BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nezami BG, Mwangi SM, Lee JE, Jeppsson S, Anitha M, Yarandi SS, Farris AB 3rd, Srinivasan S. MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology 2014;146:473-83.e3. [PMID: 24507550 DOI: 10.1053/j.gastro.2013.10.053] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Ge X, Zhao W, Ding C, Tian H, Xu L, Wang H, Ni L, Jiang J, Gong J, Zhu W, Zhu M, Li N. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci Rep. 2017;7:441. [PMID: 28348415 DOI: 10.1038/s41598-017-00612-y] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 15.6] [Reference Citation Analysis]
2 Anitha M, Reichardt F, Tabatabavakili S, Nezami BG, Chassaing B, Mwangi S, Vijay-Kumar M, Gewirtz A, Srinivasan S. Intestinal dysbiosis contributes to the delayed gastrointestinal transit in high-fat diet fed mice. Cell Mol Gastroenterol Hepatol 2016;2:328-39. [PMID: 27446985 DOI: 10.1016/j.jcmgh.2015.12.008] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 9.2] [Reference Citation Analysis]
3 Antonioli L, D'Antongiovanni V, Pellegrini C, Fornai M, Benvenuti L, di Carlo A, van den Wijngaard R, Caputi V, Cerantola S, Giron MC, Németh ZH, Haskó G, Blandizzi C, Colucci R. Colonic dysmotility associated with high-fat diet-induced obesity: Role of enteric glia. FASEB J 2020;34:5512-24. [PMID: 32086846 DOI: 10.1096/fj.201901844R] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
4 Krishna CV, Singh J, Thangavel C, Rattan S. Role of microRNAs in gastrointestinal smooth muscle fibrosis and dysfunction: novel molecular perspectives on the pathophysiology and therapeutic targeting. Am J Physiol Gastrointest Liver Physiol 2016;310:G449-59. [PMID: 26822916 DOI: 10.1152/ajpgi.00445.2015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
5 Ge X, Ding C, Zhao W, Xu L, Tian H, Gong J, Zhu M, Li J, Li N. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med. 2017;15:13. [PMID: 28086815 DOI: 10.1186/s12967-016-1105-4] [Cited by in Crossref: 75] [Cited by in F6Publishing: 75] [Article Influence: 15.0] [Reference Citation Analysis]
6 Jayasimhan A, Mariño E. Dietary SCFAs, IL-22, and GFAP: The Three Musketeers in the Gut-Neuro-Immune Network in Type 1 Diabetes. Front Immunol 2019;10:2429. [PMID: 31736937 DOI: 10.3389/fimmu.2019.02429] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
7 Fesler A, Liu H, Ju J. Modified miR-15a has therapeutic potential for improving treatment of advanced stage colorectal cancer through inhibition of BCL2, BMI1, YAP1 and DCLK1. Oncotarget. 2017;9:2367-2383. [PMID: 29416778 DOI: 10.18632/oncotarget.23414] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
8 Beraldi EJ, Borges SC, de Almeida FLA, Dos Santos A, Saad MJA, Buttow NC. Colonic neuronal loss and delayed motility induced by high-fat diet occur independently of changes in the major groups of microbiota in Swiss mice.Neurogastroenterol Motil. 2020;32:e13745. [PMID: 31721393 DOI: 10.1111/nmo.13745] [Reference Citation Analysis]
9 Farzi A, Halicka J, Mayerhofer R, Fröhlich EE, Tatzl E, Holzer P. Toll-like receptor 4 contributes to the inhibitory effect of morphine on colonic motility in vitro and in vivo. Sci Rep 2015;5:9499. [PMID: 25962524 DOI: 10.1038/srep09499] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
