BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL, Tsukamoto H, Mann DA. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138:705-714, 714.e1-714.e4. [PMID: 19843474 DOI: 10.1053/j.gastro.2009.10.002] [Cited by in Crossref: 264] [Cited by in F6Publishing: 272] [Article Influence: 20.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhu Z, Hou Q, Li M, Fu X. Molecular mechanism of myofibroblast formation and strategies for clinical drugs treatments in hypertrophic scars. J Cell Physiol 2020;235:4109-19. [PMID: 31612497 DOI: 10.1002/jcp.29302] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
2 Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019;76:4179-201. [PMID: 31563998 DOI: 10.1007/s00018-019-03212-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
3 Zhang Z, Liu R, Townsend PA, Proud CG. p90RSKs mediate the activation of ribosomal RNA synthesis by the hypertrophic agonist phenylephrine in adult cardiomyocytes. Journal of Molecular and Cellular Cardiology 2013;59:139-47. [DOI: 10.1016/j.yjmcc.2013.03.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.2] [Reference Citation Analysis]
4 Chase K, Sharma RP. Epigenetic developmental programs and adipogenesis: Implications for psychotropic induced obesity. Epigenetics 2014;8:1133-40. [DOI: 10.4161/epi.26027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
5 Zhang X, Hu M, Lyu X, Li C, Thannickal VJ, Sanders YY. DNA methylation regulated gene expression in organ fibrosis. Biochim Biophys Acta Mol Basis Dis 2017;1863:2389-97. [PMID: 28501566 DOI: 10.1016/j.bbadis.2017.05.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
6 Reister S, Kordes C, Sawitza I, Häussinger D. The epigenetic regulation of stem cell factors in hepatic stellate cells. Stem Cells Dev. 2011;20:1687-1699. [PMID: 21219128 DOI: 10.1089/scd.2010.0418] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 2.2] [Reference Citation Analysis]
7 Kis K, Liu X, Hagood JS. Myofibroblast differentiation and survival in fibrotic disease. Expert Rev Mol Med 2011;13:e27. [PMID: 21861939 DOI: 10.1017/S1462399411001967] [Cited by in Crossref: 123] [Cited by in F6Publishing: 70] [Article Influence: 11.2] [Reference Citation Analysis]
8 Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021;30:121-31. [PMID: 32931037 DOI: 10.1111/exd.14193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Remenyi J, Hunter CJ, Cole C, Ando H, Impey S, Monk CE, Martin KJ, Barton GJ, Hutvagner G, Arthur JS. Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J 2010;428:281-91. [PMID: 20307261 DOI: 10.1042/BJ20100024] [Cited by in Crossref: 147] [Cited by in F6Publishing: 100] [Article Influence: 12.3] [Reference Citation Analysis]
10 Russell‐hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 451-91. [DOI: 10.1002/cphy.c170029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
11 Madejón A, Sheldon J, Francisco-Recuero I, Perales C, Domínguez-Beato M, Lasa M, Sánchez-Perez I, Muntané J, Domingo E, García-Samaniego J, Sánchez-Pacheco A. Hepatitis C virus-mediated Aurora B kinase inhibition modulates inflammatory pathway and viral infectivity. J Hepatol 2015;63:312-9. [PMID: 25733156 DOI: 10.1016/j.jhep.2015.02.036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
12 Moore A, Wu L, Chuang JC, Sun X, Luo X, Gopal P, Li L, Celen C, Zimmer M, Zhu H. Arid1a Loss Drives Nonalcoholic Steatohepatitis in Mice Through Epigenetic Dysregulation of Hepatic Lipogenesis and Fatty Acid Oxidation. Hepatology 2019;69:1931-45. [PMID: 30584660 DOI: 10.1002/hep.30487] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
13 Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H. Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis. J Cell Biochem 2018;119:17-27. [PMID: 28520219 DOI: 10.1002/jcb.26146] [Cited by in Crossref: 79] [Cited by in F6Publishing: 75] [Article Influence: 15.8] [Reference Citation Analysis]
14 Zhao ZH, Fan YC, Zhao Q, Dou CY, Ji XF, Zhao J, Gao S, Li XY, Wang K. Promoter methylation status and expression of PPAR-γ gene are associated with prognosis of acute-on-chronic hepatitis B liver failure. Clin Epigenetics 2015;7:115. [PMID: 26516376 DOI: 10.1186/s13148-015-0149-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
15 Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol 2014; 20(10): 2515-2532 [PMID: 24627588 DOI: 10.3748/wjg.v20.i10.2515] [Cited by in CrossRef: 207] [Cited by in F6Publishing: 189] [Article Influence: 25.9] [Reference Citation Analysis]
16 Zhu H, Luo H, Zuo X. MicroRNAs: their involvement in fibrosis pathogenesis and use as diagnostic biomarkers in scleroderma. ExpMol Med. 2013;45:e41. [PMID: 24052166 DOI: 10.1038/emm.2013.71] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
17 Robinson CM, Watson CJ, Baugh JA. Epigenetics within the matrix: a neo-regulator of fibrotic disease. Epigenetics. 2012;7:987-993. [PMID: 22894907 DOI: 10.4161/epi.21567] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
18 Porcuna J, Mínguez-Martínez J, Ricote M. The PPARα and PPARγ Epigenetic Landscape in Cancer and Immune and Metabolic Disorders. Int J Mol Sci 2021;22:10573. [PMID: 34638914 DOI: 10.3390/ijms221910573] [Reference Citation Analysis]
19 Yi S, Qin X, Luo X, Zhang Y, Liu Z, Zhu L. Identification of miRNAs associated with the mechanical response of hepatic stellate cells by miRNA microarray analysis. Exp Ther Med 2018;16:1707-14. [PMID: 30186391 DOI: 10.3892/etm.2018.6384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
20 Tao H, Huang C, Yang JJ, Ma TT, Bian EB, Zhang L, Lv XW, Jin Y, Li J. MeCP2 controls the expression of RASAL1 in the hepatic fibrosis in rats. Toxicology. 2011;290:327-333. [PMID: 22056649 DOI: 10.1016/j.tox.2011.10.011] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 6.2] [Reference Citation Analysis]
21 Shi CX, Wang Y, Jiao FZ, Chen Q, Cao P, Pei MH, Zhang LY, Guo J, Deng W, Wang LW, Gong ZJ. Epigenetic Regulation of Hepatic Stellate Cell Activation and Macrophage in Chronic Liver Inflammation. Front Physiol 2021;12:683526. [PMID: 34276405 DOI: 10.3389/fphys.2021.683526] [Reference Citation Analysis]
22 Atta HM, Al-Hendy AA, Abdel Raheim SR, Abdel-Ghany H, Nasif KA, Abdellah AM, Zenhom NM, Kamel HS. Modified Adenovirus Reduces De Novo Peritoneal Adhesions in Rats and Limits Off-Target Transfection. Role of EZH2 in Adhesion Formation. J Invest Surg 2017;30:78-87. [PMID: 27690696 DOI: 10.1080/08941939.2016.1229366] [Reference Citation Analysis]
23 Shin J, Um J, Lee S, Park I, Lee S, Lee H. Effect of MeCP2 on TGF- β 1-induced Extracellular Matrix Production in Nasal Polyp-derived Fibroblasts. Am J Rhinol�Allergy 2018;32:228-35. [DOI: 10.1177/1945892418770291] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
24 Wei J, Bhattacharyya S, Jain M, Varga J. Regulation of Matrix Remodeling by Peroxisome Proliferator-Activated Receptor-γ: A Novel Link Between Metabolism and Fibrogenesis. Open Rheumatol J. 2012;6:103-115. [PMID: 22802908 DOI: 10.2174/1874312901206010103] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
25 Noetel A, Kwiecinski M, Elfimova N, Huang J, Odenthal M. microRNA are Central Players in Anti- and Profibrotic Gene Regulation during Liver Fibrosis. Front Physiol. 2012;3:49. [PMID: 22457651 DOI: 10.3389/fphys.2012.00049] [Cited by in Crossref: 94] [Cited by in F6Publishing: 92] [Article Influence: 9.4] [Reference Citation Analysis]
26 Huang TY, Wu CH, Wang MH, Chen BS, Chiou LL, Lee HS. Cooperative regulation of substrate stiffness and extracellular matrix proteins in skin wound healing of axolotls. Biomed Res Int 2015;2015:712546. [PMID: 25839038 DOI: 10.1155/2015/712546] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
27 Bian EB, Zhao B, Huang C, Wang H, Meng XM, Wu BM, Ma TT, Zhang L, Lv XW, Li J. New advances of DNA methylation in liver fibrosis, with special emphasis on the crosstalk between microRNAs and DNA methylation machinery. Cell Signal. 2013;25:1837-1844. [PMID: 23707524 DOI: 10.1016/j.cellsig.2013.05.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
28 Bigaeva E, Gore E, Simon E, Zwick M, Oldenburger A, de Jong KP, Hofker HS, Schlepütz M, Nicklin P, Boersema M, Rippmann JF, Olinga P. Transcriptomic characterization of culture-associated changes in murine and human precision-cut tissue slices. Arch Toxicol 2019;93:3549-83. [PMID: 31754732 DOI: 10.1007/s00204-019-02611-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
29 Good KV, Vincent JB, Ausió J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front Genet 2021;12:620859. [PMID: 33552148 DOI: 10.3389/fgene.2021.620859] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
30 Arechederra M, Recalde M, Gárate-Rascón M, Fernández-Barrena MG, Ávila MA, Berasain C. Epigenetic Biomarkers for the Diagnosis and Treatment of Liver Disease. Cancers (Basel) 2021;13:1265. [PMID: 33809263 DOI: 10.3390/cancers13061265] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Wang F, Malnassy G, Qiu W. The Epigenetic Regulation of Microenvironment in Hepatocellular Carcinoma. Front Oncol 2021;11:653037. [PMID: 33791228 DOI: 10.3389/fonc.2021.653037] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Li X, Zhao M, He S. RPE epithelial-mesenchymal transition plays a critical role in the pathogenesis of proliferative vitreoretinopathy. Ann Transl Med 2020;8:263. [PMID: 32355707 DOI: 10.21037/atm.2020.03.86] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Zhang MW, Fujiwara K, Che X, Zheng S, Zheng L. DNA methylation in the tumor microenvironment. J Zhejiang Univ Sci B 2017;18:365-72. [PMID: 28471108 DOI: 10.1631/jzus.B1600579] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
34 Mcdonnell FS, Mcnally SA, Clark AF, O’brien CJ, Wallace DM. Increased Global DNA Methylation and Decreased TGFβ1 Promoter Methylation in Glaucomatous Lamina Cribrosa Cells. Journal of Glaucoma 2016;25:e834-42. [DOI: 10.1097/ijg.0000000000000453] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
35 Jalan-Sakrikar N, De Assuncao TM, Shi G, Aseem SO, Chi C, Shah VH, Huebert RC. Proteasomal Degradation of Enhancer of Zeste Homologue 2 in Cholangiocytes Promotes Biliary Fibrosis. Hepatology 2019;70:1674-89. [PMID: 31070797 DOI: 10.1002/hep.30706] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
