BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zeng M, Szymczak M, Ahuja M, Zheng C, Yin H, Swaim W, Chiorini JA, Bridges RJ, Muallem S. Restoration of CFTR Activity in Ducts Rescues Acinar Cell Function and Reduces Inflammation in Pancreatic and Salivary Glands of Mice. Gastroenterology 2017;153:1148-59. [PMID: 28634110 DOI: 10.1053/j.gastro.2017.06.011] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Soyfoo MS, Chivasso C, Perret J, Delporte C. Involvement of Aquaporins in the Pathogenesis, Diagnosis and Treatment of Sjögren's Syndrome. Int J Mol Sci 2018;19:E3392. [PMID: 30380700 DOI: 10.3390/ijms19113392] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
2 Fűr G, Bálint ER, Orján EM, Balla Z, Kormányos ES, Czira B, Szűcs A, Kovács DP, Pallagi P, Maléth J, Venglovecz V, Hegyi P, Kiss L, Rakonczay Z Jr. Mislocalization of CFTR expression in acute pancreatitis and the beneficial effect of VX-661 + VX-770 treatment on disease severity. J Physiol 2021;599:4955-71. [PMID: 34587656 DOI: 10.1113/JP281765] [Reference Citation Analysis]
3 Rosenfeld M, Cunningham S, Harris WT, Lapey A, Regelmann WE, Sawicki GS, Southern KW, Chilvers M, Higgins M, Tian S, Cooke J, Davies JC; KLIMB study group. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2-5 years (KLIMB). J Cyst Fibros 2019;18:838-43. [PMID: 31053538 DOI: 10.1016/j.jcf.2019.03.009] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
4 Vivino FB, Bunya VY, Massaro-Giordano G, Johr CR, Giattino SL, Schorpion A, Shafer B, Peck A, Sivils K, Rasmussen A, Chiorini JA, He J, Ambrus JL Jr. Sjogren's syndrome: An update on disease pathogenesis, clinical manifestations and treatment. Clin Immunol 2019;203:81-121. [PMID: 31022578 DOI: 10.1016/j.clim.2019.04.009] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 27.0] [Reference Citation Analysis]
5 Odani T, Chiorini JA. Targeting primary Sjögren’s syndrome. Modern Rheumatology 2019;29:70-86. [DOI: 10.1080/14397595.2018.1546268] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
6 Ambudkar I. Calcium signaling defects underlying salivary gland dysfunction. Biochim Biophys Acta Mol Cell Res 2018;1865:1771-7. [PMID: 30006140 DOI: 10.1016/j.bbamcr.2018.07.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
7 Arsenijevic T, Perret J, Van Laethem JL, Delporte C. Aquaporins Involvement in Pancreas Physiology and in Pancreatic Diseases. Int J Mol Sci 2019;20:E5052. [PMID: 31614661 DOI: 10.3390/ijms20205052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
8 Son A, Ahuja M, Schwartz DM, Varga A, Swaim W, Kang N, Maleth J, Shin DM, Muallem S. Ca2+ Influx Channel Inhibitor SARAF Protects Mice From Acute Pancreatitis. Gastroenterology 2019;157:1660-1672.e2. [DOI: 10.1053/j.gastro.2019.08.042] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
9 Gonska T. Genetic predisposition in pancreatitis. Curr Opin Pediatr 2018;30:660-4. [PMID: 30015686 DOI: 10.1097/MOP.0000000000000668] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
10 Yao Y, Ma JF, Chang C, Xu T, Gao CY, Gershwin ME, Lian ZX. Immunobiology of T Cells in Sjögren's Syndrome. Clin Rev Allergy Immunol 2021;60:111-31. [PMID: 32390096 DOI: 10.1007/s12016-020-08793-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
11 Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020;21:E4005. [PMID: 32503336 DOI: 10.3390/ijms21114005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
12 Dey I, Bradbury NA. Physiology of the Gut: Experimental Models for Investigating Intestinal Fluid and Electrolyte Transport. Curr Top Membr 2018;81:337-81. [PMID: 30243437 DOI: 10.1016/bs.ctm.2018.08.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
13 Maiuri L, Kroemer G. Autophagy delays progression of the two most frequent human monogenetic lethal diseases: cystic fibrosis and Wilson disease. Aging (Albany NY) 2018;10:3657-61. [PMID: 30568028 DOI: 10.18632/aging.101736] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Madácsy T, Pallagi P, Maleth J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular Ca2+ Signaling and Mitochondrial Function in the Exocrine Pancreas. Front Physiol 2018;9:1585. [PMID: 30618777 DOI: 10.3389/fphys.2018.01585] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
15 Morthen MK, Tellefsen S, Richards SM, Lieberman SM, Rahimi Darabad R, Kam WR, Sullivan DA. Testosterone Influence on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. Invest Ophthalmol Vis Sci 2019;60:2181-97. [PMID: 31108549 DOI: 10.1167/iovs.19-26815] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
