BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Papaioannou A, Anastasiadis A, Sandberg I, Jiggens P. Nowcasting of Solar Energetic Particle Events using near real-time Coronal Mass Ejection characteristics in the framework of the FORSPEF tool. J Space Weather Space Clim 2018;8:A37. [DOI: 10.1051/swsc/2018024] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Drago-ferrante R, Di Fiore R, Karouia F, Subbannayya Y, Das S, Aydogan Mathyk B, Arif S, Guevara-cerdán AP, Seylani A, Galsinh AS, Kukulska W, Borg J, Suleiman S, Porterfield DM, Camera A, Christenson LK, Ronca AE, Steller JG, Beheshti A, Calleja-agius J. Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. IJMS 2022;23:7465. [DOI: 10.3390/ijms23137465] [Reference Citation Analysis]
2 Núñez M. Evaluation of the UMASEP-10 Version 2 Tool for Predicting All >10 MeV SEP Events of Solar Cycles 22, 23 and 24. Universe 2022;8:35. [DOI: 10.3390/universe8010035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Papaioannou A, Vainio R, Raukunen O, Jiggens P, Aran A, Dierckxsens M, Mallios SA, Paassilta M, Anastasiadis A. The probabilistic solar particle event forecasting (PROSPER) model. J Space Weather Space Clim 2022;12:24. [DOI: 10.1051/swsc/2022019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Stumpo M, Benella S, Laurenza M, Alberti T, Consolini G, Marcucci MF. Open Issues in Statistical Forecasting of Solar Proton Events: A Machine Learning Perspective. Space Weather 2021;19. [DOI: 10.1029/2021sw002794] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
5 Singh AK, Bhargawa A, Siingh D, Singh RP. Physics of Space Weather Phenomena: A Review. Geosciences 2021;11:286. [DOI: 10.3390/geosciences11070286] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Lavasa E, Giannopoulos G, Papaioannou A, Anastasiadis A, Daglis IA, Aran A, Pacheco D, Sanahuja B. Assessing the Predictability of Solar Energetic Particles with the Use of Machine Learning Techniques. Sol Phys 2021;296. [DOI: 10.1007/s11207-021-01837-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
7 Paouris E, Vourlidas A, Papaioannou A, Anastasiadis A. Assessing the Projection Correction of Coronal Mass Ejection Speeds on Time‐of‐Arrival Prediction Performance Using the Effective Acceleration Model. Space Weather 2021;19. [DOI: 10.1029/2020sw002617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Paouris E, Čalogović J, Dumbović M, Mays ML, Vourlidas A, Papaioannou A, Anastasiadis A, Balasis G. Propagating Conditions and the Time of ICME Arrival: A Comparison of the Effective Acceleration Model with ENLIL and DBEM Models. Sol Phys 2021;296. [DOI: 10.1007/s11207-020-01747-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
9 Xaplanteris L, Livada M, Mavromichalaki H, Dorman L. A new approximate coupling function: The case of Forbush decreases. New Astronomy 2021;82:101453. [DOI: 10.1016/j.newast.2020.101453] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Papaioannou A, Belov A, Abunina M, Eroshenko E, Abunin A, Anastasiadis A, Patsourakos S, Mavromichalaki H. Interplanetary Coronal Mass Ejections as the Driver of Non-recurrent Forbush Decreases. ApJ 2020;890:101. [DOI: 10.3847/1538-4357/ab6bd1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
11 Aminalragia-giamini S, Jiggens P, Anastasiadis A, Sandberg I, Aran A, Vainio R, Papadimitriou C, Papaioannou A, Tsigkanos A, Paouris E, Vasalos G, Paassilta M, Dierckxsens M. Prediction of Solar Proton Event Fluence spectra from their Peak flux spectra. J Space Weather Space Clim 2020;10:1. [DOI: 10.1051/swsc/2019043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Dorman L, Pustil'nik L, Dai U, Idler M, Keshtova F, Petrov E. Is it possible to organize automatic forecasting of expected radiation hazard level from Solar Cosmic Ray (SCR) events for spacecraft in the heliosphere and magnetosphere and for aircraft in the low Atmosphere? Advances in Space Research 2019;64:2490-508. [DOI: 10.1016/j.asr.2019.09.038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Mishev A, Jiggens P. Preface to measurement, specification and forecasting of the Solar Energetic Particle (SEP) environment and Ground Level Enhancements (GLEs). J Space Weather Space Clim 2019;9:E1. [DOI: 10.1051/swsc/2019003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]