BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yalowitz JA, Xiao S, Biju MP, Antony AC, Cummings OW, Deeg MA, Jayaram HN. Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase-2 and expression in human pancreas. Biochem J 2004;377:317-26. [PMID: 14516279 DOI: 10.1042/BJ20030518] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem 2005;280:36334-41. [PMID: 16118205 DOI: 10.1074/jbc.M508660200] [Cited by in Crossref: 309] [Cited by in F6Publishing: 206] [Article Influence: 18.2] [Reference Citation Analysis]
2 Zhang T, Berrocal JG, Yao J, DuMond ME, Krishnakumar R, Ruhl DD, Ryu KW, Gamble MJ, Kraus WL. Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase. J Biol Chem 2012;287:12405-16. [PMID: 22334709 DOI: 10.1074/jbc.M111.304469] [Cited by in Crossref: 67] [Cited by in F6Publishing: 47] [Article Influence: 6.7] [Reference Citation Analysis]
3 Zhai RG, Rizzi M, Garavaglia S. Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Cell Mol Life Sci 2009;66:2805-18. [PMID: 19448972 DOI: 10.1007/s00018-009-0047-x] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 4.1] [Reference Citation Analysis]
4 Lau C, Dölle C, Gossmann TI, Agledal L, Niere M, Ziegler M. Isoform-specific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases. J Biol Chem 2010;285:18868-76. [PMID: 20388704 DOI: 10.1074/jbc.M110.107631] [Cited by in Crossref: 44] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
5 Bratkowski M, Xie T, Thayer DA, Lad S, Mathur P, Yang YS, Danko G, Burdett TC, Danao J, Cantor A, Kozak JA, Brown SP, Bai X, Sambashivan S. Structural and Mechanistic Regulation of the Pro-degenerative NAD Hydrolase SARM1. Cell Rep 2020;32:107999. [PMID: 32755591 DOI: 10.1016/j.celrep.2020.107999] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 25.0] [Reference Citation Analysis]
6 Wu J, Zhang F, Yan M, Wu D, Yu Q, Zhang Y, Zhou B, McBurney MW, Zhai Q. WldS enhances insulin transcription and secretion via a SIRT1-dependent pathway and improves glucose homeostasis. Diabetes 2011;60:3197-207. [PMID: 21998399 DOI: 10.2337/db11-0232] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
7 Cantó C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab 2015;22:31-53. [PMID: 26118927 DOI: 10.1016/j.cmet.2015.05.023] [Cited by in Crossref: 641] [Cited by in F6Publishing: 588] [Article Influence: 91.6] [Reference Citation Analysis]
8 Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, Bennett DA, De Jager PL, Shulman JM, Bellen HJ, Lu HC. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol 2016;14:e1002472. [PMID: 27254664 DOI: 10.1371/journal.pbio.1002472] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 10.8] [Reference Citation Analysis]
9 Sasaki Y, Vohra BP, Lund FE, Milbrandt J. Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide. J Neurosci 2009;29:5525-35. [PMID: 19403820 DOI: 10.1523/JNEUROSCI.5469-08.2009] [Cited by in Crossref: 157] [Cited by in F6Publishing: 126] [Article Influence: 12.1] [Reference Citation Analysis]
10 Niederhäuser S, Zahno ML, Nenci C, Vogt HR, Zanoni R, Peterhans E, Bertoni G. A Gag peptide encompassing B- and T-cell epitopes of the caprine arthritis encephalitis virus functions as modular carrier peptide. J Immunol Methods 2009;342:82-90. [PMID: 19118559 DOI: 10.1016/j.jim.2008.11.015] [Reference Citation Analysis]
11 Feng Y, Yan T, Zheng J, Ge X, Mu Y, Zhang Y, Wu D, Du J, Zhai Q. Overexpression of Wld s or Nmnat2 in mauthner cells by single-cell electroporation delays axon degeneration in live zebrafish: Wld S and Nmnat2 Delays M-Axon Degeneration in Zebrafish. J Neurosci Res 2010;88:3319-27. [DOI: 10.1002/jnr.22498] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.2] [Reference Citation Analysis]
12 Jia H, Yan T, Feng Y, Zeng C, Shi X, Zhai Q. Identification of a critical site in Wld(s): essential for Nmnat enzyme activity and axon-protective function. Neurosci Lett 2007;413:46-51. [PMID: 17207927 DOI: 10.1016/j.neulet.2006.11.067] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 1.4] [Reference Citation Analysis]
13 Di Stefano M, Conforti L. Diversification of NAD biological role: the importance of location. FEBS J 2013;280:4711-28. [PMID: 23848828 DOI: 10.1111/febs.12433] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 5.3] [Reference Citation Analysis]