36 Brousseau M, Nectoux J, Saintpierre B, Lebrun N, Cagnard N, Izac B, Olivier E, Letourneur F, Bienvenu T. MeCP2 is involved in random mono-allelic expression for a subset of human autosomal genes. Biochim Biophys Acta Mol Basis Dis 2020;1866:165730. [PMID: 32070770 DOI: 10.1016/j.bbadis.2020.165730] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Tsukamoto H, Zhu NL, Wang J, Asahina K, Machida K. Morphogens and hepatic stellate cell fate regulation in chronic liver disease. J Gastroenterol Hepatol. 2012;27 Suppl 2:94-98. [PMID: 22320925 DOI: 10.1111/j.1440-1746.2011.07022.x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
38 Yao H, Li J. Epigenetic Modifications in Fibrotic Diseases: Implications for Pathogenesis and Pharmacological Targets. J Pharmacol Exp Ther 2014;352:2-13. [DOI: 10.1124/jpet.114.219816] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
39 Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, Wang J, Ding C, Jin L, He F, Wang H. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics 2021;11:361-78. [PMID: 33391480 DOI: 10.7150/thno.46360] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
40 Arriazu E, Ruiz de Galarreta M, Cubero FJ, Varela-Rey M, Pérez de Obanos MP, Leung TM, Lopategi A, Benedicto A, Abraham-Enachescu I, Nieto N. Extracellular matrix and liver disease. Antioxid Redox Signal 2014;21:1078-97. [PMID: 24219114 DOI: 10.1089/ars.2013.5697] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 9.1] [Reference Citation Analysis]
41 Kong M, Wu J, Fan Z, Chen B, Wu T, Xu Y. The histone demethylase Kdm4 suppresses activation of hepatic stellate cell by inducing MiR-29 transcription. Biochem Biophys Res Commun 2019;514:16-23. [PMID: 31014673 DOI: 10.1016/j.bbrc.2019.04.105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Liu Y, Niu Y, Li L, Timani KA, He VL, Sanburns C, Xie J, He JJ. Tat expression led to increased histone 3 tri-methylation at lysine 27 and contributed to HIV latency in astrocytes through regulation of MeCP2 and Ezh2 expression. J Neurovirol 2019;25:508-19. [PMID: 31020497 DOI: 10.1007/s13365-019-00751-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
43 Garrison G, Huang SK, Okunishi K, Scott JP, Kumar Penke LR, Scruggs AM, Peters-Golden M. Reversal of myofibroblast differentiation by prostaglandin E(2). Am J Respir Cell Mol Biol 2013;48:550-8. [PMID: 23470625 DOI: 10.1165/rcmb.2012-0262OC] [Cited by in Crossref: 66] [Cited by in F6Publishing: 43] [Article Influence: 7.3] [Reference Citation Analysis]
44 Smith ER, Wigg B, Holt S, Hewitson TD. TGF-β1 modifies histone acetylation and acetyl-coenzyme A metabolism in renal myofibroblasts. Am J Physiol Renal Physiol 2019. [PMID: 30623724 DOI: 10.1152/ajprenal.00513.2018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
45 Lian B, Ren Y, Zhang H, Lin T, Wang Y. An adenosine derivative (IFC-305) reduced the risk of radiation-induced intestinal toxicity in the treatment of colon cancer by suppressing the methylation of PPAR-r promoter. Biomed Pharmacother 2019;118:109202. [PMID: 31545232 DOI: 10.1016/j.biopha.2019.109202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
46 Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism 2020;111S:154320. [PMID: 32712221 DOI: 10.1016/j.metabol.2020.154320] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 16.5] [Reference Citation Analysis]
47 Page A, Paoli P, Moran Salvador E, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol 2016;64:661-73. [PMID: 26632634 DOI: 10.1016/j.jhep.2015.11.024] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 9.9] [Reference Citation Analysis]
48 Zimmer V, Lammert F. Genetics and epigenetics in the fibrogenic evolution of chronic liver diseases. Best Pract Res Clin Gastroenterol. 2011;25:269-280. [PMID: 21497744 DOI: 10.1016/j.bpg.2011.02.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
49 Wilson CL, Mann J, Walsh M, Perrugoria MJ, Oakley F, Wright MC, Brignole C, Di Paolo D, Perri P, Ponzoni M, Karin M, Mann DA. Quiescent hepatic stellate cells functionally contribute to the hepatic innate immune response via TLR3. PLoS One 2014;9:e83391. [PMID: 24416163 DOI: 10.1371/journal.pone.0083391] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
50 Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie. 2013;95:2326-2335. [PMID: 24036368 DOI: 10.1016/j.biochi.2013.09.003] [Cited by in Crossref: 70] [Cited by in F6Publishing: 69] [Article Influence: 7.8] [Reference Citation Analysis]
51 Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020;21:E8138. [PMID: 33143364 DOI: 10.3390/ijms21218138] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
52 Amin S, Walsh M, Wilson C, Parker AE, Oscier D, Willmore E, Mann D, Mann J. Cross-talk between DNA methylation and active histone modifications regulates aberrant expression of ZAP70 in CLL. J Cell Mol Med 2012;16:2074-84. [PMID: 22151263 DOI: 10.1111/j.1582-4934.2011.01503.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
53 Duong TE, Hagood JS. Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis. Curr Pathobiol Rep 2018;6:79-96. [PMID: 30271681 DOI: 10.1007/s40139-018-0155-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
54 Kim KH, Ryu HM, Oh SH, Oh EJ, Ahn JS, Lee JH, Choi JY, Cho JH, Kim CD, Kim YL, Park SH. Effect of DNA demethylation in experimental encapsulating peritoneal sclerosis. Ther Apher Dial 2014;18:628-36. [PMID: 25256793 DOI: 10.1111/1744-9987.12186] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
55 Huang YH, Kuo HC, Yang YL, Wang FS. MicroRNA-29a is a key regulon that regulates BRD4 and mitigates liver fibrosis in mice by inhibiting hepatic stellate cell activation. Int J Med Sci 2019;16:212-20. [PMID: 30745801 DOI: 10.7150/ijms.29930] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
56 Li Z, Song S, Zha S, Wang C, Chen S, Wang F. MeCP2 promotes endothelial-to-mesenchymal transition in human endothelial cells by downregulating BMP7 expression. Exp Cell Res 2019;375:82-9. [PMID: 30597142 DOI: 10.1016/j.yexcr.2018.12.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
57 Argemi J, Bataller R. Identifying New Epigenetic Drivers of Liver Fibrosis. Cell Mol Gastroenterol Hepatol 2019;7:237-8. [PMID: 30539791 DOI: 10.1016/j.jcmgh.2018.09.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
58 Phan SH. Genesis of the myofibroblast in lung injury and fibrosis. Proc Am Thorac Soc. 2012;9:148-152. [PMID: 22802289 DOI: 10.1513/pats.201201-011aw] [Cited by in Crossref: 74] [Cited by in F6Publishing: 50] [Article Influence: 7.4] [Reference Citation Analysis]
59 Gaspar-Pereira S, Fullard N, Townsend PA, Banks PS, Ellis EL, Fox C, Maxwell AG, Murphy LB, Kirk A, Bauer R, Caamaño JH, Figg N, Foo RS, Mann J, Mann DA, Oakley F. The NF-κB subunit c-Rel stimulates cardiac hypertrophy and fibrosis. Am J Pathol 2012;180:929-39. [PMID: 22210479 DOI: 10.1016/j.ajpath.2011.11.007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 4.6] [Reference Citation Analysis]
60 Bian EB, Huang C, Wang H, Chen XX, Tao H, Zhang L, Lv XW, Li J. The role of methyl-CpG binding protein 2 in liver fibrosis. Toxicology 2013;309:9-14. [PMID: 23619607 DOI: 10.1016/j.tox.2013.04.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
61 Moran-Salvador E, Mann J. Epigenetics and Liver Fibrosis. Cell Mol Gastroenterol Hepatol 2017;4:125-34. [PMID: 28593184 DOI: 10.1016/j.jcmgh.2017.04.007] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 11.4] [Reference Citation Analysis]
62 Katare RG, Madeddu P. Pericytes from human veins for treatment of myocardial ischemia. Trends Cardiovasc Med 2013;23:66-70. [PMID: 23313330 DOI: 10.1016/j.tcm.2012.09.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
63 Sun L, He X, Cao Y, Gao P, Zhang H. MicroRNAs and Energy Metabolism in Cancer Cells. In: Babashah S, editor. MicroRNAs: Key Regulators of Oncogenesis. Cham: Springer International Publishing; 2014. pp. 83-95. [DOI: 10.1007/978-3-319-03725-7_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
64 Rzeszotarska E, Sowinska A, Stypinska B, Walczuk E, Wajda A, Lutkowska A, Felis-Giemza A, Olesinska M, Puszczewicz M, Majewski D, Jagodzinski PP, Czerewaty M, Malinowski D, Pawlik A, Jaronczyk M, Paradowska-Gorycka A. The Role of MECP2 and CCR5 Polymorphisms on the Development and Course of Systemic Lupus Erythematosus. Biomolecules 2020;10:E494. [PMID: 32214033 DOI: 10.3390/biom10030494] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Xu J, Liu X, Koyama Y, Wang P, Lan T, Kim IG, Kim IH, Ma HY, Kisseleva T. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol 2014;5:167. [PMID: 25100997 DOI: 10.3389/fphar.2014.00167] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 6.5] [Reference Citation Analysis]
66 Hasegawa D, Wallace MC, Friedman SL. Stellate Cells and Hepatic Fibrosis. Stellate Cells in Health and Disease. Elsevier; 2015. pp. 41-62. [DOI: 10.1016/b978-0-12-800134-9.00004-x] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
67 Claveria-Cabello A, Colyn L, Arechederra M, Urman JM, Berasain C, Avila MA, Fernandez-Barrena MG. Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target? Cells 2020;9:E2321. [PMID: 33086678 DOI: 10.3390/cells9102321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Nanthakumar CB, Hatley RJ, Lemma S, Gauldie J, Marshall RP, Macdonald SJ. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov. 2015;14:693-720. [PMID: 26338155 DOI: 10.1038/nrd4592] [Cited by in Crossref: 131] [Cited by in F6Publishing: 120] [Article Influence: 18.7] [Reference Citation Analysis]
69 Bian EB, Li J, He XJ, Zong G, Jiang T, Li J, Zhao B. Epigenetic modification in gliomas: role of the histone methyltransferase EZH2. Expert Opin Ther Targets 2014;18:1197-206. [PMID: 25046371 DOI: 10.1517/14728222.2014.941807] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
70 Wang Q, Wang LX, Zeng JP, Liu XJ, Liang XM, Zhou YB. Histone demethylase retinoblastoma binding protein 2 regulates the expression of α-smooth muscle actin and vimentin in cirrhotic livers. Braz J Med Biol Res 2013;46:739-45. [PMID: 24068189 DOI: 10.1590/1414-431X20132843] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