10 Duarte FV, Palmeira CM, Rolo AP. The Emerging Role of MitomiRs in the Pathophysiology of Human Disease. In: Santulli G, editor. microRNA: Medical Evidence. Cham: Springer International Publishing; 2015. pp. 123-54. [DOI: 10.1007/978-3-319-22671-2_8] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 5.7] [Reference Citation Analysis]
11 Ye L, Li G, Goebel A, Raju AV, Kong F, Lv Y, Li K, Zhu Y, Raja S, He P, Li F, Mwangi SM, Hu W, Srinivasan S. Caspase-11-mediated enteric neuronal pyroptosis underlies Western diet-induced colonic dysmotility. J Clin Invest 2020;130:3621-36. [PMID: 32484462 DOI: 10.1172/JCI130176] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
12 Kulkarni S, Micci MA, Leser J, Shin C, Tang SC, Fu YY, Liu L, Li Q, Saha M, Li C, Enikolopov G, Becker L, Rakhilin N, Anderson M, Shen X, Dong X, Butte MJ, Song H, Southard-Smith EM, Kapur RP, Bogunovic M, Pasricha PJ. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc Natl Acad Sci U S A 2017;114:E3709-18. [PMID: 28420791 DOI: 10.1073/pnas.1619406114] [Cited by in Crossref: 107] [Cited by in F6Publishing: 96] [Article Influence: 21.4] [Reference Citation Analysis]
13 Sampath C, Wilus D, Tabatabai M, Freeman ML, Gangula PR. Mechanistic role of antioxidants in rescuing delayed gastric emptying in high fat diet induced diabetic female mice. Biomed Pharmacother 2021;137:111370. [PMID: 33761597 DOI: 10.1016/j.biopha.2021.111370] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Niesler B, Kuerten S, Demir IE, Schäfer KH. Disorders of the enteric nervous system - a holistic view. Nat Rev Gastroenterol Hepatol 2021;18:393-410. [PMID: 33514916 DOI: 10.1038/s41575-020-00385-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
15 Mu C, Yang Y, Zhu W. Gut Microbiota: The Brain Peacekeeper. Front Microbiol 2016;7:345. [PMID: 27014255 DOI: 10.3389/fmicb.2016.00345] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 12.0] [Reference Citation Analysis]
16 Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, Xu K. Inflammatory Links Between High Fat Diets and Diseases. Front Immunol 2018;9:2649. [PMID: 30483273 DOI: 10.3389/fimmu.2018.02649] [Cited by in Crossref: 99] [Cited by in F6Publishing: 87] [Article Influence: 24.8] [Reference Citation Analysis]
17 Zhang T, Zhang G, Yang W, Chen H, Hu J, Zhao Z, Cheng C, Li G, Xie Y, Li Y, Kong R, Wang Y, Wang G, Chen H, Bai XW, Pan S, Sun B, Li L. Lnc-PFAR facilitates autophagy and exacerbates pancreatic fibrosis by reducing pre-miR-141 maturation in chronic pancreatitis. Cell Death Dis 2021;12:996. [PMID: 34697288 DOI: 10.1038/s41419-021-04236-z] [Reference Citation Analysis]
18 Wu N, Fesler A, Liu H, Ju J. Development of novel miR-129 mimics with enhanced efficacy to eliminate chemoresistant colon cancer stem cells. Oncotarget 2018;9:8887-97. [PMID: 29507661 DOI: 10.18632/oncotarget.22322] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
19 Pasricha PJ, Yates KP, Nguyen L, Clarke J, Abell TL, Farrugia G, Hasler WL, Koch KL, Snape WJ, McCallum RW. Outcomes and Factors Associated With Reduced Symptoms in Patients with Gastroparesis. Gastroenterology. 2015;149:1762-1774.e1764. [PMID: 26299414 DOI: 10.1053/j.gastro.2015.08.008] [Cited by in Crossref: 71] [Cited by in F6Publishing: 55] [Article Influence: 10.1] [Reference Citation Analysis]
