BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tan S, Ng I. Stepwise optimization of genetic RuBisCO-equipped Escherichia coli for low carbon-footprint protein and chemical production. Green Chem 2021;23:4800-13. [DOI: 10.1039/d1gc00456e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Ting WW, Ng IS. Effective 5-aminolevulinic acid production via T7 RNA polymerase and RuBisCO equipped Escherichia coli W3110. Biotechnol Bioeng 2023;120:583-92. [PMID: 36302745 DOI: 10.1002/bit.28273] [Reference Citation Analysis]
2 Yi Y, Ng I. Toward Low-Carbon-Footprint Glycolic Acid Production for Bioplastics through Metabolic Engineering in Escherichia coli. ACS Sustainable Chem Eng 2023. [DOI: 10.1021/acssuschemeng.2c06718] [Reference Citation Analysis]
3 Tseng Y, Xue C, Ng I. Symbiosis culture of probiotic Escherichia coli Nissle 1917 and Lactobacillus rhamnosus GG using lactate utilization protein YkgG. Process Biochemistry 2023. [DOI: 10.1016/j.procbio.2023.01.011] [Reference Citation Analysis]
4 Ting W, Ng I. Adaptive laboratory evolution and metabolic regulation of genetic Escherichia coli W3110 toward low-carbon footprint production of 5-aminolevulinic acid. Journal of the Taiwan Institute of Chemical Engineers 2022;141:104612. [DOI: 10.1016/j.jtice.2022.104612] [Reference Citation Analysis]
5 Ting WW, Yu JY, Lin YC, Ng IS. Enhanced recombinant carbonic anhydrase in T7RNAP-equipped Escherichia coli W3110 for carbon capture storage and utilization (CCSU). Bioresour Technol 2022;:128010. [PMID: 36167176 DOI: 10.1016/j.biortech.2022.128010] [Reference Citation Analysis]
6 Yang S, Ting W, Ng I. Effective whole cell biotransformation of arginine to a four-carbon diamine putrescine using engineered Escherichia coli. Biochemical Engineering Journal 2022. [DOI: 10.1016/j.bej.2022.108502] [Reference Citation Analysis]
7 Teng C, Xue C, Lin J, Ng I. Towards high-level protein, beta-carotene, and lutein production from Chlorella sorokiniana using aminobutyric acid and pseudo seawater. Biochemical Engineering Journal 2022. [DOI: 10.1016/j.bej.2022.108473] [Reference Citation Analysis]
8 Zhuang X, Zhang Y, Xiao A, Zhang A, Fang B. Applications of Synthetic Biotechnology on Carbon Neutrality Research: A Review on Electrically Driven Microbial and Enzyme Engineering. Front Bioeng Biotechnol 2022;10:826008. [DOI: 10.3389/fbioe.2022.826008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Lin Y, Xue C, Tan S, Ting W, Yang S, Ng I. Precise measurement of decarboxylase and applied cascade enzyme for simultaneous cadaverine production with carbon dioxide recovery. Journal of the Taiwan Institute of Chemical Engineers 2021. [DOI: 10.1016/j.jtice.2021.104188] [Reference Citation Analysis]
10 Yi Y, Xue C, Ng I. Low-Carbon-Footprint Production of High-End 5-Aminolevulinic Acid via Integrative Strain Engineering and RuBisCo-Equipped Escherichia coli. ACS Sustainable Chem Eng 2021;9:15623-33. [DOI: 10.1021/acssuschemeng.1c05994] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Tan SI, Hsiang CC, Ng IS. Tailoring Genetic Elements of the Plasmid-Driven T7 System for Stable and Robust One-Step Cloning and Protein Expression in Broad Escherichia coli. ACS Synth Biol 2021;10:2753-62. [PMID: 34597025 DOI: 10.1021/acssynbio.1c00361] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Yi Y, Shih I, Yu T, Lee Y, Ng I. Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review. Bioresour Bioprocess 2021;8. [DOI: 10.1186/s40643-021-00455-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]