71 Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, Henderson E, Tiniakos D, White S, French J, Mann DA, Anstee QM, Mann J. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut 2017;66:1321-8. [PMID: 27002005 DOI: 10.1136/gutjnl-2016-311526] [Cited by in Crossref: 120] [Cited by in F6Publishing: 115] [Article Influence: 24.0] [Reference Citation Analysis]
72 Campisano S, La Colla A, Echarte SM, Chisari AN. Interplay between early-life malnutrition, epigenetic modulation of the immune function and liver diseases. Nutr Res Rev 2019;32:128-45. [PMID: 30707092 DOI: 10.1017/S0954422418000239] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
73 He X, Hu JL, Li J, Zhao L, Zhang Y, Zeng YJ, Dai SS, He FT. A feedback loop in PPARγ-adenosine A2A receptor signaling inhibits inflammation and attenuates lung damages in a mouse model of LPS-induced acute lung injury. Cell Signal 2013;25:1913-23. [PMID: 23712033 DOI: 10.1016/j.cellsig.2013.05.024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
74 Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol. 2010;7:425-436. [PMID: 20585339 DOI: 10.1038/nrgastro. 2010.97] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Meng F, Glaser SS, Francis H, Yang F, Han Y, Stokes A, Staloch D, McCarra J, Liu J, Venter J, Zhao H, Liu X, Francis T, Swendsen S, Liu CG, Tsukamoto H, Alpini G. Epigenetic regulation of miR-34a expression in alcoholic liver injury. Am J Pathol. 2012;181:804-817. [PMID: 22841474 DOI: 10.1016/j.ajpath.2012.06.010] [Cited by in Crossref: 97] [Cited by in F6Publishing: 95] [Article Influence: 9.7] [Reference Citation Analysis]
76 O'Reilly S. MicroRNAs in fibrosis: opportunities and challenges. Arthritis Res Ther. 2016;18:11. [PMID: 26762516 DOI: 10.1186/s13075-016-0929-x] [Cited by in Crossref: 91] [Cited by in F6Publishing: 88] [Article Influence: 15.2] [Reference Citation Analysis]
77 Vettori S, Gay S, Distler O. Role of MicroRNAs in Fibrosis. Open Rheumatol J. 2012;6:130-139. [PMID: 22802911 DOI: 10.2174/1874312901206010130] [Cited by in Crossref: 116] [Cited by in F6Publishing: 105] [Article Influence: 11.6] [Reference Citation Analysis]
78 Bayoumi A, Grønbæk H, George J, Eslam M. The Epigenetic Drug Discovery Landscape for Metabolic-associated Fatty Liver Disease. Trends Genet 2020;36:429-41. [PMID: 32396836 DOI: 10.1016/j.tig.2020.03.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
79 Varela MA, Roberts TC, Wood MJ. Epigenetics and ncRNAs in brain function and disease: mechanisms and prospects for therapy. Neurotherapeutics 2013;10:621-31. [PMID: 24068583 DOI: 10.1007/s13311-013-0212-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
80 Hu B, Gharaee-Kermani M, Wu Z, Phan SH. Essential role of MeCP2 in the regulation of myofibroblast differentiation during pulmonary fibrosis. Am J Pathol 2011;178:1500-8. [PMID: 21435439 DOI: 10.1016/j.ajpath.2011.01.002] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 6.9] [Reference Citation Analysis]
81 Lakshman R, Shah R, Reyes-gordillo K, Varatharajalu R. Synergy between NAFLD and AFLD and potential biomarkers. Clinics and Research in Hepatology and Gastroenterology 2015;39:S29-34. [DOI: 10.1016/j.clinre.2015.05.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
82 Alcaraz J, Ikemori R, Llorente A, Díaz-Valdivia N, Reguart N, Vizoso M. Epigenetic Reprogramming of Tumor-Associated Fibroblasts in Lung Cancer: Therapeutic Opportunities. Cancers (Basel) 2021;13:3782. [PMID: 34359678 DOI: 10.3390/cancers13153782] [Reference Citation Analysis]
83 Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14:181-194. [PMID: 24566915 DOI: 10.1038/nri3623] [Cited by in Crossref: 652] [Cited by in F6Publishing: 628] [Article Influence: 81.5] [Reference Citation Analysis]
84 Liao K, Cui Z, Zeng Y, Liu J, Wang Y, Wang Z, Tang S, Chen J. Inhibition of enhancer of zeste homolog 2 prevents corneal myofibroblast transformation in vitro. Exp Eye Res 2021;208:108611. [PMID: 33992624 DOI: 10.1016/j.exer.2021.108611] [Reference Citation Analysis]
85 Panebianco C, Oben JA, Vinciguerra M, Pazienza V. Senescence in hepatic stellate cells as a mechanism of liver fibrosis reversal: a putative synergy between retinoic acid and PPAR-gamma signalings. Clin Exp Med. 2017;17:269-280. [PMID: 27655446 DOI: 10.1007/s10238-016-0438-x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 7.2] [Reference Citation Analysis]
86 Page A, Paoli PP, Hill SJ, Howarth R, Wu R, Kweon SM, French J, White S, Tsukamoto H, Mann DA, Mann J. Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. J Hepatol 2015;62:388-97. [PMID: 25457206 DOI: 10.1016/j.jhep.2014.09.033] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 7.0] [Reference Citation Analysis]
87 Yang Y, Chen XX, Li WX, Wu XQ, Huang C, Xie J, Zhao YX, Meng XM, Li J. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis. J Cell Mol Med 2017;21:2317-28. [PMID: 28332284 DOI: 10.1111/jcmm.13153] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
88 Hu B, Phan SH. Myofibroblasts. Curr Opin Rheumatol 2013;25:71-7. [PMID: 23114586 DOI: 10.1097/BOR.0b013e32835b1352] [Cited by in Crossref: 70] [Cited by in F6Publishing: 42] [Article Influence: 7.8] [Reference Citation Analysis]
89 Rodríguez‐aguilera JR, Guerrero‐hernández C, Pérez‐molina R, Cadena‐del‐castillo CE, Pérez‐cabeza de Vaca R, Guerrero‐celis N, Domínguez‐lópez M, Murillo‐de‐ozores AR, Arzate‐mejía R, Recillas‐targa F, Chagoya de Sánchez V. Epigenetic Effects of an Adenosine Derivative in a Wistar Rat Model of Liver Cirrhosis. J Cell Biochem 2018;119:401-13. [DOI: 10.1002/jcb.26192] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
90 Liu X, Zhang Q, Guo SW. Histological and Immunohistochemical Characterization of the Similarity and Difference Between Ovarian Endometriomas and Deep Infiltrating Endometriosis. Reprod Sci 2018;25:329-40. [PMID: 28718381 DOI: 10.1177/1933719117718275] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 7.6] [Reference Citation Analysis]
91 Neary R, Watson CJ, Baugh JA. Epigenetics and the overhealing wound: the role of DNA methylation in fibrosis. Fibrogenesis Tissue Repair 2015;8:18. [PMID: 26435749 DOI: 10.1186/s13069-015-0035-8] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 6.4] [Reference Citation Analysis]
92 Roy S, Benz F, Luedde T, Roderburg C. The role of miRNAs in the regulation of inflammatory processes during hepatofibrogenesis. Hepatobiliary Surg Nutr 2015;4:24-33. [PMID: 25713802 DOI: 10.3978/j.issn.2304-3881.2015.01.05] [Cited by in F6Publishing: 33] [Reference Citation Analysis]
93 He YH, Li Z, Ni MM, Zhang XY, Li MF, Meng XM, Huang C, Li J. Cryptolepine derivative-6h inhibits liver fibrosis in TGF-β1-induced HSC-T6 cells by targeting the Shh pathway. Can J Physiol Pharmacol 2016;94:987-95. [PMID: 27295431 DOI: 10.1139/cjpp-2016-0157] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
94 Tsou PS, Campbell P, Amin MA, Coit P, Miller S, Fox DA, Khanna D, Sawalha AH. Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. Proc Natl Acad Sci U S A 2019;116:3695-702. [PMID: 30755532 DOI: 10.1073/pnas.1813006116] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
95 Lim HJ, Kim M. EZH2 as a Potential Target for NAFLD Therapy. Int J Mol Sci 2020;21:E8617. [PMID: 33207561 DOI: 10.3390/ijms21228617] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
96 Zeybel M, Luli S, Sabater L, Hardy T, Oakley F, Leslie J, Page A, Moran Salvador E, Sharkey V, Tsukamoto H, Chu DCK, Singh US, Ponzoni M, Perri P, Di Paolo D, Mendivil EJ, Mann J, Mann DA. A Proof-of-Concept for Epigenetic Therapy of Tissue Fibrosis: Inhibition of Liver Fibrosis Progression by 3-Deazaneplanocin A. Mol Ther 2017;25:218-31. [PMID: 28129116 DOI: 10.1016/j.ymthe.2016.10.004] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 9.0] [Reference Citation Analysis]
97 Kapetanaki MG, Mora AL, Rojas M. Influence of age on wound healing and fibrosis. J Pathol 2013;229:310-22. [PMID: 23124998 DOI: 10.1002/path.4122] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
98 Sugii S, Evans RM. Epigenetic codes of PPARγ in metabolic disease. FEBS Lett. 2011;585:2121-2128. [PMID: 21605560 DOI: 10.1016/j.febslet.2011.05.007] [Cited by in Crossref: 76] [Cited by in F6Publishing: 64] [Article Influence: 6.9] [Reference Citation Analysis]
99 Elsharkawy AM, Oakley F, Lin F, Packham G, Mann DA, Mann J. The NF-kappaB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J Hepatol 2010;53:519-27. [PMID: 20579762 DOI: 10.1016/j.jhep.2010.03.025] [Cited by in F6Publishing: 96] [Reference Citation Analysis]
100 Oliver V, van Bysterveldt K, Merbs S. Epigenetics in Ocular Medicine. Medical Epigenetics. Elsevier; 2016. pp. 391-412. [DOI: 10.1016/b978-0-12-803239-8.00022-3] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
101 Corbett L, Mann J, Mann DA. Non-Canonical Wnt Predominates in Activated Rat Hepatic Stellate Cells, Influencing HSC Survival and Paracrine Stimulation of Kupffer Cells. PLoS One 2015;10:e0142794. [PMID: 26566235 DOI: 10.1371/journal.pone.0142794] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
102 Li X, Wang J, Jiang Z, Guo F, Soloway PD, Zhao R. Role of PRDM16 and its PR domain in the epigenetic regulation of myogenic and adipogenic genes during transdifferentiation of C2C12 cells. Gene 2015;570:191-8. [DOI: 10.1016/j.gene.2015.06.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
103 Malumbres M. miRNAs and cancer: an epigenetics view. Mol Aspects Med. 2013;34:863-874. [PMID: 22771542 DOI: 10.1016/j.mam.2012.06.005] [Cited by in Crossref: 98] [Cited by in F6Publishing: 90] [Article Influence: 9.8] [Reference Citation Analysis]
104 Udomsinprasert W, Sobhonslidsuk A, Jittikoon J, Honsawek S, Chaikledkaew U. Cellular senescence in liver fibrosis: Implications for age-related chronic liver diseases. Expert Opin Ther Targets 2021;25:799-813. [PMID: 34632912 DOI: 10.1080/14728222.2021.1992385] [Reference Citation Analysis]