20 Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014;26:611-624. [PMID: 24661628 DOI: 10.1111/nmo.12330] [Cited by in Crossref: 85] [Cited by in F6Publishing: 63] [Article Influence: 10.6] [Reference Citation Analysis]
21 Miron I, Dumitrascu DL. GASTROINTESTINAL MOTILITY DISORDERS IN OBESITY. Acta Endocrinol (Buchar) 2019;15:497-504. [PMID: 32377248 DOI: 10.4183/aeb.2019.497] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhu C, Gong H, Luo P, Dong L, Zhang G, Shi X, Rong W. Oral Administration of Penicillin or Streptomycin May Alter Serum Serotonin Level and Intestinal Motility via Different Mechanisms. Front Physiol 2020;11:605982. [PMID: 33424630 DOI: 10.3389/fphys.2020.605982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Antonioli L, Pellegrini C, Fornai M, Tirotta E, Gentile D, Benvenuti L, Giron MC, Caputi V, Marsilio I, Orso G, Bernardini N, Segnani C, Ippolito C, Csóka B, Németh ZH, Haskó G, Scarpignato C, Blandizzi C, Colucci R. Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors. Purinergic Signal 2017;13:497-510. [PMID: 28808842 DOI: 10.1007/s11302-017-9577-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
24 Soares A, Beraldi EJ, Ferreira PE, Bazotte RB, Buttow NC. Intestinal and neuronal myenteric adaptations in the small intestine induced by a high-fat diet in mice. BMC Gastroenterol. 2015;15:3. [PMID: 25609418 DOI: 10.1186/s12876-015-0228-z] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
25 Singh R, Zogg H, Ro S. Role of microRNAs in Disorders of Gut-Brain Interactions: Clinical Insights and Therapeutic Alternatives. J Pers Med 2021;11:1021. [PMID: 34683162 DOI: 10.3390/jpm11101021] [Reference Citation Analysis]
26 Li Y, Lu Z, Ru JH, Lopes-Virella MF, Lyons TJ, Huang Y. Saturated fatty acid combined with lipopolysaccharide stimulates a strong inflammatory response in hepatocytes in vivo and in vitro. Am J Physiol Endocrinol Metab 2018;315:E745-57. [PMID: 29989851 DOI: 10.1152/ajpendo.00015.2018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
27 Peck BC, Mah AT, Pitman WA, Ding S, Lund PK, Sethupathy P. Functional Transcriptomics in Diverse Intestinal Epithelial Cell Types Reveals Robust MicroRNA Sensitivity in Intestinal Stem Cells to Microbial Status. J Biol Chem 2017;292:2586-600. [PMID: 28053090 DOI: 10.1074/jbc.M116.770099] [Cited by in Crossref: 64] [Cited by in F6Publishing: 41] [Article Influence: 12.8] [Reference Citation Analysis]
28 Singh R, Wei L, Ghoshal UC. Micro-organic basis of functional gastrointestinal (GI) disorders: Role of microRNAs in GI pacemaking cells. Indian J Gastroenterol 2021;40:102-10. [PMID: 33738768 DOI: 10.1007/s12664-021-01159-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Stengel ST, Fazio A, Lipinski S, Jahn MT, Aden K, Ito G, Wottawa F, Kuiper JWP, Coleman OI, Tran F, Bordoni D, Bernardes JP, Jentzsch M, Luzius A, Bierwirth S, Messner B, Henning A, Welz L, Kakavand N, Falk-Paulsen M, Imm S, Hinrichsen F, Zilbauer M, Schreiber S, Kaser A, Blumberg R, Haller D, Rosenstiel P. Activating Transcription Factor 6 Mediates Inflammatory Signals in Intestinal Epithelial Cells Upon Endoplasmic Reticulum Stress. Gastroenterology 2020;159:1357-1374.e10. [PMID: 32673694 DOI: 10.1053/j.gastro.2020.06.088] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
