BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mills LA, McCormick AJ, Lea-Smith DJ. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2020;40:BSR20193325. [PMID: 32149336 DOI: 10.1042/BSR20193325] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 31.0] [Reference Citation Analysis]
Number Citing Articles
1 Pichaiyotinkul P, Ruankaew N, Incharoensakdi A, Monshupanee T. Enhanced polyglucan contents in divergent cyanobacteria under nutrient-deprived photoautotrophy: transcriptional and metabolic changes in response to increased glycogen accumulation in nitrogen-deprived Synechocystis sp. PCC 6803. World J Microbiol Biotechnol 2023;39:27. [DOI: 10.1007/s11274-022-03476-1] [Reference Citation Analysis]
2 Rodrigues JS, Bourgade B, Galle KR, Lindberg P. Mapping competitive pathways to terpenoid biosynthesis in Synechocystis sp. PCC 6803 using an antisense RNA synthetic tool.. [DOI: 10.21203/rs.3.rs-2309848/v1] [Reference Citation Analysis]
3 Kugler A, Stensjö K. Optimal energy and redox metabolism in the cyanobacterium Synechocystis sp. PCC 6803.. [DOI: 10.1101/2022.09.14.507938] [Reference Citation Analysis]
4 Palladino G, Caroselli E, Tavella T, D’amico F, Prada F, Mancuso A, Franzellitti S, Rampelli S, Candela M, Goffredo S, Biagi E. Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO2 gradient. ISME COMMUN 2022;2:65. [DOI: 10.1038/s43705-022-00152-1] [Reference Citation Analysis]
5 Klaus O, Hilgers F, Nakielski A, Hasenklever D, Jaeger KE, Axmann IM, Drepper T. Engineering phototrophic bacteria for the production of terpenoids. Curr Opin Biotechnol 2022;77:102764. [PMID: 35932511 DOI: 10.1016/j.copbio.2022.102764] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Mills LA, Moreno-cabezuelo JÁ, Włodarczyk A, Victoria AJ, Mejías R, Nenninger A, Moxon S, Bombelli P, Selão TT, Mccormick AJ, Lea-smith DJ. Development of a Biotechnology Platform for the Fast-Growing Cyanobacterium Synechococcus sp. PCC 11901. Biomolecules 2022;12:872. [DOI: 10.3390/biom12070872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yilimulati M, Zhou L, Shevela D, Zhang S. Acetylacetone Interferes with Carbon and Nitrogen Metabolism of Microcystis aeruginosa by Cutting Off the Electron Flow to Ferredoxin. Environ Sci Technol 2022. [PMID: 35696645 DOI: 10.1021/acs.est.2c00776] [Reference Citation Analysis]
8 Muth-pawlak D, Kreula S, Gollan PJ, Huokko T, Allahverdiyeva Y, Aro E. Patterning of the Autotrophic, Mixotrophic, and Heterotrophic Proteomes of Oxygen-Evolving Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2022;13:891895. [DOI: 10.3389/fmicb.2022.891895] [Reference Citation Analysis]
9 Kaewbai-ngam J, Sukkasam N, Phoraksa O, Incharoensakdi A, Monshupanee T. Production of glycogen, PHB, biohydrogen, NAD(P)H, and proteins in Synechocystis sp. PCC 6803 disrupted in metabolically linked biosynthetic pathway(s). J Appl Phycol. [DOI: 10.1007/s10811-022-02759-2] [Reference Citation Analysis]
10 Meixner K, Daffert C, Dalnodar D, Mrázová K, Hrubanová K, Krzyzanek V, Nebesarova J, Samek O, Šedrlová Z, Slaninova E, Sedláček P, Obruča S, Fritz I. Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress. J Appl Phycol. [DOI: 10.1007/s10811-022-02693-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Funck D, Sinn M, Fleming JR, Stanoppi M, Dietrich J, López-Igual R, Mayans O, Hartig JS. Discovery of a Ni2+-dependent guanidine hydrolase in bacteria. Nature 2022;603:515-21. [PMID: 35264792 DOI: 10.1038/s41586-022-04490-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Inabe K, Miichi A, Matsuda M, Yoshida T, Kato Y, Hidese R, Kondo A, Hasunuma T. Nitrogen Availability Affects the Metabolic Profile in Cyanobacteria. Metabolites 2021;11:867. [PMID: 34940625 DOI: 10.3390/metabo11120867] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Lee J, Iwata Y, Suzuki Y, Suzuki I. Rapid phosphate uptake via an ABC transporter induced by sulfate deficiency in Synechocystis sp. PCC 6803. Algal Research 2021;60:102530. [DOI: 10.1016/j.algal.2021.102530] [Reference Citation Analysis]