105 Zhang J, Liu Q, He J, Li Y. Novel Therapeutic Targets in Liver Fibrosis. Front Mol Biosci 2021;8:766855. [PMID: 34805276 DOI: 10.3389/fmolb.2021.766855] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
106 Wang BB, Cheng JY, Gao HH, Zhang Y, Chen ZN, Bian H. Hepatic stellate cells in inflammation-fibrosis-carcinoma axis. Anat Rec (Hoboken). 2010;293:1492-1496. [PMID: 20652939 DOI: 10.1002/ar.21173] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
107 Yang JJ, Tao H, Huang C, Shi KH, Ma TT, Bian EB, Zhang L, Liu LP, Hu W, Lv XW. DNA methylation and MeCP2 regulation of PTCH1 expression during rats hepatic fibrosis. Cell Signal. 2013;25:1202-1211. [PMID: 23333245 DOI: 10.1016/j.cellsig.2013.01.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 4.6] [Reference Citation Analysis]
108 Kumar V, Mahato RI. Delivery and targeting of miRNAs for treating liver fibrosis. Pharm Res 2015;32:341-61. [PMID: 25186440 DOI: 10.1007/s11095-014-1497-x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
109 Li X, Li X, He S, Zhao M. MeCP2-421-mediated RPE epithelial-mesenchymal transition and its relevance to the pathogenesis of proliferative vitreoretinopathy. J Cell Mol Med 2020;24:9420-7. [PMID: 32638535 DOI: 10.1111/jcmm.15602] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
110 Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med. 2019;65:37-55. [PMID: 30213667 DOI: 10.1016/j.mam.2018.09.002] [Cited by in Crossref: 121] [Cited by in F6Publishing: 127] [Article Influence: 30.3] [Reference Citation Analysis]
111 Zehender A, Li YN, Lin NY, Stefanica A, Nüchel J, Chen CW, Hsu HH, Zhu H, Ding X, Huang J, Shen L, Györfi AH, Soare A, Rauber S, Bergmann C, Ramming A, Plomann M, Eckes B, Schett G, Distler JHW. TGFβ promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nat Commun 2021;12:4404. [PMID: 34285225 DOI: 10.1038/s41467-021-24601-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
112 Li X, Liu X, Guo H, Zhao Z, Li YS, Chen G. The significance of the increased expression of phosphorylated MeCP2 in the membranes from patients with proliferative diabetic retinopathy. Sci Rep 2016;6:32850. [PMID: 27616658 DOI: 10.1038/srep32850] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
113 Aseem SO, Huebert RC. Epigenetic Mechanisms of Pancreatobiliary Fibrosis. Curr Treat Options Gastroenterol 2019;17:342-56. [PMID: 31300946 DOI: 10.1007/s11938-019-00239-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
114 Sabatino L, Fucci A, Pancione M, Colantuoni V. PPARG Epigenetic Deregulation and Its Role in Colorectal Tumorigenesis. PPAR Res 2012;2012:687492. [PMID: 22848209 DOI: 10.1155/2012/687492] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
115 Tiao MM, Wang FS, Huang LT, Chuang JH, Kuo HC, Yang YL, Huang YH. MicroRNA-29a protects against acute liver injury in a mouse model of obstructive jaundice via inhibition of the extrinsic apoptosis pathway. Apoptosis. 2014;19:30-41. [PMID: 24052410 DOI: 10.1007/s10495-013-0909-4] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 4.5] [Reference Citation Analysis]
116 Li J, Ghazwani M, Zhang Y, Lu J, Li J, Fan J, Gandhi CR, Li S. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol. 2013;58:522-528. [PMID: 23178710 DOI: 10.1016/j.jhep.2012.11] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
117 Tian W, Xu Y. Decoding liver injury: A regulatory role for histone modifications. The International Journal of Biochemistry & Cell Biology 2015;67:188-93. [DOI: 10.1016/j.biocel.2015.03.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
118 Ligresti G, Caporarello N, Meridew JA, Jones DL, Tan Q, Choi KM, Haak AJ, Aravamudhan A, Roden AC, Prakash YS, Lomberk G, Urrutia RA, Tschumperlin DJ. CBX5/G9a/H3K9me-mediated gene repression is essential to fibroblast activation during lung fibrosis. JCI Insight 2019;5:127111. [PMID: 31095524 DOI: 10.1172/jci.insight.127111] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
119 Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017;121:27-42. [PMID: 28506744 DOI: 10.1016/j.addr.2017.05.007] [Cited by in Crossref: 488] [Cited by in F6Publishing: 433] [Article Influence: 97.6] [Reference Citation Analysis]
120 Ciechomska M, O'Reilly S, Przyborski S, Oakley F, Bogunia-Kubik K, van Laar JM. Histone Demethylation and Toll-like Receptor 8-Dependent Cross-Talk in Monocytes Promotes Transdifferentiation of Fibroblasts in Systemic Sclerosis Via Fra-2. Arthritis Rheumatol 2016;68:1493-504. [PMID: 26814616 DOI: 10.1002/art.39602] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
121 Zhu NL, Asahina K, Wang J, Ueno A, Lazaro R, Miyaoka Y, Miyajima A, Tsukamoto H. Hepatic stellate cell-derived delta-like homolog 1 (DLK1) protein in liver regeneration. J Biol Chem. 2012;287:10355-10367. [PMID: 22298767 DOI: 10.1074/jbc.m111.312751] [Cited by in Crossref: 62] [Cited by in F6Publishing: 36] [Article Influence: 6.2] [Reference Citation Analysis]
122 Portius D, Sobolewski C, Foti M. MicroRNAs-Dependent Regulation of PPARs in Metabolic Diseases and Cancers. PPAR Res 2017;2017:7058424. [PMID: 28167956 DOI: 10.1155/2017/7058424] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 6.6] [Reference Citation Analysis]
123 Yang MD, Chiang YM, Higashiyama R, Asahina K, Mann DA, Mann J, Wang CC, Tsukamoto H. Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor γ in hepatic stellate cells for their antifibrotic effect. Hepatology 2012;55:1271-81. [PMID: 22095555 DOI: 10.1002/hep.24792] [Cited by in Crossref: 95] [Cited by in F6Publishing: 88] [Article Influence: 9.5] [Reference Citation Analysis]
124 Kweon SM, Chi F, Higashiyama R, Lai K, Tsukamoto H. Wnt Pathway Stabilizes MeCP2 Protein to Repress PPAR-γ in Activation of Hepatic Stellate Cells. PLoS One. 2016;11:e0156111. [PMID: 27214381 DOI: 10.1371/journal.pone.0156111] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
125 Pancione M, Sabatino L, Fucci A, Carafa V, Nebbioso A, Forte N, Febbraro A, Parente D, Ambrosino C, Normanno N. Epigenetic silencing of peroxisome proliferator-activated receptor γ is a biomarker for colorectal cancer progression and adverse patients’ outcome. PLoS One. 2010;5:e14229. [PMID: 21151932 DOI: 10.1371/journal.pone.0014229] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 4.8] [Reference Citation Analysis]
126 Ramos PS. Epigenetics of scleroderma: Integrating genetic, ethnic, age, and environmental effects. Journal of Scleroderma and Related Disorders 2019;4:238-50. [DOI: 10.1177/2397198319855872] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
127 Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Masaki T. MicroRNAs in the Pathogenesis of Hepatocellular Carcinoma: A Review. Cancers (Basel) 2021;13:514. [PMID: 33572780 DOI: 10.3390/cancers13030514] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
128 Garbuzenko DV. Pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis . World J Clin Cases 2022; 10(12): 3662-3676 [DOI: 10.12998/wjcc.v10.i12.3662] [Reference Citation Analysis]
129 Kim KY, Hysolli E, Park IH. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci USA. 2011;108:14169-14174. [PMID: 21807996 DOI: 10.1073/pnas.1018979108] [Cited by in Crossref: 148] [Cited by in F6Publishing: 141] [Article Influence: 13.5] [Reference Citation Analysis]
130 Peyrou M, Ramadori P, Bourgoin L, Foti M. PPARs in Liver Diseases and Cancer: Epigenetic Regulation by MicroRNAs. PPAR Res 2012;2012:757803. [PMID: 23024649 DOI: 10.1155/2012/757803] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 3.2] [Reference Citation Analysis]
131 Joss-Moore LA, Wang Y, Ogata EM, Sainz AJ, Yu X, Callaway CW, McKnight RA, Albertine KH, Lane RH. IUGR differentially alters MeCP2 expression and H3K9Me3 of the PPARγ gene in male and female rat lungs during alveolarization. Birth Defects Res A Clin Mol Teratol 2011;91:672-81. [PMID: 21425435 DOI: 10.1002/bdra.20783] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
132 He Y, Tsou PS, Khanna D, Sawalha AH. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Ann Rheum Dis 2018;77:1208-18. [PMID: 29760157 DOI: 10.1136/annrheumdis-2018-213022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
133 Zeng XY, Wang J, Zhang YQ, Wu JF. Relationship between microRNAs and signaling pathways associated with hepatic stellate cells. Shijie Huaren Xiaohua Zazhi 2015; 23(1): 1-7 [DOI: 10.11569/wcjd.v23.i1.1] [Reference Citation Analysis]
134 He Y, Ling S, Sun Y, Sheng Z, Chen Z, Pan X, Ma G. DNA methylation regulates α-smooth muscle actin expression during cardiac fibroblast differentiation. J Cell Physiol 2019;234:7174-85. [PMID: 30362530 DOI: 10.1002/jcp.27471] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
135 Czaja AJ. Review article: The prevention and reversal of hepatic fibrosis in autoimmune hepatitis. Aliment Pharmacol Ther. 2014;39:385-406. [PMID: 24387318 DOI: 10.1111/apt.12592] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 6.4] [Reference Citation Analysis]
136 Du Z, Liu M, Wang Z, Lin Z, Feng Y, Tian D, Xia L. EZH2-mediated inhibition of KLF14 expression promotes HSCs activation and liver fibrosis by downregulating PPARγ. Cell Prolif 2021;54:e13072. [PMID: 34031939 DOI: 10.1111/cpr.13072] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
137 Van Beneden K, Mannaerts I, Pauwels M, Van den Branden C, van Grunsven LA. HDAC inhibitors in experimental liver and kidney fibrosis. Fibrogenesis Tissue Repair 2013;6:1. [PMID: 23281659 DOI: 10.1186/1755-1536-6-1] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 6.2] [Reference Citation Analysis]
138 Friedman SL. Fibrogenic cell reversion underlies fibrosis regression in liver. Proc Natl Acad Sci USA. 2012;109:9230-9231. [PMID: 22645354 DOI: 10.1073/pnas.1206645109] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 3.6] [Reference Citation Analysis]
139 Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis: MicroRNAs, TGF-β1, and tissue fibrosis. J Pathol 2013;229:274-85. [DOI: 10.1002/path.4119] [Cited by in Crossref: 121] [Cited by in F6Publishing: 109] [Article Influence: 12.1] [Reference Citation Analysis]
