BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim MS, Lee KP, Yang D, Shin DM, Abramowitz J, Kiyonaka S, Birnbaumer L, Mori Y, Muallem S. Genetic and pharmacologic inhibition of the Ca2+ influx channel TRPC3 protects secretory epithelia from Ca2+-dependent toxicity. Gastroenterology 2011;140:2107-15, 2115.e1-4. [PMID: 21354153 DOI: 10.1053/j.gastro.2011.02.052] [Cited by in Crossref: 74] [Cited by in F6Publishing: 70] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Petersen OH. Electrophysiology of Exocrine Gland Cells. Bioelectricity 2022;4:48-58. [DOI: 10.1089/bioe.2022.0011] [Reference Citation Analysis]
2 Petersen OH. Calcium signalling and secretory epithelia. Cell Calcium. 2014;55:282-289. [PMID: 24508392 DOI: 10.1016/j.ceca.2014.01.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
3 Ong HL, de Souza LB, Ambudkar IS. Role of TRPC Channels in Store-Operated Calcium Entry. In: Rosado JA, editor. Calcium Entry Pathways in Non-excitable Cells. Cham: Springer International Publishing; 2016. pp. 87-109. [DOI: 10.1007/978-3-319-26974-0_5] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 8.3] [Reference Citation Analysis]
4 Malczyk M, Erb A, Veith C, Ghofrani HA, Schermuly RT, Gudermann T, Dietrich A, Weissmann N, Sydykov A. The Role of Transient Receptor Potential Channel 6 Channels in the Pulmonary Vasculature. Front Immunol 2017;8:707. [PMID: 28670316 DOI: 10.3389/fimmu.2017.00707] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
5 Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, Marino JP Jr, Birnbaumer L, Schnackenberg CG, Kass DA. Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 2014;111:1551-6. [PMID: 24453217 DOI: 10.1073/pnas.1308963111] [Cited by in Crossref: 114] [Cited by in F6Publishing: 106] [Article Influence: 14.3] [Reference Citation Analysis]
6 Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos Trans R Soc Lond B Biol Sci. 2016;371:pii: 20150425. [PMID: 27377719 DOI: 10.1098/rstb.2015.0425] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
7 Orabi AI, Muili KA, Javed TA, Jin S, Jayaraman T, Lund FE, Husain SZ. Cluster of differentiation 38 (CD38) mediates bile acid-induced acinar cell injury and pancreatitis through cyclic ADP-ribose and intracellular calcium release. J Biol Chem. 2013;288:27128-27137. [PMID: 23940051 DOI: 10.1074/jbc.m113.494534] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
8 Son A, Ahuja M, Schwartz DM, Varga A, Swaim W, Kang N, Maleth J, Shin DM, Muallem S. Ca2+ Influx Channel Inhibitor SARAF Protects Mice From Acute Pancreatitis. Gastroenterology 2019;157:1660-1672.e2. [DOI: 10.1053/j.gastro.2019.08.042] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
9 Jairaman A, Prakriya M. Molecular pharmacology of store-operated CRAC channels. Channels (Austin) 2013;7:402-14. [PMID: 23807116 DOI: 10.4161/chan.25292] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 6.0] [Reference Citation Analysis]
10 Du W, Liu G, Shi N, Tang D, Ferdek PE, Jakubowska MA, Liu S, Zhu X, Zhang J, Yao L, Sang X, Zou S, Liu T, Mukherjee R, Criddle DN, Zheng X, Xia Q, Berggren PO, Huang W, Sutton R, Tian Y, Huang W, Fu X. A microRNA checkpoint for Ca2+ signaling and overload in acute pancreatitis. Mol Ther 2022:S1525-0016(22)00033-8. [PMID: 35077860 DOI: 10.1016/j.ymthe.2022.01.033] [Reference Citation Analysis]
11 Gukovskaya AS, Gorelick FS, Groblewski GE, Mareninova OA, Lugea A, Antonucci L, Waldron RT, Habtezion A, Karin M, Pandol SJ, Gukovsky I. Recent Insights Into the Pathogenic Mechanism of Pancreatitis: Role of Acinar Cell Organelle Disorders. Pancreas 2019;48:459-70. [PMID: 30973461 DOI: 10.1097/MPA.0000000000001298] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