16 Ahuja M, Chung WY, Lin WY, McNally BA, Muallem S. Ca2+ Signaling in Exocrine Cells. Cold Spring Harb Perspect Biol 2020;12:a035279. [PMID: 31636079 DOI: 10.1101/cshperspect.a035279] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Galluzzi L, Kroemer G. Etiological involvement of CFTR in apparently unrelated human diseases. Mol Cell Oncol 2019;6:1558874. [PMID: 30788425 DOI: 10.1080/23723556.2018.1558874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Xiang H, Guo F, Tao X, Zhou Q, Xia S, Deng D, Li L, Shang D. Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation. Theranostics 2021;11:4467-82. [PMID: 33754072 DOI: 10.7150/thno.54245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 D'Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020;9:E1547. [PMID: 32630469 DOI: 10.3390/cells9061547] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
20 Yang X, Zhao C, Mahdy SA, Xu P, Yu M, Wu J, Wang L, Jacob TJ, Zhu L, Peng S, Deng Z, Chen L, Wang L. A chloride channel in rat pancreatic acinar AR42J cells is sensitive to extracellular acidification and dependent on ROS. Biochem Biophys Res Commun 2020;526:592-8. [PMID: 32247607 DOI: 10.1016/j.bbrc.2020.03.115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Chu CC, Zhao SZ. Pathophysiological Role and Drug Modulation of Calcium Transport in Ocular Surface Cells. Curr Med Chem 2020;27:5078-91. [PMID: 31237195 DOI: 10.2174/0929867326666190619114848] [Reference Citation Analysis]
22 Bose SJ, Krainer G, Ng DRS, Schenkel M, Shishido H, Yoon JS, Haggie PM, Schlierf M, Sheppard DN, Skach WR. Towards next generation therapies for cystic fibrosis: Folding, function and pharmacology of CFTR. J Cyst Fibros 2020;19 Suppl 1:S25-32. [PMID: 31902693 DOI: 10.1016/j.jcf.2019.12.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
23 Sellers ZM. Pancreatic complications in children with cystic fibrosis. Curr Opin Pediatr 2020;32:661-7. [PMID: 32773577 DOI: 10.1097/MOP.0000000000000934] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Megalaa R, Gopalareddy V, Champion E, Goralski JL. Time for a gut check: Pancreatic sufficiency resulting from CFTR modulator use. Pediatr Pulmonol 2019;54:E16-8. [PMID: 31066218 DOI: 10.1002/ppul.24353] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
25 Bose SJ, Bijvelds MJC, Wang Y, Liu J, Cai Z, Bot AGM, de Jonge HR, Sheppard DN. Differential thermostability and response to cystic fibrosis transmembrane conductance regulator potentiators of human and mouse F508del-CFTR. Am J Physiol Lung Cell Mol Physiol 2019;317:L71-86. [PMID: 30969810 DOI: 10.1152/ajplung.00034.2019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
26 Liu X, Subedi KP, Zheng C, Ambudkar I. Mitochondria-targeted antioxidant protects against irradiation-induced salivary gland hypofunction. Sci Rep 2021;11:7690. [PMID: 33833270 DOI: 10.1038/s41598-021-86927-3] [Reference Citation Analysis]
27 Akshintala VS, Kamal A, Faghih M, Cutting GR, Cebotaru L, West NE, Jennings MT, Dezube R, Whitcomb DC, Lechtzin N, Merlo CA, Singh VK. Cystic fibrosis transmembrane conductance regulator modulators reduce the risk of recurrent acute pancreatitis among adult patients with pancreas sufficient cystic fibrosis. Pancreatology 2019;19:1023-6. [PMID: 31611131 DOI: 10.1016/j.pan.2019.09.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
28 Molnár R, Madácsy T, Varga Á, Németh M, Katona X, Görög M, Molnár B, Fanczal J, Rakonczay Z, Hegyi P, Pallagi P, Maléth J. Mouse pancreatic ductal organoid culture as a relevant model to study exocrine pancreatic ion secretion. Lab Invest 2020;100:84-97. [DOI: 10.1038/s41374-019-0300-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
29 Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020;11:1438. [PMID: 32849500 DOI: 10.3389/fimmu.2020.01438] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
30 Villella VR, Venerando A, Cozza G, Esposito S, Ferrari E, Monzani R, Spinella MC, Oikonomou V, Renga G, Tosco A, Rossin F, Guido S, Silano M, Garaci E, Chao YK, Grimm C, Luciani A, Romani L, Piacentini M, Raia V, Kroemer G, Maiuri L. A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease. EMBO J. 2019;38:pii: e100101. [PMID: 30498130 DOI: 10.15252/embj.2018100101] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
31 Vachel L, Muallem S. CFTR is not a gluten lover either. EMBO J 2019;38:e101200. [PMID: 30573671 DOI: 10.15252/embj.2018101200] [Reference Citation Analysis]
32 Allushi B, Bagavant H, Papinska J, Deshmukh US. Hyperglycemia and Salivary Gland Dysfunction in the Non-obese Diabetic Mouse: Caveats for Preclinical Studies in Sjögren's Syndrome. Sci Rep 2019;9:17969. [PMID: 31784615 DOI: 10.1038/s41598-019-54410-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]