140 Zhao H, Wang Z, Tang F, Zhao Y, Feng D, Li Y, Hu Y, Wang C, Zhou J, Tian X, Yao J. Carnosol-mediated Sirtuin 1 activation inhibits Enhancer of Zeste Homolog 2 to attenuate liver fibrosis. Pharmacol Res 2018;128:327-37. [PMID: 29106960 DOI: 10.1016/j.phrs.2017.10.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
141 Zhou X, Zang X, Ponnusamy M, Masucci MV, Tolbert E, Gong R, Zhao TC, Liu N, Bayliss G, Dworkin LD, Zhuang S. Enhancer of Zeste Homolog 2 Inhibition Attenuates Renal Fibrosis by Maintaining Smad7 and Phosphatase and Tensin Homolog Expression. J Am Soc Nephrol 2016;27:2092-108. [PMID: 26701983 DOI: 10.1681/ASN.2015040457] [Cited by in Crossref: 83] [Cited by in F6Publishing: 53] [Article Influence: 11.9] [Reference Citation Analysis]
142 Habash NW, Sehrawat TS, Shah VH, Cao S. Epigenetics of Alcohol-Related Liver Diseases. JHEP Reports 2022. [DOI: 10.1016/j.jhepr.2022.100466] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Masoud AM, Bihaqi SW, Machan JT, Zawia NH, Renehan WE. Early-Life Exposure to Lead (Pb) Alters the Expression of microRNA that Target Proteins Associated with Alzheimer’s Disease. JAD 2016;51:1257-64. [DOI: 10.3233/jad-151018] [Cited by in Crossref: 41] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
144 Asif S, Morrow NM, Mulvihill EE, Kim KH. Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases. Front Genet 2020;11:590369. [PMID: 33193730 DOI: 10.3389/fgene.2020.590369] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
145 Bergmann C, Distler JH. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics 2017;9:463-77. [DOI: 10.2217/epi-2016-0150] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
146 Creemers EE, van Rooij E. Function and Therapeutic Potential of Noncoding RNAs in Cardiac Fibrosis. Circ Res 2016;118:108-18. [PMID: 26538569 DOI: 10.1161/CIRCRESAHA.115.305242] [Cited by in Crossref: 57] [Cited by in F6Publishing: 42] [Article Influence: 8.1] [Reference Citation Analysis]
147 Matsumoto Y, Itami S, Kuroda M, Yoshizato K, Kawada N, Murakami Y. MiR-29a Assists in Preventing the Activation of Human Stellate Cells and Promotes Recovery From Liver Fibrosis in Mice. Mol Ther. 2016;24:1848-1859. [PMID: 27480597 DOI: 10.1038/mt.2016.127] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
148 Perugorria MJ, Esparza-Baquer A, Oakley F, Labiano I, Korosec A, Jais A, Mann J, Tiniakos D, Santos-Laso A, Arbelaiz A, Gawish R, Sampedro A, Fontanellas A, Hijona E, Jimenez-Agüero R, Esterbauer H, Stoiber D, Bujanda L, Banales JM, Knapp S, Sharif O, Mann DA. Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut 2019;68:533-46. [PMID: 29374630 DOI: 10.1136/gutjnl-2017-314107] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 15.7] [Reference Citation Analysis]
149 He S, Barron E, Ishikawa K, Nazari Khanamiri H, Spee C, Zhou P, Kase S, Wang Z, Dustin LD, Hinton DR. Inhibition of DNA Methylation and Methyl-CpG-Binding Protein 2 Suppresses RPE Transdifferentiation: Relevance to Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2015;56:5579-89. [PMID: 26305530 DOI: 10.1167/iovs.14-16258] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
150 Atta HM. Reversibility and heritability of liver fibrosis: Implications for research and therapy. World J Gastroenterol 2015; 21(17): 5138-5148 [PMID: 25954087 DOI: 10.3748/wjg.v21.i17.5138] [Cited by in CrossRef: 37] [Cited by in F6Publishing: 40] [Article Influence: 5.3] [Reference Citation Analysis]
151 Xiang Z, Zhou Q, Hu M, Sanders YY. MeCP2 epigenetically regulates alpha-smooth muscle actin in human lung fibroblasts. J Cell Biochem 2020;121:3616-25. [PMID: 32115750 DOI: 10.1002/jcb.29655] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
152 Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol. 2013;3:1473-1492. [PMID: 24265236 DOI: 10.1002/cphy.c120035] [Cited by in Crossref: 347] [Cited by in F6Publishing: 346] [Article Influence: 43.4] [Reference Citation Analysis]
153 Fernández-Ramos D, Fernández-Tussy P, Lopitz-Otsoa F, Gutiérrez-de-Juan V, Navasa N, Barbier-Torres L, Zubiete-Franco I, Simón J, Fernández AF, Arbelaiz A, Aransay AM, Lavín JL, Beraza N, Perugorria MJ, Banales JM, Villa E, Fraga MF, Anguita J, Avila MA, Berasain C, Iruzibieta P, Crespo J, Lu SC, Varela-Rey M, Mato JM, Delgado TC, Martínez-Chantar ML. MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. Cell Death Dis 2018;9:958. [PMID: 30237481 DOI: 10.1038/s41419-018-1014-y] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
154 Moll S, Meier M, Formentini I, Pomposiello S, Prunotto M. New renal drug development to face chronic renal disease. Expert Opinion on Drug Discovery 2014;9:1471-85. [DOI: 10.1517/17460441.2014.956075] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
155 Mann DA. Epigenetics in liver disease. Hepatology 2014;60:1418-25. [PMID: 24633972 DOI: 10.1002/hep.27131] [Cited by in Crossref: 98] [Cited by in F6Publishing: 89] [Article Influence: 12.3] [Reference Citation Analysis]
156 Kumar V, Mondal G, Dutta R, Mahato RI. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials. 2016;76:144-156. [PMID: 26524535 DOI: 10.1016/j.biomaterials.2015.10.047] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
157 Chen RJ, Wu HH, Wang YJ. Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Arch Toxicol. 2015;89:1727-1750. [PMID: 25963329 DOI: 10.1007/s00204-015-1525-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
158 Qin H, Zhao A, Zhang C, Fu X. Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications. Stem Cell Rev Rep 2016;12:708-20. [PMID: 27623868 DOI: 10.1007/s12015-016-9682-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
159 Perugorria MJ, Wilson CL, Zeybel M, Walsh M, Amin S, Robinson S, White SA, Burt AD, Oakley F, Tsukamoto H, Mann DA, Mann J. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology 2012;56:1129-39. [PMID: 22488473 DOI: 10.1002/hep.25754] [Cited by in Crossref: 90] [Cited by in F6Publishing: 87] [Article Influence: 9.0] [Reference Citation Analysis]
160 Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 2010;7:425-36. [DOI: 10.1038/nrgastro.2010.97] [Cited by in Crossref: 401] [Cited by in F6Publishing: 390] [Article Influence: 33.4] [Reference Citation Analysis]
161 Wilson CL, Mann DA, Borthwick LA. Epigenetic reprogramming in liver fibrosis and cancer. Adv Drug Deliv Rev 2017;121:124-32. [PMID: 29079534 DOI: 10.1016/j.addr.2017.10.011] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 8.0] [Reference Citation Analysis]
162 Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2019;37:235-87. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
163 Hardy T, Mann DA. Epigenetics in liver disease: from biology to therapeutics. Gut 2016;65:1895-905. [PMID: 27624887 DOI: 10.1136/gutjnl-2015-311292] [Cited by in Crossref: 87] [Cited by in F6Publishing: 88] [Article Influence: 14.5] [Reference Citation Analysis]
164 Kwiecinski M, Elfimova N, Noetel A, Töx U, Steffen HM, Hacker U, Nischt R, Dienes HP, Odenthal M. Expression of platelet-derived growth factor-C and insulin-like growth factor I in hepatic stellate cells is inhibited by miR-29. Lab Invest. 2012;92:978-987. [PMID: 22565577 DOI: 10.1038/labinvest.2012.70] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 6.1] [Reference Citation Analysis]
165 Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18:151-166. [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7] [Cited by in Crossref: 164] [Cited by in F6Publishing: 133] [Article Influence: 82.0] [Reference Citation Analysis]
166 Nwadozi E, Rudnicki M, Haas TL. Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Front Cell Dev Biol 2020;8:77. [PMID: 32117997 DOI: 10.3389/fcell.2020.00077] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
167 Krishna SM, Trollope AF, Golledge J. The relevance of epigenetics to occlusive cerebral and peripheral arterial disease. Clin Sci (Lond) 2015;128:537-58. [PMID: 25671777 DOI: 10.1042/CS20140491] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
168 Li MR, Lu LG, Bu P. Advances in research of epigenetic regulation in liver fibrosis. Shijie Huaren Xiaohua Zazhi 2013; 21(32): 3499-3504 [DOI: 10.11569/wcjd.v21.i32.3499] [Reference Citation Analysis]
169 Gao X, Xue S, Yang F, Wu B, Yu X, An B. Methyl-CpG binding protein 2 is associated with the prognosis and mortality of elderly patients with hip fractures. Clinics 2022;77:100034. [DOI: 10.1016/j.clinsp.2022.100034] [Reference Citation Analysis]
170 Pastar I, Marjanovic J, Stone RC, Chen V, Burgess JL, Mervis JS, Tomic-Canic M. Epigenetic regulation of cellular functions in wound healing. Exp Dermatol 2021;30:1073-89. [PMID: 33690920 DOI: 10.1111/exd.14325] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
171 Bijkerk R, Trimpert C, van Solingen C, de Bruin RG, Florijn BW, Kooijman S, van den Berg R, van der Veer EP, Bredewold EOW, Rensen PCN, Rabelink TJ, Humphreys BD, Deen PMT, van Zonneveld AJ. MicroRNA-132 controls water homeostasis through regulating MECP2-mediated vasopressin synthesis. American Journal of Physiology-Renal Physiology 2018;315:F1129-38. [DOI: 10.1152/ajprenal.00087.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
172 Gong M, Liu J, Sakurai R, Corre A, Anthony S, Rehan VK. Perinatal nicotine exposure suppresses PPARγ epigenetically in lung alveolar interstitial fibroblasts. Mol Genet Metab 2015;114:604-12. [PMID: 25661292 DOI: 10.1016/j.ymgme.2015.01.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
173 Shi Y, Tao M, Wang Y, Zang X, Ma X, Qiu A, Zhuang S, Liu N. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis. J Pathol 2020;250:79-94. [PMID: 31579944 DOI: 10.1002/path.5352] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
174 O'Reilly S. Epigenetics in fibrosis. Mol Aspects Med 2017;54:89-102. [PMID: 27720780 DOI: 10.1016/j.mam.2016.10.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
175 Sun X, He Y, Huang C, Ma TT, Li J. The epigenetic feedback loop between DNA methylation and microRNAs in fibrotic disease with an emphasis on DNA methyltransferases. Cell Signal. 2013;25:1870-1876. [PMID: 23707521 DOI: 10.1016/j.cellsig.2013.05.013] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