12 Masson B, Montani D, Humbert M, Capuano V, Antigny F. Role of Store-Operated Ca2+ Entry in the Pulmonary Vascular Remodeling Occurring in Pulmonary Arterial Hypertension. Biomolecules 2021;11:1781. [PMID: 34944425 DOI: 10.3390/biom11121781] [Reference Citation Analysis]
13 Petersen O. Can specific calcium channel blockade be the basis for a drug-based treatment of acute pancreatitis? Expert Rev Gastroenterol Hepatol. 2014;8:339-341. [PMID: 24580045 DOI: 10.1586/17474124.2014.896192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
14 Zhu ZD, Yu T, Liu HJ, Jin J, He J. SOCE induced calcium overload regulates autophagy in acute pancreatitis via calcineurin activation. Cell Death Dis 2018;9:50. [PMID: 29352220 DOI: 10.1038/s41419-017-0073-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
15 De Smedt H, Verkhratsky A, Muallem S. Ca2+ signaling mechanisms of cell survival and cell death: An introduction. Cell Calcium 2011;50:207-10. [DOI: 10.1016/j.ceca.2011.06.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
16 Chvanov M, De Faveri F, Moore D, Sherwood MW, Awais M, Voronina S, Sutton R, Criddle DN, Haynes L, Tepikin AV. Intracellular rupture, exocytosis and actin interaction of endocytic vacuoles in pancreatic acinar cells: initiating events in acute pancreatitis. J Physiol 2018;596:2547-64. [PMID: 29717784 DOI: 10.1113/JP275879] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
17 Vohra PK, Thompson MA, Sathish V, Kiel A, Jerde C, Pabelick CM, Singh BB, Prakash YS. TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle. Biochim Biophys Acta 2013;1833:2953-60. [PMID: 23899746 DOI: 10.1016/j.bbamcr.2013.07.019] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
18 Gukovskaya AS, Gukovsky I. Autophagy and pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2012;303:G993-G1003. [PMID: 22961802 DOI: 10.1152/ajpgi.00122.2012] [Cited by in Crossref: 88] [Cited by in F6Publishing: 78] [Article Influence: 8.8] [Reference Citation Analysis]
19 Park EJ, Kim SY, Kim SH, Lee CR, Kim IS, Park JK, Lee SW, Kim BJ, Chun JN, So I, Jeon JH. SK&F 96365 induces apoptosis and autophagy by inhibiting Akt-mTOR signaling in A7r5 cells. Biochim Biophys Acta 2011;1813:2157-64. [PMID: 21767581 DOI: 10.1016/j.bbamcr.2011.06.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
20 Ahuja M, Chung WY, Lin WY, McNally BA, Muallem S. Ca2+ Signaling in Exocrine Cells. Cold Spring Harb Perspect Biol 2020;12:a035279. [PMID: 31636079 DOI: 10.1101/cshperspect.a035279] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Grayson TH, Murphy TV, Sandow SL. Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacology & Therapeutics 2017;174:79-96. [DOI: 10.1016/j.pharmthera.2017.02.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
22 Kang N, Kang JY, Park S, Shin DM. Increased store-operated Ca2+ entry mediated by GNB5 and STIM1. Korean J Physiol Pharmacol 2018;22:343-8. [PMID: 29719456 DOI: 10.4196/kjpp.2018.22.3.343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Ambudkar IS. Ca2+ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium. 2014;55:297-305. [PMID: 24646566 DOI: 10.1016/j.ceca.2014.02.009] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
24 Ampem PT, Smedlund K, Vazquez G. Pharmacological evidence for a role of the transient receptor potential canonical 3 (TRPC3) channel in endoplasmic reticulum stress-induced apoptosis of human coronary artery endothelial cells. Vascul Pharmacol 2016;76:42-52. [PMID: 26215710 DOI: 10.1016/j.vph.2015.07.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
