze J, Donkó Z. Electron power absorption in micro atmospheric pressure plasma jets driven by tailored voltage waveforms in He/N 2. Plasma Sources Sci Technol 2021;30:105010. [DOI: 10.1088/1361-6595/ac278c] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]