176 Li J, Ghazwani M, Zhang Y, Lu J, Li J, Fan J, Gandhi CR, Li S. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol. 2013;58:522-528. [PMID: 23178710 DOI: 10.1016/j.jhep.2012.11.011] [Cited by in Crossref: 119] [Cited by in F6Publishing: 118] [Article Influence: 11.9] [Reference Citation Analysis]
177 Friedman SL. Hepatic Fibrosis. In: Schiff ER, Maddrey WC, Sorrell MF, editors. Schiff's Diseases of the Liver. Oxford: Wiley-Blackwell; 2011. pp. 295-315. [DOI: 10.1002/9781119950509.ch12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
178 Zhang F, Kong D, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-γ as a therapeutic target for hepatic fibrosis: from bench to bedside. Cell Mol Life Sci 2013;70:259-76. [DOI: 10.1007/s00018-012-1046-x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 5.1] [Reference Citation Analysis]
179 Zeybel M, Mann DA, Mann J. Epigenetic modifications as new targets for liver disease therapies. J Hepatol. 2013;59:1349-1353. [PMID: 23747756 DOI: 10.1016/j.jhep.2013.05.039] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
180 Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun. 2012;3:708. [PMID: 22426229 DOI: 10.1038/ncomms1708] [Cited by in Crossref: 439] [Cited by in F6Publishing: 425] [Article Influence: 43.9] [Reference Citation Analysis]
181 Ferrari S, Pesce M. Cell-Based Mechanosensation, Epigenetics, and Non-Coding RNAs in Progression of Cardiac Fibrosis. Int J Mol Sci 2019;21:E28. [PMID: 31861579 DOI: 10.3390/ijms21010028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
182 Shrishrimal S, Kosmacek EA, Oberley-Deegan RE. Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. Oxid Med Cell Longev 2019;2019:4278658. [PMID: 30881591 DOI: 10.1155/2019/4278658] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
183 Moscoso CG, Steer CJ. "Let my liver rather heat with wine" - a review of hepatic fibrosis pathophysiology and emerging therapeutics. Hepat Med 2019;11:109-29. [PMID: 31565001 DOI: 10.2147/HMER.S213397] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
184 Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J. 2011;278:1598-1609. [PMID: 21395977 DOI: 10.1111/j.1742-4658.2011.08089.x] [Cited by in Crossref: 414] [Cited by in F6Publishing: 368] [Article Influence: 37.6] [Reference Citation Analysis]
185 Henderson J, Brown M, Horsburgh S, Duffy L, Wilkinson S, Worrell J, Stratton R, O'Reilly S. Methyl cap binding protein 2: a key epigenetic protein in systemic sclerosis. Rheumatology (Oxford) 2019;58:527-35. [PMID: 30462328 DOI: 10.1093/rheumatology/key327] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
186 Robinson CM, Neary R, Levendale A, Watson CJ, Baugh JA. Hypoxia-induced DNA hypermethylation in human pulmonary fibroblasts is associated with Thy-1 promoter methylation and the development of a pro-fibrotic phenotype. Respir Res 2012;13:74. [PMID: 22938014 DOI: 10.1186/1465-9921-13-74] [Cited by in Crossref: 75] [Cited by in F6Publishing: 67] [Article Influence: 7.5] [Reference Citation Analysis]
187 Reyes-gordillo K, Shah R, Lakshman M, Flores-beltrán R, Muriel P. Hepatoprotective Properties of Curcumin. Liver Pathophysiology. Elsevier; 2017. pp. 687-704. [DOI: 10.1016/b978-0-12-804274-8.00049-7] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
188 Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180:1340-1355. [PMID: 22387320 DOI: 10.1016/j.ajpath.2012.02.004] [Cited by in Crossref: 789] [Cited by in F6Publishing: 765] [Article Influence: 78.9] [Reference Citation Analysis]
189 Zhao J, Fan YC, Chen LY, Gao S, Li F, Wang K. Alteration of methyl-CpG binding domain family in patients with chronic hepatitis B. Clin Res Hepatol Gastroenterol 2017;41:272-83. [PMID: 28065745 DOI: 10.1016/j.clinre.2016.11.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
190 Bayarsaihan D. Epigenetic mechanisms in inflammation. J Dent Res. 2011;90:9-17. [PMID: 21178119 DOI: 10.1177/0022034510378683] [Cited by in Crossref: 146] [Cited by in F6Publishing: 140] [Article Influence: 13.3] [Reference Citation Analysis]
191 Song S, Zhang R, Mo B, Chen L, Liu L, Yu Y, Cao W, Fang G, Wan Y, Gu Y, Wang Y, Li Y, Yu Y, Wang Q. EZH2 as a novel therapeutic target for atrial fibrosis and atrial fibrillation. J Mol Cell Cardiol 2019;135:119-33. [PMID: 31408621 DOI: 10.1016/j.yjmcc.2019.08.003] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
192 Martin-Mateos R, De Assuncao TM, Arab JP, Jalan-Sakrikar N, Yaqoob U, Greuter T, Verma VK, Mathison AJ, Cao S, Lomberk G, Mathurin P, Urrutia R, Huebert RC, Shah VH. Enhancer of Zeste Homologue 2 Inhibition Attenuates TGF-β Dependent Hepatic Stellate Cell Activation and Liver Fibrosis. Cell Mol Gastroenterol Hepatol 2019;7:197-209. [PMID: 30539787 DOI: 10.1016/j.jcmgh.2018.09.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
193 Brandon-Warner E, Feilen NA, Culberson CR, Field CO, deLemos AS, Russo MW, Schrum LW. Processing of miR17-92 Cluster in Hepatic Stellate Cells Promotes Hepatic Fibrogenesis During Alcohol-Induced Injury. Alcohol Clin Exp Res. 2016;40:1430-1442. [PMID: 27291156 DOI: 10.1111/acer.13116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
194 Prunotto M, Gabbiani G, Pomposiello S, Ghiggeri G, Moll S. The kidney as a target organ in pharmaceutical research. Drug Discovery Today 2011;16:244-59. [DOI: 10.1016/j.drudis.2010.11.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
195 Firrincieli D, Braescu T, Housset C, Chignard N. Illuminating liver fibrosis with vitamin D. Clin Res Hepatol Gastroenterol. 2014;38:5-8. [PMID: 24238723 DOI: 10.1016/j.clinre.2013.10.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
196 Wang J, Xiao Y, Liu C, Huang Y, Petersen RB, Zheng L, Huang K. Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Arch Biochem Biophys 2021;700:108768. [PMID: 33485848 DOI: 10.1016/j.abb.2021.108768] [Reference Citation Analysis]
197 Hewitson TD, Holt SG, Tan SJ, Wigg B, Samuel CS, Smith ER. Epigenetic Modifications to H3K9 in Renal Tubulointerstitial Cells after Unilateral Ureteric Obstruction and TGF-β1 Stimulation. Front Pharmacol 2017;8:307. [PMID: 28611663 DOI: 10.3389/fphar.2017.00307] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
198 Rani A, Chin C, Bremner R, Mohanakumar T, Angara S. Targeting chromatin dysregulation in organ fibrosis. Cytokine Growth Factor Rev 2021;57:64-72. [PMID: 32900600 DOI: 10.1016/j.cytogfr.2020.08.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
199 Rockey DC, Friedman SL. Hepatic Fibrosis and Cirrhosis. Zakim and Boyer's Hepatology. Elsevier; 2012. pp. 64-85. [DOI: 10.1016/b978-1-4377-0881-3.00005-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
200 Reyes-Gordillo K, Shah R, Arellanes-Robledo J, Cheng Y, Ibrahim J, Tuma PL. Akt1 and Akt2 Isoforms Play Distinct Roles in Regulating the Development of Inflammation and Fibrosis Associated with Alcoholic Liver Disease. Cells 2019;8:E1337. [PMID: 31671832 DOI: 10.3390/cells8111337] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
201 Czaja AJ. Review article: next-generation transformative advances in the pathogenesis and management of autoimmune hepatitis. Aliment Pharmacol Ther 2017;46:920-37. [DOI: 10.1111/apt.14324] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
202 Babbio F, Castiglioni I, Cassina C, Gariboldi MB, Pistore C, Magnani E, Badaracco G, Monti E, Bonapace IM. Knock-down of methyl CpG-binding protein 2 (MeCP2) causes alterations in cell proliferation and nuclear lamins expression in mammalian cells. BMC Cell Biol 2012;13:19. [PMID: 22783988 DOI: 10.1186/1471-2121-13-19] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
203 Ti D, Li M, Fu X, Han W. Causes and consequences of epigenetic regulation in wound healing. Wound Repair Regen 2014;22:305-12. [PMID: 24844330 DOI: 10.1111/wrr.12160] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
204 Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum Gene Ther 2019;30:179-96. [PMID: 30024280 DOI: 10.1089/hum.2018.047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
205 Tzouvelekis A, Kaminski N. Epigenetics in idiopathic pulmonary fibrosis. Biochem Cell Biol 2015;93:159-70. [PMID: 25659821 DOI: 10.1139/bcb-2014-0126] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 7.3] [Reference Citation Analysis]
206 Simpson PC. A New Pathway for Sympathetic Cardioprotection in Heart Failure. Circ Res 2015;117:592-5. [PMID: 26358108 DOI: 10.1161/CIRCRESAHA.115.307246] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
207 Asada K, Kaji K, Sato S, Seki K, Shimozato N, Kawaratani H, Takaya H, Sawada Y, Nakanishi K, Furukawa M, Kitade M, Moriya K, Namisaki T, Noguchi R, Akahane T, Yoshiji H. Hydralazine Sensitizes to the Antifibrotic Effect of 5-Aza-2'-deoxycytidine in Hepatic Stellate Cells. Biology (Basel) 2020;9:E117. [PMID: 32503264 DOI: 10.3390/biology9060117] [Reference Citation Analysis]
208 Franko A, Kovarova M, Feil S, Feil R, Wagner R, Heni M, Königsrainer A, Ruoß M, Nüssler AK, Weigert C, Häring HU, Lutz SZ, Peter A. cGMP-dependent protein kinase I (cGKI) modulates human hepatic stellate cell activation. Metabolism 2018;88:22-30. [PMID: 30195474 DOI: 10.1016/j.metabol.2018.09.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
209 Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022;13:921765. [DOI: 10.3389/fimmu.2022.921765] [Reference Citation Analysis]
210 Kawada N. Evolution of hepatic fibrosis research. Hepatol Res. 2011;41:199-208. [PMID: 21338451 DOI: 10.1111/j.1872-034x.2011.00776.x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
211 Moran-Salvador E, Garcia-Macia M, Sivaharan A, Sabater L, Zaki MYW, Oakley F, Knox A, Page A, Luli S, Mann J, Mann DA. Fibrogenic Activity of MECP2 Is Regulated by Phosphorylation in Hepatic Stellate Cells. Gastroenterology 2019;157:1398-1412.e9. [PMID: 31352003 DOI: 10.1053/j.gastro.2019.07.029] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
212 Li M, Hong W, Hao C, Li L, Wu D, Shen A, Lu J, Zheng Y, Li P, Xu Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. FASEB J 2018;32:500-11. [PMID: 28970250 DOI: 10.1096/fj.201700612R] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 8.6] [Reference Citation Analysis]