25 Gukovskaya AS, Gukovsky I, Algül H, Habtezion A. Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis. Gastroenterology 2017;153:1212-26. [PMID: 28918190 DOI: 10.1053/j.gastro.2017.08.071] [Cited by in Crossref: 89] [Cited by in F6Publishing: 93] [Article Influence: 17.8] [Reference Citation Analysis]
26 Petersen OH. Ca2+ signalling in the endoplasmic reticulum/secretory granule microdomain. Cell Calcium 2015;58:397-404. [DOI: 10.1016/j.ceca.2015.01.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
27 Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K. Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol 2012;167:1712-22. [PMID: 22862290 DOI: 10.1111/j.1476-5381.2012.02126.x] [Cited by in Crossref: 114] [Cited by in F6Publishing: 112] [Article Influence: 12.7] [Reference Citation Analysis]
28 Maléth J, Hegyi P. Calcium signaling in pancreatic ductal epithelial cells: an old friend and a nasty enemy. Cell Calcium. 2014;55:337-345. [PMID: 24602604 DOI: 10.1016/j.ceca.2014.02.004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
29 Lugea A, Waldron RT, Pandol SJ. Pancreatic adaptive responses in alcohol abuse: Role of the unfolded protein response. Pancreatology. 2015;15:S1-S5. [PMID: 25736240 DOI: 10.1016/j.pan.2015.01.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
30 Liu Y, Lyu Y, Wang H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. Front Mol Biosci 2022;9:895814. [DOI: 10.3389/fmolb.2022.895814] [Reference Citation Analysis]
31 Gao G, Bai XY, Xuan C, Liu XC, Jing WB, Novakovic A, Yang Q, He GW. Role of TRPC3 channel in human internal mammary artery. Arch Med Res 2012;43:431-7. [PMID: 22960861 DOI: 10.1016/j.arcmed.2012.08.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
32 Kolodecik T, Shugrue C, Ashat M, Thrower EC. Risk factors for pancreatic cancer: underlying mechanisms and potential targets. Front Physiol 2013;4:415. [PMID: 24474939 DOI: 10.3389/fphys.2013.00415] [Cited by in Crossref: 27] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
33 Munakata M, Shirakawa H, Nagayasu K, Miyanohara J, Miyake T, Nakagawa T, Katsuki H, Kaneko S. Transient Receptor Potential Canonical 3 Inhibitor Pyr3 Improves Outcomes and Attenuates Astrogliosis After Intracerebral Hemorrhage in Mice. Stroke 2013;44:1981-7. [DOI: 10.1161/strokeaha.113.679332] [Cited by in Crossref: 47] [Cited by in F6Publishing: 17] [Article Influence: 5.2] [Reference Citation Analysis]
34 Voronina S, Collier D, Chvanov M, Middlehurst B, Beckett AJ, Prior IA, Criddle DN, Begg M, Mikoshiba K, Sutton R, Tepikin AV. The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells. Biochem J 2015;465:405-12. [PMID: 25370603 DOI: 10.1042/BJ20140398] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
35 Fenech MA, Carter MM, Stathopulos PB, Pin CL. The pancreas-specific form of secretory pathway calcium ATPase 2 regulates multiple pathways involved in calcium homeostasis. Biochim Biophys Acta Mol Cell Res 2020;1867:118567. [PMID: 31676354 DOI: 10.1016/j.bbamcr.2019.118567] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Huang W, Cane MC, Mukherjee R, Szatmary P, Zhang X, Elliott V, Ouyang Y, Chvanov M, Latawiec D, Wen L, Booth DM, Haynes AC, Petersen OH, Tepikin AV, Criddle DN, Sutton R. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release. Gut 2017;66:301-13. [PMID: 26642860 DOI: 10.1136/gutjnl-2015-309363] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 6.0] [Reference Citation Analysis]