30 Ruiz-Roso MB, Gil-Zamorano J, López de Las Hazas MC, Tomé-Carneiro J, Crespo MC, Latasa MJ, Briand O, Sánchez-López D, Ortiz AI, Visioli F, Martínez JA, Dávalos A. Intestinal Lipid Metabolism Genes Regulated by miRNAs. Front Genet 2020;11:707. [PMID: 32742270 DOI: 10.3389/fgene.2020.00707] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
31 Bravo-Vázquez LA, Medina-Ríos I, Márquez-Gallardo LD, Reyes-Muñoz J, Serrano-Cano FI, Pathak S, Banerjee A, Bandyopadhyay A, Duttaroy AK, Paul S. Functional Implications and Clinical Potential of MicroRNAs in Irritable Bowel Syndrome: A Concise Review. Dig Dis Sci 2022. [PMID: 35507132 DOI: 10.1007/s10620-022-07516-6] [Reference Citation Analysis]
32 Nyavor Y, Brands CR, May G, Kuther S, Nicholson J, Tiger K, Tesnohlidek A, Yasuda A, Starks K, Litvinenko D, Linden DR, Bhattarai Y, Kashyap PC, Forney LJ, Balemba OB. High-fat diet-induced alterations to gut microbiota and gut-derived lipoteichoic acid contributes to the development of enteric neuropathy. Neurogastroenterol Motil 2020;32:e13838. [PMID: 32168415 DOI: 10.1111/nmo.13838] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
33 Neshatian L, Gibbons SJ, Farrugia G. Macrophages in diabetic gastroparesis--the missing link? Neurogastroenterol Motil. 2015;27:7-18. [PMID: 25168158 DOI: 10.1111/nmo.12418] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
34 Beraldi EJ, Soares A, Borges SC, de Souza AC, Natali MR, Bazotte RB, Buttow NC. High-fat diet promotes neuronal loss in the myenteric plexus of the large intestine in mice. Dig Dis Sci 2015;60:841-9. [PMID: 25330870 DOI: 10.1007/s10620-014-3402-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
35 Mazzone A, Strege PR, Gibbons SJ, Alcaino C, Joshi V, Haak AJ, Tschumperlin DJ, Bernard CE, Cima RR, Larson DW, Chua HK, Graham RP, El Refaey M, Mohler PJ, Hayashi Y, Ordog T, Calder S, Du P, Farrugia G, Beyder A. microRNA overexpression in slow transit constipation leads to reduced NaV1.5 current and altered smooth muscle contractility. Gut 2020;69:868-76. [PMID: 31757880 DOI: 10.1136/gutjnl-2019-318747] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
36 Tang L, Wu Y, Fang C, Qu P, Gao Z. NDRG2 promoted secreted miR-375 in microvesicles shed from M1 microglia, which induced neuron damage. Biochemical and Biophysical Research Communications 2016;469:392-8. [DOI: 10.1016/j.bbrc.2015.11.098] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
37 Tschurtschenthaler M, Adolph TE, Ashcroft JW, Niederreiter L, Bharti R, Saveljeva S, Bhattacharyya J, Flak MB, Shih DQ, Fuhler GM, Parkes M, Kohno K, Iwawaki T, Janneke van der Woude C, Harding HP, Smith AM, Peppelenbosch MP, Targan SR, Ron D, Rosenstiel P, Blumberg RS, Kaser A. Defective ATG16L1-mediated removal of IRE1α drives Crohn's disease-like ileitis. J Exp Med 2017;214:401-22. [PMID: 28082357 DOI: 10.1084/jem.20160791] [Cited by in Crossref: 94] [Cited by in F6Publishing: 89] [Article Influence: 18.8] [Reference Citation Analysis]
38 Wei L, Singh R, Ha SE, Martin AM, Jones LA, Jin B, Jorgensen BG, Zogg H, Chervo T, Gottfried-Blackmore A, Nguyen L, Habtezion A, Spencer NJ, Keating DJ, Sanders KM, Ro S. Serotonin Deficiency Is Associated With Delayed Gastric Emptying. Gastroenterology 2021;160:2451-2466.e19. [PMID: 33662386 DOI: 10.1053/j.gastro.2021.02.060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