213 Tsukamoto H, Zhu NL, Asahina K, Mann DA, Mann J. Epigenetic cell fate regulation of hepatic stellate cells. Hepatol Res. 2011;41:675-682. [PMID: 21504520 DOI: 10.1111/j.1872-034x.2011.00804.x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
214 Yang L, Liu Y, Sun Y, Huang C, Li J, Wang Y. New advances of DNA/RNA methylation modification in liver fibrosis. Cell Signal 2021;:110224. [PMID: 34954394 DOI: 10.1016/j.cellsig.2021.110224] [Reference Citation Analysis]
215 Lakner AM, Bonkovsky HL, Schrum LW. microRNAs: Fad or future of liver disease. World J Gastroenterol 2011; 17(20): 2536-2542 [PMID: 21633658 DOI: 10.3748/wjg.v17.i20.2536] [Cited by in CrossRef: 64] [Cited by in F6Publishing: 58] [Article Influence: 5.8] [Reference Citation Analysis]
216 Guo SW. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018;17:369-97. [PMID: 30377392 DOI: 10.1002/rmb2.12221] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
217 . Current world literature. Curr Opin Rheumatol 2010;22:704-12. [PMID: 20881793 DOI: 10.1097/BOR.0b013e3283404094] [Reference Citation Analysis]
218 Lin HY, Wang FS, Yang YL, Huang YH. MicroRNA-29a Suppresses CD36 to Ameliorate High Fat Diet-Induced Steatohepatitis and Liver Fibrosis in Mice. Cells 2019;8:E1298. [PMID: 31652636 DOI: 10.3390/cells8101298] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
219 Zeybel M, Hardy T, Wong YK, Mathers JC, Fox CR, Gackowska A, Oakley F, Burt AD, Wilson CL, Anstee QM, Barter MJ, Masson S, Elsharkawy AM, Mann DA, Mann J. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med 2012;18:1369-77. [PMID: 22941276 DOI: 10.1038/nm.2893] [Cited by in Crossref: 194] [Cited by in F6Publishing: 176] [Article Influence: 19.4] [Reference Citation Analysis]
220 Reyes-Gordillo K, Shah R, Arellanes-Robledo J, Rojkind M, Lakshman MR. Protective effects of thymosin β4 on carbon tetrachloride-induced acute hepatotoxicity in rats. Ann N Y Acad Sci 2012;1269:61-8. [PMID: 23045971 DOI: 10.1111/j.1749-6632.2012.06728.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
221 Gigek CO, Chen ES, Smith MA. Methyl-CpG-Binding Protein (MBD) Family: Epigenomic Read-Outs Functions and Roles in Tumorigenesis and Psychiatric Diseases. J Cell Biochem 2016;117:29-38. [PMID: 26205787 DOI: 10.1002/jcb.25281] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
222 Hewitson TD, Holt SG, Smith ER. Progression of Tubulointerstitial Fibrosis and the Chronic Kidney Disease Phenotype - Role of Risk Factors and Epigenetics. Front Pharmacol 2017;8:520. [PMID: 28848437 DOI: 10.3389/fphar.2017.00520] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
223 Liu X, Xu J, Rosenthal S, Zhang LJ, McCubbin R, Meshgin N, Shang L, Koyama Y, Ma HY, Sharma S, Heinz S, Glass CK, Benner C, Brenner DA, Kisseleva T. Identification of Lineage-Specific Transcription Factors That Prevent Activation of Hepatic Stellate Cells and Promote Fibrosis Resolution. Gastroenterology 2020;158:1728-1744.e14. [PMID: 31982409 DOI: 10.1053/j.gastro.2020.01.027] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
224 Zhu NL, Wang J, Tsukamoto H. The Necdin-Wnt pathway causes epigenetic peroxisome proliferator-activated receptor gamma repression in hepatic stellate cells. J Biol Chem. 2010;285:30463-30471. [PMID: 20663865 DOI: 10.1074/jbc.M110.156703] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
225 Godoy J, Nishimura M, Webster NJ. Gonadotropin-releasing hormone induces miR-132 and miR-212 to regulate cellular morphology and migration in immortalized LbetaT2 pituitary gonadotrope cells. Mol Endocrinol 2011;25:810-20. [PMID: 21372146 DOI: 10.1210/me.2010-0352] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 4.0] [Reference Citation Analysis]
226 Kang H, Kim C, Lee H, Rho JG, Seo JW, Nam JW, Song WK, Nam SW, Kim W, Lee EK. Downregulation of microRNA-362-3p and microRNA-329 promotes tumor progression in human breast cancer. Cell Death Differ 2016;23:484-95. [PMID: 26337669 DOI: 10.1038/cdd.2015.116] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 7.1] [Reference Citation Analysis]
227 Lee Y, Friedman SL. Fibrosis in the Liver. Development, Differentiation and Disease of the Para-Alimentary Tract. Elsevier; 2010. pp. 151-200. [DOI: 10.1016/b978-0-12-385233-5.00006-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
228 Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacol Res 2021;173:105910. [PMID: 34562602 DOI: 10.1016/j.phrs.2021.105910] [Reference Citation Analysis]
229 Page A, Mann DA. Epigenetic regulation of liver fibrosis. Clin Res Hepatol Gastroenterol 2015;39 Suppl 1:S64-8. [PMID: 26189981 DOI: 10.1016/j.clinre.2015.05.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
230 Wang Y, Chen C, Deng Z, Bian E, Huang C, Lei T, Lv X, Liu L, Li J. Repression of TSC1/TSC2 mediated by MeCP2 regulates human embryo lung fibroblast cell differentiation and proliferation. Int J Biol Macromol 2017;96:578-88. [PMID: 28041914 DOI: 10.1016/j.ijbiomac.2016.12.062] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
231 Salunkhe SA, Chitkara D, Mahato RI, Mittal A. Lipid based nanocarriers for effective drug delivery and treatment of diabetes associated liver fibrosis. Adv Drug Deliv Rev 2021;173:394-415. [PMID: 33831474 DOI: 10.1016/j.addr.2021.04.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
232 El Taghdouini A, van Grunsven LA. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis. Expert Rev Gastroenterol Hepatol 2016;10:1397-408. [PMID: 27762150 DOI: 10.1080/17474124.2016.1251309] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
233 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397-411. [PMID: 28487545 DOI: 10.1038/nrgastro.2017.38] [Cited by in Crossref: 1047] [Cited by in F6Publishing: 908] [Article Influence: 209.4] [Reference Citation Analysis]
234 Li J, Yao W, Zhang L, Bao L, Chen H, Wang D, Yue Z, Li Y, Zhang M, Hao C. Genome-wide DNA methylation analysis in lung fibroblasts co-cultured with silica-exposed alveolar macrophages. Respir Res 2017;18:91. [PMID: 28499430 DOI: 10.1186/s12931-017-0576-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
235 Noetel A, Elfimova N, Altmüller J, Becker C, Becker D, Lahr W, Nürnberg P, Wasmuth H, Teufel A, Büttner R. Next generation sequencing of the Ago2 interacting transcriptome identified chemokine family members as novel targets of neuronal microRNAs in hepatic stellate cells. J Hepatol. 2013;58:335-341. [PMID: 23041308 DOI: 10.1016/j.jhep.2012.09.024] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
236 Page A, Mann DA, Mann J. The mechanisms of HSC activation and epigenetic regulation of HSCs phenotypes. Curr Pathobiol Rep 2014;2:163-70. [PMID: 27413631 DOI: 10.1007/s40139-014-0052-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
237 Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami AP. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res. 2011;109:894-906. [PMID: 21868695 DOI: 10.1161/circresaha.111.251546] [Cited by in Crossref: 258] [Cited by in F6Publishing: 157] [Article Influence: 23.5] [Reference Citation Analysis]
238 Ostrycharz E, Wasik U, Kempinska-Podhorodecka A, Banales JM, Milkiewicz P, Milkiewicz M. Melatonin Protects Cholangiocytes from Oxidative Stress-Induced Proapoptotic and Proinflammatory Stimuli via miR-132 and miR-34. Int J Mol Sci 2020;21:E9667. [PMID: 33352965 DOI: 10.3390/ijms21249667] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
239 Atta H, El-Rehany M, Hammam O, Abdel-Ghany H, Ramzy M, Roderfeld M, Roeb E, Al-Hendy A, Raheim SA, Allam H. Mutant MMP-9 and HGF gene transfer enhance resolution of CCl4-induced liver fibrosis in rats: role of ASH1 and EZH2 methyltransferases repression. PLoS One. 2014;9:e112384. [PMID: 25380300 DOI: 10.1371/journal.pone.0112384] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
240 Liu L, Liu Y, Zhang Y, Bi X, Nie L, Liu C, Xiong J, He T, Xu X, Yu Y, Yang K, Gu J, Huang Y, Zhang J, Zhang Z, Zhang B, Zhao J. High phosphate-induced downregulation of PPARγ contributes to CKD-associated vascular calcification. J Mol Cell Cardiol 2018;114:264-75. [PMID: 29197521 DOI: 10.1016/j.yjmcc.2017.11.021] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
241 Sheen-Chen SM, Lin CR, Chen KH, Yang CH, Lee CT, Huang HW, Huang CY. Epigenetic histone methylation regulates transforming growth factor β-1 expression following bile duct ligation in rats. J Gastroenterol 2014;49:1285-97. [PMID: 24097032 DOI: 10.1007/s00535-013-0892-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
242 O'Reilly S, Ciechomska M, Fullard N, Przyborski S, van Laar JM. IL-13 mediates collagen deposition via STAT6 and microRNA-135b: a role for epigenetics. Sci Rep 2016;6:25066. [PMID: 27113293 DOI: 10.1038/srep25066] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 7.8] [Reference Citation Analysis]
243 Ganguly N, Chakrabarti S. Role of long non‑coding RNAs and related epigenetic mechanisms in liver fibrosis (Review). Int J Mol Med 2021;47:23. [PMID: 33495817 DOI: 10.3892/ijmm.2021.4856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
244 Latasa MU, Gil-Puig C, Fernández-Barrena MG, Rodríguez-Ortigosa CM, Banales JM, Urtasun R, Goñi S, Méndez M, Arcelus S, Juanarena N, Recio JA, Lotersztajn S, Prieto J, Berasain C, Corrales FJ, Lecanda J, Avila MA. Oral methylthioadenosine administration attenuates fibrosis and chronic liver disease progression in Mdr2-/- mice. PLoS One 2010;5:e15690. [PMID: 21209952 DOI: 10.1371/journal.pone.0015690] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
245 Sisakhtnezhad S, Matin MM. Transdifferentiation: a cell and molecular reprogramming process. Cell Tissue Res 2012;348:379-96. [PMID: 22526624 DOI: 10.1007/s00441-012-1403-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
246 Barcena-Varela M, Colyn L, Fernandez-Barrena MG. Epigenetic Mechanisms in Hepatic Stellate Cell Activation During Liver Fibrosis and Carcinogenesis. Int J Mol Sci 2019;20:E2507. [PMID: 31117267 DOI: 10.3390/ijms20102507] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