14 Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab 2020;2:9-31. [DOI: 10.1038/s42255-019-0161-5] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 38.0] [Reference Citation Analysis]
15 Murao N, Yokoi N, Takahashi H, Hayami T, Minami Y, Seino S. Increased glycolysis affects β-cell function and identity in aging and diabetes. Mol Metab 2021;55:101414. [PMID: 34871777 DOI: 10.1016/j.molmet.2021.101414] [Reference Citation Analysis]
16 Milde S, Gilley J, Coleman MP. Subcellular localization determines the stability and axon protective capacity of axon survival factor Nmnat2. PLoS Biol 2013;11:e1001539. [PMID: 23610559 DOI: 10.1371/journal.pbio.1001539] [Cited by in Crossref: 74] [Cited by in F6Publishing: 72] [Article Influence: 8.2] [Reference Citation Analysis]
17 Challa S, Khulpateea BR, Nandu T, Camacho CV, Ryu KW, Chen H, Peng Y, Lea JS, Kraus WL. Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers. Cell 2021:S0092-8674(21)00831-X. [PMID: 34314702 DOI: 10.1016/j.cell.2021.07.005] [Reference Citation Analysis]
18 DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015;302:174-203. [PMID: 25242643 DOI: 10.1016/j.neuroscience.2014.09.027] [Cited by in Crossref: 80] [Cited by in F6Publishing: 79] [Article Influence: 10.0] [Reference Citation Analysis]
19 Di Stefano M, Galassi L, Magni G. Unique expression pattern of human nicotinamide mononucleotide adenylyltransferase isozymes in red blood cells. Blood Cells Mol Dis 2010;45:33-9. [PMID: 20457531 DOI: 10.1016/j.bcmd.2010.04.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
20 Yan T, Feng Y, Zheng J, Ge X, Zhang Y, Wu D, Zhao J, Zhai Q. Nmnat2 delays axon degeneration in superior cervical ganglia dependent on its NAD synthesis activity. Neurochem Int 2010;56:101-6. [PMID: 19778564 DOI: 10.1016/j.neuint.2009.09.007] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 4.3] [Reference Citation Analysis]
21 Yan T, Feng Y, Zhai Q. Axon degeneration: Mechanisms and implications of a distinct program from cell death. Neurochem Int 2010;56:529-34. [PMID: 20117162 DOI: 10.1016/j.neuint.2010.01.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
22 Forero-Baena N, Sánchez-Lancheros D, Buitrago JC, Bustos V, Ramírez-Hernández MH. Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT). Biochim Open 2015;1:61-9. [PMID: 29632831 DOI: 10.1016/j.biopen.2015.11.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
23 Kusumanchi P, Zhang Y, Jani MB, Jayaram NH, Khan RA, Tang Y, Antony AC, Jayaram HN. Nicotinamide mononucleotide adenylyltransferase2 overexpression enhances colorectal cancer cell-kill by Tiazofurin. Cancer Gene Ther 2013;20:403-12. [PMID: 23764899 DOI: 10.1038/cgt.2013.33] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
24 Fortunato C, Mazzola F, Raffaelli N. The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions. IUBMB Life 2021. [PMID: 34866305 DOI: 10.1002/iub.2584] [Reference Citation Analysis]
25 Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Protein acetylation in metabolism - metabolites and cofactors. Nat Rev Endocrinol 2016;12:43-60. [PMID: 26503676 DOI: 10.1038/nrendo.2015.181] [Cited by in Crossref: 160] [Cited by in F6Publishing: 147] [Article Influence: 22.9] [Reference Citation Analysis]
26 Brunetti L, Di Stefano M, Ruggieri S, Cimadamore F, Magni G. Homology modeling and deletion mutants of human nicotinamide mononucleotide adenylyltransferase isozyme 2: new insights on structure and function relationship. Protein Sci 2010;19:2440-50. [PMID: 20954240 DOI: 10.1002/pro.526] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
27 Fang C, Bernardes-silva M, Coleman M, Perry V. The cellular distribution of the Wlds chimeric protein and its constituent proteins in the CNS. Neuroscience 2005;135:1107-18. [DOI: 10.1016/j.neuroscience.2005.06.078] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 0.9] [Reference Citation Analysis]
28 Feng Y, Yan T, He Z, Zhai Q. Wld(S), Nmnats and axon degeneration--progress in the past two decades. Protein Cell 2010;1:237-45. [PMID: 21203970 DOI: 10.1007/s13238-010-0021-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