37 Cao X, Choi S, Maléth JJ, Park S, Ahuja M, Muallem S. The ER/PM microdomain, PI(4,5)P₂ and the regulation of STIM1-Orai1 channel function. Cell Calcium 2015;58:342-8. [PMID: 25843208 DOI: 10.1016/j.ceca.2015.03.003] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 5.6] [Reference Citation Analysis]
38 Son A, Park S, Shin DM, Muallem S. Orai1 and STIM1 in ER/PM junctions: roles in pancreatic cell function and dysfunction. Am J Physiol Cell Physiol 2016;310:C414-22. [PMID: 26739495 DOI: 10.1152/ajpcell.00349.2015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
39 Singh P, Garg PK. Pathophysiological mechanisms in acute pancreatitis: Current understanding. Indian J Gastroenterol. 2016;35:153-166. [PMID: 27206712 DOI: 10.1007/s12664-016-0647-y] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
40 Lichtenegger M, Groschner K. TRPC3: A Multifunctional Signaling Molecule. In: Nilius B, Flockerzi V, editors. Mammalian Transient Receptor Potential (TRP) Cation Channels. Berlin: Springer Berlin Heidelberg; 2014. pp. 67-84. [DOI: 10.1007/978-3-642-54215-2_4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
41 Zhong T, Zhang W, Guo H, Pan X, Chen X, He Q, Yang B, Ding L. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharmaceutica Sinica B 2022;12:1761-80. [DOI: 10.1016/j.apsb.2021.11.001] [Reference Citation Analysis]
42 Lerch MM, Aghdassi AA, Sendler M. Cell Signaling of Pancreatic Duct Pressure and Its Role in the Onset of Pancreatitis. Gastroenterology 2020;159:827-31. [PMID: 32693183 DOI: 10.1053/j.gastro.2020.07.027] [Reference Citation Analysis]
43 Mizoguchi Y, Kato TA, Seki Y, Ohgidani M, Sagata N, Horikawa H, Yamauchi Y, Sato-Kasai M, Hayakawa K, Inoue R, Kanba S, Monji A. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia. J Biol Chem 2014;289:18549-55. [PMID: 24811179 DOI: 10.1074/jbc.M114.555334] [Cited by in Crossref: 54] [Cited by in F6Publishing: 31] [Article Influence: 6.8] [Reference Citation Analysis]
44 Sukumaran P, Schaar A, Sun Y, Singh BB. Functional role of TRP channels in modulating ER stress and Autophagy. Cell Calcium 2016;60:123-32. [PMID: 26995055 DOI: 10.1016/j.ceca.2016.02.012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
45 Pedriali G, Rimessi A, Sbano L, Giorgi C, Wieckowski MR, Previati M, Pinton P. Regulation of Endoplasmic Reticulum-Mitochondria Ca2+ Transfer and Its Importance for Anti-Cancer Therapies. Front Oncol 2017;7:180. [PMID: 28913175 DOI: 10.3389/fonc.2017.00180] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
46 Nilius B, Szallasi A, Sibley DR. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014;66:676-814. [DOI: 10.1124/pr.113.008268] [Cited by in Crossref: 291] [Cited by in F6Publishing: 274] [Article Influence: 36.4] [Reference Citation Analysis]
47 Frick TW. The role of calcium in acute pancreatitis. Surgery. 2012;152:S157-S163. [PMID: 22906890 DOI: 10.1016/j.surg.2012.05.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
48 Voronina S, Tepikin A. Mitochondrial calcium in the life and death of exocrine secretory cells. Cell Calcium. 2012;52:86-92. [PMID: 22571865 DOI: 10.1016/j.ceca.2012.03.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
49 RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016;15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
50 Muili KA, Wang D, Orabi AI, Sarwar S, Luo Y, Javed TA, Eisses JF, Mahmood SM, Jin S, Singh VP. Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol Chem. 2013;288:570-580. [PMID: 23148215 DOI: 10.1074/jbc.m112.428896] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 5.4] [Reference Citation Analysis]