39 Nishiyama K, Aono K, Fujimoto Y, Kuwamura M, Okada T, Tokumoto H, Izawa T, Okano R, Nakajima H, Takeuchi T, Azuma YT. Chronic kidney disease after 5/6 nephrectomy disturbs the intestinal microbiota and alters intestinal motility. J Cell Physiol 2019;234:6667-78. [PMID: 30317589 DOI: 10.1002/jcp.27408] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
40 Neunlist M, Schemann M. Nutrient-induced changes in the phenotype and function of the enteric nervous system. J Physiol 2014;592:2959-65. [PMID: 24907307 DOI: 10.1113/jphysiol.2014.272948] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 6.5] [Reference Citation Analysis]
41 Antonioli L, Caputi V, Fornai M, Pellegrini C, Gentile D, Giron MC, Orso G, Bernardini N, Segnani C, Ippolito C, Csóka B, Haskó G, Németh ZH, Scarpignato C, Blandizzi C, Colucci R. Interplay between colonic inflammation and tachykininergic pathways in the onset of colonic dysmotility in a mouse model of diet-induced obesity. Int J Obes (Lond) 2019;43:331-43. [PMID: 30082748 DOI: 10.1038/s41366-018-0166-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
42 Prusty BK, Gulve N, Chowdhury SR, Schuster M, Strempel S, Descamps V, Rudel T. HHV-6 encoded small non-coding RNAs define an intermediate and early stage in viral reactivation. NPJ Genom Med 2018;3:25. [PMID: 30210807 DOI: 10.1038/s41525-018-0064-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
43 Almeida PP, Valdetaro L, Thomasi BBM, Stockler-Pinto MB, Tavares-Gomes AL. High-fat diets on the enteric nervous system: Possible interactions and mechanisms underlying dysmotility. Obes Rev 2021;:e13404. [PMID: 34873814 DOI: 10.1111/obr.13404] [Reference Citation Analysis]
44 Ban E, Kwon H, Song EJ. A rapid and reliable CE-LIF method for the quantitative analysis of miRNA-497 in plasma and organs and its application to a pharmacokinetic and biodistribution study. RSC Adv 2020;10:18648-54. [DOI: 10.1039/d0ra01213k] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Hernández-Saavedra D, Moody L, Xu GB, Chen H, Pan YX. Epigenetic Regulation of Metabolism and Inflammation by Calorie Restriction. Adv Nutr 2019;10:520-36. [PMID: 30915465 DOI: 10.1093/advances/nmy129] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
46 Duarte FV, Palmeira CM, Rolo AP. The Role of microRNAs in Mitochondria: Small Players Acting Wide. Genes (Basel) 2014;5:865-86. [PMID: 25264560 DOI: 10.3390/genes5040865] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 10.0] [Reference Citation Analysis]
47 Larsson S, Voss U. Neuroprotective effects of vitamin D on high fat diet- and palmitic acid-induced enteric neuronal loss in mice. BMC Gastroenterol 2018;18:175. [PMID: 30463517 DOI: 10.1186/s12876-018-0905-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
48 Mantilla-Escalante DC, López de Las Hazas MC, Gil-Zamorano J, Del Pozo-Acebo L, Crespo MC, Martín-Hernández R, Del Saz A, Tomé-Carneiro J, Cardona F, Cornejo-Pareja I, García-Ruiz A, Briand O, Lasunción MA, Visioli F, Dávalos A. Postprandial Circulating miRNAs in Response to a Dietary Fat Challenge. Nutrients 2019;11:E1326. [PMID: 31200481 DOI: 10.3390/nu11061326] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
