BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang Z, Zhang Z, Chen Y, Gong L, Dong S, Zhou H, Lin Y, Lv Y, Liu G, Zhang C. Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect. Energy Environ Sci . [DOI: 10.1039/d2ee00180b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Dong S, Bu T, Wang Z, Feng Y, Liu G, Zeng J, Wang Z, Cao J, Zhang Z, Liu F, Zhang C. Freestanding‐Mode Tribovoltaic Nanogenerator for Harvesting Sliding and Rotational Mechanical Energy. Advanced Energy Materials 2023. [DOI: 10.1002/aenm.202300079] [Reference Citation Analysis]
2 Wang H, Yu Y, Yang X, Wang S, Ge J, Yang Q, Zhou X, Zheng G, Dai K, Dai X, Feng Y, Huang L, Feng W. A smart mechanical‐energy harvesting and self‐heating textile device for photo‐thermal energy utilization. EcoMat 2023. [DOI: 10.1002/eom2.12337] [Reference Citation Analysis]
3 Xiao K, Luo Q, Peng Y, Li M, Yang J, Qiu X, Zhang X, Deng J, Sun W. High current implementation of Cu/P-type GaN triboelectric nanogenerator. Appl Phys Lett 2023;122:083903. [DOI: 10.1063/5.0138865] [Reference Citation Analysis]
4 Sriphan S, Vittayakorn N. Tribovoltaic effect: Fundamental working mechanism and emerging applications. Materials Today Nano 2023. [DOI: 10.1016/j.mtnano.2023.100318] [Reference Citation Analysis]
5 Zeng Q, Chen A, Zhang X, Luo Y, Tan L, Wang X. A Dual-Functional Triboelectric Nanogenerator Based on the Comprehensive Integration and Synergetic Utilization of Triboelectrification, Electrostatic Induction, and Electrostatic Discharge to Achieve Alternating Current/Direct Current Convertible Outputs. Adv Mater 2023;35:e2208139. [PMID: 36349825 DOI: 10.1002/adma.202208139] [Reference Citation Analysis]
6 You ZY, Wang X, Lu F, Wang S, Hu B, Li L, Fang W, Liu Y. An organic semiconductor/metal Schottky heterojunction based direct current triboelectric nanogenerator windmill for wind energy harvesting. Nano Energy 2023. [DOI: 10.1016/j.nanoen.2023.108302] [Reference Citation Analysis]
7 Deng S, Zhang Q. Dynamic Semiconductor Junctions for Mechanical-to-Electric Power Conversion. Handbook of Triboelectric Nanogenerators 2023. [DOI: 10.1007/978-3-031-05722-9_4-1] [Reference Citation Analysis]
8 Xia J, Luo X, Li J, Zhu L, Wang ZL. Wear-Resisting and Stable 4H-SiC/Cu-Based Tribovoltaic Nanogenerators for Self-Powered Sensing in a Harsh Environment. ACS Appl Mater Interfaces 2022. [PMID: 36461926 DOI: 10.1021/acsami.2c15781] [Reference Citation Analysis]
9 Han X, Niu J, Wang Y, Jin X, Peng L, Chen J, Wei X, Liu X, Wang W, Wang H, Lin T. Polyaniline-based Schottky-triboelectric hybrid DC generators with tunable electrical outputs. Nano Energy 2022;104:107956. [DOI: 10.1016/j.nanoen.2022.107956] [Reference Citation Analysis]
10 Lin S, Lin Wang Z. The tribovoltaic effect. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.11.005] [Reference Citation Analysis]
11 Huang Y, Liu D, Gao X, Zhu J, Zhang Y, Zhang M. Flexible Liquid‐Based Continuous Direct‐Current Tribovoltaic Generators Enable Self‐Powered Multi‐Modal Sensing. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202209484] [Reference Citation Analysis]
12 Shen R, Lu Y, Yu X, Ge Q, Zhong H, Lin S. Broadband Insulator-Based Dynamic Diode with Ultrafast Hot Carriers Process. Research 2022;2022:1-8. [DOI: 10.34133/2022/9878352] [Reference Citation Analysis]
13 Qiao W, Zhao Z, Zhou L, Liu D, Li S, Yang P, Li X, Liu J, Wang J, Wang ZL. Simultaneously Enhancing Direct‐Current Density and Lifetime of Tribovotaic Nanogenerator via Interface Lubrication. Adv Funct Materials. [DOI: 10.1002/adfm.202208544] [Reference Citation Analysis]
14 Zhao C, Wu Y, Dai X, Han J, Dong B, Huang L. Calliopsis structure-based triboelectric nanogenerator for harvesting wind energy and self-powerd wind speed/direction sensor. Materials & Design 2022;221:111005. [DOI: 10.1016/j.matdes.2022.111005] [Reference Citation Analysis]
15 Luo Q, Xiao K, Zhang J, Sun W. Direct-Current Triboelectric Nanogenerators Based on Semiconductor Structure. ACS Appl Electron Mater . [DOI: 10.1021/acsaelm.2c00758] [Reference Citation Analysis]
16 Huang Y, Liu D, Zhu T, Zhang Y, Fan L, Liu J, Zhang M. A mechanically tunable electromagnetic wave harvester and dual-modal detector based on quasi-static van der Waals heterojunction. Nano Energy 2022;99:107399. [DOI: 10.1016/j.nanoen.2022.107399] [Reference Citation Analysis]
17 Yang D, Zhang L, Luo N, Liu Y, Sun W, Peng J, Feng M, Feng Y, Wang H, Wang D. Tribological-behaviour-controlled direct-current triboelectric nanogenerator based on the tribovoltaic effect under high contact pressure. Nano Energy 2022;99:107370. [DOI: 10.1016/j.nanoen.2022.107370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Wang H, Huang S, Kuang H, Zou T, Rajagopalan P, Wang X, Li Y, Jin H, Dong S, Zhou H, Hasan T, Occhipinti LG, Kim JM, Luo J. Coexistence of Contact Electrification and Dynamic p-n Junction Modulation Effects in Triboelectrification. ACS Appl Mater Interfaces 2022. [PMID: 35758022 DOI: 10.1021/acsami.2c06374] [Reference Citation Analysis]
19 Meng J, Pan C, Li L, Guo ZH, Xu F, Jia L, Wang ZL, Pu X. Durable flexible direct current generation through the tribovoltaic effect in contact-separation mode. Energy Environ Sci 2022. [DOI: 10.1039/d2ee02762c] [Reference Citation Analysis]
20 Wang Z, Gong L, Dong S, Fan B, Feng Y, Zhang Z, Zhang C. A humidity-enhanced silicon-based semiconductor tribovoltaic direct-current nanogenerator. J Mater Chem A 2022. [DOI: 10.1039/d2ta07637c] [Reference Citation Analysis]