51 Ru Y, Zhou Y, Zhang Y. Transient receptor potential-canonical 3 modulates sperm motility and capacitation-associated protein tyrosine phosphorylation via [Ca2+]i mobilization. Acta Biochim Biophys Sin (Shanghai) 2015;47:404-13. [PMID: 25910575 DOI: 10.1093/abbs/gmv025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
52 Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev 2021;101:1691-744. [PMID: 33949875 DOI: 10.1152/physrev.00003.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Pérez S, Pereda J, Sabater L, Sastre J. Redox signaling in acute pancreatitis. Redox Biol 2015;5:1-14. [PMID: 25778551 DOI: 10.1016/j.redox.2015.01.014] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 8.3] [Reference Citation Analysis]
54 Sharma S, Hopkins CR. Review of Transient Receptor Potential Canonical (TRPC5) Channel Modulators and Diseases. J Med Chem 2019;62:7589-602. [PMID: 30943030 DOI: 10.1021/acs.jmedchem.8b01954] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
55 Park S, Ahuja M, Kim MS, Brailoiu GC, Jha A, Zeng M, Baydyuk M, Wu LG, Wassif CA, Porter FD, Zerfas PM, Eckhaus MA, Brailoiu E, Shin DM, Muallem S. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV. EMBO Rep 2016;17:266-78. [PMID: 26682800 DOI: 10.15252/embr.201541542] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
56 Birnbaumer L. From GTP and G proteins to TRPC channels: a personal account. J Mol Med (Berl) 2015;93:941-53. [PMID: 26377676 DOI: 10.1007/s00109-015-1328-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
57 Voronina S, Okeke E, Parker T, Tepikin A. How to win ATP and influence Ca(2+) signaling. Cell Calcium. 2014;55:131-138. [PMID: 24613709 DOI: 10.1016/j.ceca.2014.02.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
58 Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020;21:E4005. [PMID: 32503336 DOI: 10.3390/ijms21114005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
59 Gerasimenko J, Peng S, Gerasimenko O. Role of acidic stores in secretory epithelia. Cell Calcium 2014;55:346-54. [DOI: 10.1016/j.ceca.2014.04.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
60 Takahashi T, Miao Y, Kang F, Dolai S, Gaisano HY. Susceptibility Factors and Cellular Mechanisms Underlying Alcoholic Pancreatitis. Alcohol Clin Exp Res 2020;44:777-89. [PMID: 32056245 DOI: 10.1111/acer.14304] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
61 Choi S, Maleth J, Jha A, Lee KP, Kim MS, So I, Ahuja M, Muallem S. The TRPCs-STIM1-Orai interaction. Handb Exp Pharmacol 2014;223:1035-54. [PMID: 24961979 DOI: 10.1007/978-3-319-05161-1_13] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
62 Serafini M, Cordero-Sanchez C, Di Paola R, Bhela IP, Aprile S, Purghè B, Fusco R, Cuzzocrea S, Genazzani AA, Riva B, Pirali T. Store-Operated Calcium Entry as a Therapeutic Target in Acute Pancreatitis: Discovery and Development of Drug-Like SOCE Inhibitors. J Med Chem 2020;63:14761-79. [PMID: 33253576 DOI: 10.1021/acs.jmedchem.0c01305] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
63 Liu H, Lin WY, Leibow SR, Morateck AJ, Ahuja M, Muallem S. TRPC3 channel gating by lipids requires localization at the ER/PM junctions defined by STIM1. J Cell Biol 2022;221:e202107120. [PMID: 35416932 DOI: 10.1083/jcb.202107120] [Reference Citation Analysis]
64 Gerasimenko JV, Gerasimenko OV, Petersen OH. The role of Ca2+ in the pathophysiology of pancreatitis. J Physiol. 2014;592:269-280. [PMID: 23897234 DOI: 10.1113/jphysiol.2013.261784] [Cited by in Crossref: 91] [Cited by in F6Publishing: 80] [Article Influence: 10.1] [Reference Citation Analysis]