247 Ulukan B, Sila Ozkaya Y, Zeybel M. Advances in the epigenetics of fibroblast biology and fibrotic diseases. Current Opinion in Pharmacology 2019;49:102-9. [DOI: 10.1016/j.coph.2019.10.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
248 Iacob DG, Rosca A, Ruta SM. Circulating microRNAs as non-invasive biomarkers for hepatitis B virus liver fibrosis. World J Gastroenterol 2020; 26(11): 1113-1127 [PMID: 32231417 DOI: 10.3748/wjg.v26.i11.1113] [Cited by in CrossRef: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
249 Xu J, Liu X, Gao B, Karin M, Tsukamoto H, Brenner D, Kisseleva T. New Approaches for Studying Alcoholic Liver Disease. Curr Pathobiol Rep 2014;2:171-83. [PMID: 26594598 DOI: 10.1007/s40139-014-0053-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
250 Cappelli C, Tellez A, Jara C, Alarcón S, Torres A, Mendoza P, Podestá L, Flores C, Quezada C, Oyarzún C, San Martín R. The TGF-β profibrotic cascade targets ecto-5'-nucleotidase gene in proximal tubule epithelial cells and is a traceable marker of progressive diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2020;1866:165796. [PMID: 32289379 DOI: 10.1016/j.bbadis.2020.165796] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
251 Fernandez M. Molecular pathophysiology of portal hypertension. Hepatology 2015;61:1406-15. [PMID: 25092403 DOI: 10.1002/hep.27343] [Cited by in Crossref: 77] [Cited by in F6Publishing: 68] [Article Influence: 11.0] [Reference Citation Analysis]
252 Zhang Y, Pötter S, Chen C, Liang R, Gelse K, Ludolph I, Horch RE, Distler O, Schett G, Distler JHW, Dees C. Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis 2018;77:744-51. [DOI: 10.1136/annrheumdis-2017-212265] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
253 Cho SJ, Kook MC, Lee JH, Shin JY, Park J, Bae YK, Choi IJ, Ryu KW, Kim YW. Peroxisome proliferator-activated receptor γ upregulates galectin-9 and predicts prognosis in intestinal-type gastric cancer. Int J Cancer 2015;136:810-20. [PMID: 24976296 DOI: 10.1002/ijc.29056] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
254 Mehedint MG, Zeisel SH. Choline's role in maintaining liver function: new evidence for epigenetic mechanisms. Curr Opin Clin Nutr Metab Care. 2013;16:339-345. [PMID: 23493015 DOI: 10.1097/mco.0b013e3283600d46] [Cited by in Crossref: 55] [Cited by in F6Publishing: 31] [Article Influence: 6.1] [Reference Citation Analysis]
255 Zhou T, Sun Y, Li M, Ding Y, Yin R, Li Z, Xie Q, Bao S, Cai W. Enhancer of zeste homolog 2-catalysed H3K27 trimethylation plays a key role in acute-on-chronic liver failure via TNF-mediated pathway. Cell Death Dis 2018;9:590. [PMID: 29789597 DOI: 10.1038/s41419-018-0670-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
256 Vella S, Conaldi PG, Cova E, Meloni F, Liotta R, Cuzzocrea S, Martino L, Bertani A, Luca A, Vitulo P. Lung resident mesenchymal cells isolated from patients with the Bronchiolitis Obliterans Syndrome display a deregulated epigenetic profile. Sci Rep 2018;8:11167. [PMID: 30042393 DOI: 10.1038/s41598-018-29504-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
257 Chen L, Huang W, Wang L, Zhang Z, Zhang F, Zheng S, Kong D. The effects of epigenetic modification on the occurrence and progression of liver diseases and the involved mechanism. Expert Rev Gastroenterol Hepatol 2020;14:259-70. [PMID: 32124651 DOI: 10.1080/17474124.2020.1736042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
258 Jiang Y, Wang S, Zhao Y, Lin C, Zhong F, Jin L, He F, Wang H. Histone H3K9 demethylase JMJD1A modulates hepatic stellate cells activation and liver fibrosis by epigenetically regulating peroxisome proliferator‐activated receptor γ. FASEB j 2015;29:1830-41. [DOI: 10.1096/fj.14-251751] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
259 Gao C, Bai J, Han H, Qin H. The versatility of macrophage heterogeneity in liver fibrosis. Front Immunol 2022;13:968879. [DOI: 10.3389/fimmu.2022.968879] [Reference Citation Analysis]
260 Wang Y, Du J, Niu X, Fu N, Wang R, Zhang Y, Zhao S, Sun D, Nan Y. MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2. Cell Death Dis. 2017;8:e2792. [PMID: 28518142 DOI: 10.1038/cddis.2017.10] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
261 Ghosh AK, Quaggin SE, Vaughan DE. Molecular basis of organ fibrosis: potential therapeutic approaches. Exp Biol Med (Maywood). 2013;238:461-481. [PMID: 23856899 DOI: 10.1177/1535370213489441] [Cited by in Crossref: 97] [Cited by in F6Publishing: 91] [Article Influence: 10.8] [Reference Citation Analysis]
262 Tsukamoto H. Metabolic reprogramming and cell fate regulation in alcoholic liver disease. Pancreatology 2015;15:S61-5. [PMID: 25800177 DOI: 10.1016/j.pan.2015.03.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
263 Weigel C, Schmezer P, Plass C, Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene. 2015;34:2145-2155. [PMID: 24909163 DOI: 10.1038/onc.2014.145] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 6.6] [Reference Citation Analysis]
264 Simchovitz A, Heneka MT, Soreq H. Personalized genetics of the cholinergic blockade of neuroinflammation. J Neurochem 2017;142 Suppl 2:178-87. [PMID: 28326544 DOI: 10.1111/jnc.13928] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
265 Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2021;41:168-78. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
266 Zhang K, Ai WB, Liu CB, Wu JF. Progress in understanding the relationship between Notch signaling pathway and hepatic stellate cell activation. Shijie Huaren Xiaohua Zazhi 2013; 21(33): 3611-3616 [DOI: 10.11569/wcjd.v21.i33.3611] [Reference Citation Analysis]
267 Huang YH, Yang YL, Wang FS. The Role of miR-29a in the Regulation, Function, and Signaling of Liver Fibrosis. Int J Mol Sci 2018;19:E1889. [PMID: 29954104 DOI: 10.3390/ijms19071889] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
268 Zhang N, Liu K, Wang K, Zhou C, Wang H, Che S, Liu Z, Yang H. Dust induces lung fibrosis through dysregulated DNA methylation. Environmental Toxicology 2019;34:728-41. [DOI: 10.1002/tox.22739] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
269 Joilin G, Guévremont D, Ryan B, Claudianos C, Cristino AS, Abraham WC, Williams JM. Rapid regulation of microRNA following induction of long-term potentiation in vivo. Front Mol Neurosci 2014;7:98. [PMID: 25538559 DOI: 10.3389/fnmol.2014.00098] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
270 Zeisberg EM, Zeisberg M. The role of promoter hypermethylation in fibroblast activation and fibrogenesis: Role of promoter hypermethylation in fibroblast activation and fibrogenesis. J Pathol 2013;229:264-73. [DOI: 10.1002/path.4120] [Cited by in Crossref: 62] [Cited by in F6Publishing: 56] [Article Influence: 6.2] [Reference Citation Analysis]
271 Sabater L, Locatelli L, Oakley F, Hardy T, French J, Robinson SM, Sen G, Mann DA, Mann J. RNA sequencing reveals changes in the microRNAome of transdifferentiating hepatic stellate cells that are conserved between human and rat. Sci Rep 2020;10:21708. [PMID: 33303921 DOI: 10.1038/s41598-020-78776-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
272 Shah N, Nelson JE, Kowdley KV. MicroRNAs in Liver Disease: Bench to Bedside. J Clin Exp Hepatol. 2013;3:231-242. [PMID: 25755505 DOI: 10.1016/j.jceh.2013.09.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
273 Kim JB, Ann YH, Park SY, Jee HG, Kim HR, Lee JH, Yu SJ, Lee HS, Kim YJ. Side population in LX2 cells decreased by transforming growth factor-β. Hepatol Res 2014;44:229-37. [PMID: 23578133 DOI: 10.1111/hepr.12106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
274 Yu J, Walter K, Omura N, Hong SM, Young A, Li A, Vincent A, Goggins M. Unlike pancreatic cancer cells pancreatic cancer associated fibroblasts display minimal gene induction after 5-aza-2'-deoxycytidine. PLoS One 2012;7:e43456. [PMID: 22984426 DOI: 10.1371/journal.pone.0043456] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
275 Tsukamoto H, Zhu NL, Wang J, Asahina K, Machida K. Morphogens and hepatic stellate cell fate regulation in chronic liver disease. J Gastroenterol Hepatol. 2012;27 Suppl 2:94-98. [PMID: 22320925 DOI: 10.1111/j.1440-1746.2011.] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
276 Murakami Y, Kawada N. MicroRNAs in hepatic pathophysiology. Hepatol Res. 2017;47:60-69. [PMID: 27101519 DOI: 10.1111/hepr.12730] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
277 Liu B, Wang XS, Chen H, Qianjin L, Gershwin ME, Leung PS. Epigenetics and Fibrosis. Epigenetics and Dermatology. Elsevier; 2015. pp. 53-74. [DOI: 10.1016/b978-0-12-800957-4.00004-7] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
278 Nielsen J, Christensen VB, Borgwardt L, Rasmussen A, Østrup O, Kjær MS. Prognostic molecular markers in pediatric liver disease – Are there any? Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2019;1865:577-86. [DOI: 10.1016/j.bbadis.2018.12.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
279 Merkt W, Zhou Y, Han H, Lagares D. Myofibroblast fate plasticity in tissue repair and fibrosis: Deactivation, apoptosis, senescence and reprogramming. Wound Repair Regen 2021;29:678-91. [PMID: 34117675 DOI: 10.1111/wrr.12952] [Reference Citation Analysis]
280 Greene CM, Varley RB, Lawless MW. MicroRNAs and liver cancer associated with iron overload: Therapeutic targets unravelled. World J Gastroenterol 2013; 19(32): 5212-5226 [PMID: 23983424 DOI: 10.3748/wjg.v19.i32.5212] [Cited by in CrossRef: 38] [Cited by in F6Publishing: 33] [Article Influence: 4.2] [Reference Citation Analysis]
281 Wang Y, Wang Q, Wang B, Gu Y, Yu H, Yang W, Ren X, Qian F, Zhao X, Xiao Y, Zhang Y, Jin M, Zhu M. Inhibition of EZH2 ameliorates bacteria-induced liver injury by repressing RUNX1 in dendritic cells. Cell Death Dis 2020;11:1024. [PMID: 33262329 DOI: 10.1038/s41419-020-03219-w] [Reference Citation Analysis]
282 Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Transl Res 2011;157:191-9. [PMID: 21420029 DOI: 10.1016/j.trsl.2011.01.012] [Cited by in Crossref: 214] [Cited by in F6Publishing: 209] [Article Influence: 19.5] [Reference Citation Analysis]