49 Li L, Wang G, Hu JS, Zhang GQ, Chen HZ, Yuan Y, Li YL, Lv XJ, Tian FY, Pan SH, Bai XW, Sun B. RB1CC1-enhanced autophagy facilitates PSCs activation and pancreatic fibrogenesis in chronic pancreatitis. Cell Death Dis 2018;9:952. [PMID: 30237496 DOI: 10.1038/s41419-018-0980-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
50 Wilson RA, Deasy W, Hayes A, Cooke MB. High fat diet and associated changes in the expression of micro-RNAs in tissue: Lessons learned from animal studies. Mol Nutr Food Res 2017;61. [PMID: 28233461 DOI: 10.1002/mnfr.201600943] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
51 Singh R, Ha SE, Wei L, Jin B, Zogg H, Poudrier SM, Jorgensen BG, Park C, Ronkon CF, Bartlett A, Cho S, Morales A, Chung YH, Lee MY, Park JK, Gottfried-Blackmore A, Nguyen L, Sanders KM, Ro S. miR-10b-5p Rescues Diabetes and Gastrointestinal Dysmotility. Gastroenterology 2021;160:1662-1678.e18. [PMID: 33421511 DOI: 10.1053/j.gastro.2020.12.062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
52 Yap YA, Mariño E. Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes. Adv Exp Med Biol 2021;1307:499-519. [PMID: 32193865 DOI: 10.1007/5584_2020_515] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Stenkamp-Strahm CM, Nyavor YE, Kappmeyer AJ, Horton S, Gericke M, Balemba OB. Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum. Cell Tissue Res 2015;361:411-26. [PMID: 25722087 DOI: 10.1007/s00441-015-2132-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
54 Taba Taba Vakili S, Nezami BG, Shetty A, Chetty VK, Srinivasan S. Association of high dietary saturated fat intake and uncontrolled diabetes with constipation: evidence from the National Health and Nutrition Examination Survey. Neurogastroenterol Motil. 2015;27:1389-1397. [PMID: 26176421 DOI: 10.1111/nmo.12630] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
55 Reichardt F, Chassaing B, Nezami BG, Li G, Tabatabavakili S, Mwangi S, Uppal K, Liang B, Vijay-Kumar M, Jones D, Gewirtz AT, Srinivasan S. Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and lipopolysaccharide-induced TLR4 signalling. J Physiol 2017;595:1831-46. [PMID: 28000223 DOI: 10.1113/JP273269] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 6.4] [Reference Citation Analysis]
56 Srinivasan H, Das S. Mitochondrial miRNA (MitomiR): a new player in cardiovascular health. Can J Physiol Pharmacol 2015;93:855-61. [DOI: 10.1139/cjpp-2014-0500] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 5.7] [Reference Citation Analysis]
57 Chen Y, Liu G, He F, Zhang L, Yang K, Yu H, Zhou J, Gan H. MicroRNA 375 modulates hyperglycemia-induced enteric glial cell apoptosis and Diabetes-induced gastrointestinal dysfunction by targeting Pdk1 and repressing PI3K/Akt pathway. Sci Rep 2018;8:12681. [PMID: 30140011 DOI: 10.1038/s41598-018-30714-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
58 Özdemir-Kumral ZN, Koyuncuoğlu T, Arabacı-Tamer S, Çilingir-Kaya ÖT, Köroğlu AK, Yüksel M, Yeğen BÇ. High-fat Diet Enhances Gastric Contractility, but Abolishes Nesfatin-1-induced Inhibition of Gastric Emptying. J Neurogastroenterol Motil 2021;27:265-78. [PMID: 33795544 DOI: 10.5056/jnm20206] [Reference Citation Analysis]
59 Zhang H, Tian Y, Liang D, Fu Q, Jia L, Wu D, Zhu X. The Effects of Inhibition of MicroRNA-375 in a Mouse Model of Doxorubicin-Induced Cardiac Toxicity. Med Sci Monit 2020;26:e920557. [PMID: 32186283 DOI: 10.12659/MSM.920557] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]