65 Prakash YS, Martin RJ. Brain-derived neurotrophic factor in the airways. Pharmacol Ther 2014;143:74-86. [PMID: 24560686 DOI: 10.1016/j.pharmthera.2014.02.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 7.1] [Reference Citation Analysis]
66 Soni H, Peixoto-Neves D, Buddington RK, Adebiyi A. Adenosine A1 receptor-operated calcium entry in renal afferent arterioles is dependent on postnatal maturation of TRPC3 channels. Am J Physiol Renal Physiol 2017;313:F1216-22. [PMID: 28855189 DOI: 10.1152/ajprenal.00335.2017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
67 Islas-Robles A, Yedlapudi D, Lau SS, Monks TJ. Toxicoproteomic Analysis of Poly(ADP-ribose)-associated Proteins Induced by Oxidative Stress in Human Proximal Tubule Cells. Toxicol Sci 2019:kfz131. [PMID: 31165168 DOI: 10.1093/toxsci/kfz131] [Reference Citation Analysis]
68 Lichtenegger M, Tiapko O, Svobodova B, Stockner T, Glasnov TN, Schreibmayer W, Platzer D, de la Cruz GG, Krenn S, Schober R, Shrestha N, Schindl R, Romanin C, Groschner K. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat Chem Biol 2018;14:396-404. [PMID: 29556099 DOI: 10.1038/s41589-018-0015-6] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 10.3] [Reference Citation Analysis]
69 Liu H, Kabrah A, Ahuja M, Muallem S. CRAC channels in secretory epithelial cell function and disease. Cell Calcium 2019;78:48-55. [PMID: 30641249 DOI: 10.1016/j.ceca.2018.12.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
70 Vazquez G, Solanki S, Dube P, Smedlund K, Ampem P. On the Roles of the Transient Receptor Potential Canonical 3 (TRPC3) Channel in Endothelium and Macrophages: Implications in Atherosclerosis. Adv Exp Med Biol 2016;898:185-99. [PMID: 27161230 DOI: 10.1007/978-3-319-26974-0_9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
71 Liu X, Ong HL, Ambudkar I. TRP Channel Involvement in Salivary Glands-Some Good, Some Bad. Cells 2018;7:E74. [PMID: 29997338 DOI: 10.3390/cells7070074] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
72 Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2019;11:265-96. [PMID: 30526315 DOI: 10.1080/19420862.2018.1548232] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
73 Ambudkar IS. Calcium signalling in salivary gland physiology and dysfunction. J Physiol 2016;594:2813-24. [PMID: 26592972 DOI: 10.1113/JP271143] [Cited by in Crossref: 42] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
74 Roedding A, Tong S, Au-yeung W, Li P, Warsh J. Chronic oxidative stress modulates TRPC3 and TRPM2 channel expression and function in rat primary cortical neurons: Relevance to the pathophysiology of bipolar disorder. Brain Research 2013;1517:16-27. [DOI: 10.1016/j.brainres.2013.04.025] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
75 Liu J, Wu J, Wang R, Zhong D, Qiu Y, Wang H, Song Z, Zhu Y. ANKRD22 Drives Rapid Proliferation of Lgr5+ Cells and Acts as a Promising Therapeutic Target in Gastric Mucosal Injury. Cell Mol Gastroenterol Hepatol 2021:S2352-345X(21)00135-1. [PMID: 34217895 DOI: 10.1016/j.jcmgh.2021.06.020] [Reference Citation Analysis]
76 Bon RS, Beech DJ. In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels -- mirage or pot of gold? Br J Pharmacol 2013;170:459-74. [PMID: 23763262 DOI: 10.1111/bph.12274] [Cited by in Crossref: 64] [Cited by in F6Publishing: 63] [Article Influence: 8.0] [Reference Citation Analysis]
77 Wang M, Tang Y, Ma M, Chen J, Hu C, Zhao S, Peng D, Zhou J, Guan Y, Zhang Z. TRPC3 channel confers cerebrovascular remodelling during hypertension via transactivation of EGF receptor signalling. Cardiovasc Res 2015;109:34-43. [DOI: 10.1093/cvr/cvv246] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]