29 Yamamoto M, Hikosaka K, Mahmood A, Tobe K, Shojaku H, Inohara H, Nakagawa T. Nmnat3 Is Dispensable in Mitochondrial NAD Level Maintenance In Vivo. PLoS One 2016;11:e0147037. [PMID: 26756334 DOI: 10.1371/journal.pone.0147037] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
30 Mayer PR, Huang N, Dewey CM, Dries DR, Zhang H, Yu G. Expression, localization, and biochemical characterization of nicotinamide mononucleotide adenylyltransferase 2. J Biol Chem 2010;285:40387-96. [PMID: 20943658 DOI: 10.1074/jbc.M110.178913] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
31 Conforti L, Janeckova L, Wagner D, Mazzola F, Cialabrini L, Di Stefano M, Orsomando G, Magni G, Bendotti C, Smyth N, Coleman M. Reducing expression of NAD+ synthesizing enzyme NMNAT1 does not affect the rate of Wallerian degeneration. FEBS J 2011;278:2666-79. [PMID: 21615689 DOI: 10.1111/j.1742-4658.2011.08193.x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 3.9] [Reference Citation Analysis]
32 Lucena-Cacace A, Umeda M, Navas LE, Carnero A. NAMPT as a Dedifferentiation-Inducer Gene: NAD+ as Core Axis for Glioma Cancer Stem-Like Cells Maintenance. Front Oncol 2019;9:292. [PMID: 31119097 DOI: 10.3389/fonc.2019.00292] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
33 Han S, Forman MD, Loulakis P, Rosner MH, Xie Z, Wang H, Danley DE, Yuan W, Schafer J, Xu Z. Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Staphyloccocus aureus: structural basis for NaAD interaction in functional dimer. J Mol Biol 2006;360:814-25. [PMID: 16784754 DOI: 10.1016/j.jmb.2006.05.055] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
34 Reiten OK, Wilvang MA, Mitchell SJ, Hu Z, Fang EF. Preclinical and clinical evidence of NAD+ precursors in health, disease, and ageing. Mech Ageing Dev 2021;199:111567. [PMID: 34517020 DOI: 10.1016/j.mad.2021.111567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Katsyuba E, Auwerx J. Modulating NAD+ metabolism, from bench to bedside. EMBO J 2017;36:2670-83. [PMID: 28784597 DOI: 10.15252/embj.201797135] [Cited by in Crossref: 115] [Cited by in F6Publishing: 105] [Article Influence: 23.0] [Reference Citation Analysis]
36 Zhang T, Berrocal JG, Frizzell KM, Gamble MJ, DuMond ME, Krishnakumar R, Yang T, Sauve AA, Kraus WL. Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem 2009;284:20408-17. [PMID: 19478080 DOI: 10.1074/jbc.M109.016469] [Cited by in Crossref: 156] [Cited by in F6Publishing: 89] [Article Influence: 12.0] [Reference Citation Analysis]
37 Sorci L, Cimadamore F, Scotti S, Petrelli R, Cappellacci L, Franchetti P, Orsomando G, Magni G. Initial-rate kinetics of human NMN-adenylyltransferases: substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis. Biochemistry 2007;46:4912-22. [PMID: 17402747 DOI: 10.1021/bi6023379] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 3.3] [Reference Citation Analysis]
38 Mori V, Amici A, Mazzola F, Di Stefano M, Conforti L, Magni G, Ruggieri S, Raffaelli N, Orsomando G. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS One 2014;9:e113939. [PMID: 25423279 DOI: 10.1371/journal.pone.0113939] [Cited by in Crossref: 75] [Cited by in F6Publishing: 68] [Article Influence: 9.4] [Reference Citation Analysis]
39 Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, Haris M, Reddy R, Patay Z, Baur J, Bagga P. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol Metab 2021;49:101195. [PMID: 33609766 DOI: 10.1016/j.molmet.2021.101195] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
40 Buonvicino D, Mazzola F, Zamporlini F, Resta F, Ranieri G, Camaioni E, Muzzi M, Zecchi R, Pieraccini G, Dölle C, Calamante M, Bartolucci G, Ziegler M, Stecca B, Raffaelli N, Chiarugi A. Identification of the Nicotinamide Salvage Pathway as a New Toxification Route for Antimetabolites. Cell Chem Biol 2018;25:471-482.e7. [PMID: 29478906 DOI: 10.1016/j.chembiol.2018.01.012] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]
41 Wu H, Meng Q, Zhang Y, Li H, Liu Y, Dong S, Liu B, Zhang H. Upregulated Nmnat2 causes neuronal death and increases seizure susceptibility in temporal lobe epilepsy. Brain Res Bull 2021;167:1-10. [PMID: 33248200 DOI: 10.1016/j.brainresbull.2020.11.019] [Reference Citation Analysis]