14 Sauer PV, Dominguez-martin MA, Kirst H, Sutter M, Bina D, Greber BJ, Nogales E, Polívka T, Kerfeld CA. Structures of the Cyanobacterial Phycobilisome.. [DOI: 10.1101/2021.11.15.468712] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Wey LT, Lawrence JM, Chen X, Clark R, Lea-smith DJ, Zhang JZ, Howe CJ. A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis. Electrochimica Acta 2021;395:139214. [DOI: 10.1016/j.electacta.2021.139214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Yu King Hing N, Aryal UK, Morgan JA. Probing Light-Dependent Regulation of the Calvin Cycle Using a Multi-Omics Approach. Front Plant Sci 2021;12:733122. [PMID: 34671374 DOI: 10.3389/fpls.2021.733122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Lea-Smith DJ, Summerfield TC, Ducat DC, Lu X, McCormick AJ, Purton S. Editorial: Exploring the Growing Role of Cyanobacteria in Industrial Biotechnology and Sustainability. Front Microbiol 2021;12:725128. [PMID: 34326831 DOI: 10.3389/fmicb.2021.725128] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Nagy C, Thiel K, Mulaku E, Mustila H, Tamagnini P, Aro EM, Pacheco CC, Kallio P. Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number. Microb Cell Fact 2021;20:130. [PMID: 34246263 DOI: 10.1186/s12934-021-01622-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
19 Norena-caro DA, Zuniga C, Pete AJ, Saemundsson SA, Donaldson MR, Adams AJ, Dooley KM, Zengler K, Benton MG. Analysis of the cyanobacterial amino acid metabolism with a precise genome-scale metabolic reconstruction of Anabaena sp. UTEX 2576. Biochemical Engineering Journal 2021;171:108008. [DOI: 10.1016/j.bej.2021.108008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Figueiredo SAC, Preto M, Moreira G, Martins TP, Abt K, Melo A, Vasconcelos VM, Leão PN. Discovery of Cyanobacterial Natural Products Containing Fatty Acid Residues**. Angew Chem 2021;133:10152-10160. [DOI: 10.1002/ange.202015105] [Reference Citation Analysis]
21 Figueiredo SAC, Preto M, Moreira G, Martins TP, Abt K, Melo A, Vasconcelos VM, Leão PN. Discovery of Cyanobacterial Natural Products Containing Fatty Acid Residues*. Angew Chem Int Ed Engl 2021;60:10064-72. [PMID: 33599093 DOI: 10.1002/anie.202015105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Wey LT, Lawrence JM, Chen X, Clark R, Lea-smith DJ, Zhang JZ, Howe CJ. A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis.. [DOI: 10.1101/2021.04.01.437897] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Lumian JE, Jungblut AD, Dillion ML, Hawes I, Doran PT, Mackey TJ, Dick GJ, Grettenberger CL, Sumner DY. Metabolic Capacity of the Antarctic Cyanobacterium Phormidium pseudopriestleyi That Sustains Oxygenic Photosynthesis in the Presence of Hydrogen Sulfide. Genes (Basel) 2021;12:426. [PMID: 33809699 DOI: 10.3390/genes12030426] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
24 Shimakawa G, Kohara A, Miyake C. Characterization of Light-Enhanced Respiration in Cyanobacteria. Int J Mol Sci 2020;22:E342. [PMID: 33396191 DOI: 10.3390/ijms22010342] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
25 Vijayakumar S, Rahman PKSM, Angione C. A Hybrid Flux Balance Analysis and Machine Learning Pipeline Elucidates Metabolic Adaptation in Cyanobacteria. iScience 2020;23:101818. [PMID: 33354660 DOI: 10.1016/j.isci.2020.101818] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
26 Ciebiada M, Kubiak K, Daroch M. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms. Int J Mol Sci 2020;21:E7204. [PMID: 33003478 DOI: 10.3390/ijms21197204] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]