BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gessner I, Fries JWU, Brune V, Mathur S. Magnetic nanoparticle-based amplification of microRNA detection in body fluids for early disease diagnosis. J Mater Chem B 2021;9:9-22. [PMID: 33179710 DOI: 10.1039/d0tb02165b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Safenkova IV, Burkin KM, Bodulev OL, Razo SC, Ivanov AV, Zherdev AV, Dzantiev BB, Sakharov IY. Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction. Talanta 2022;247:123535. [DOI: 10.1016/j.talanta.2022.123535] [Reference Citation Analysis]
2 Dash S, Das T, Patel P, Panda PK, Suar M, Verma SK. Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases. J Nanobiotechnology 2022;20:393. [PMID: 36045375 DOI: 10.1186/s12951-022-01595-3] [Reference Citation Analysis]
3 Bulgakova A, Chubarov A, Dmitrienko E. Magnetic Nylon 6 Nanocomposites for the Microextraction of Nucleic Acids from Biological Samples. Magnetochemistry 2022;8:85. [DOI: 10.3390/magnetochemistry8080085] [Reference Citation Analysis]
4 Nam TW, Park Y, Jung YS, Park HG. Polychromatic Quantum Dot Array to Compose a Community Signal Ensemble for Multiplexed miRNA Detection. ACS Nano 2022. [PMID: 35704843 DOI: 10.1021/acsnano.2c03806] [Reference Citation Analysis]
5 Djebbi K, Xing J, Weng T, Bahri M, Elaguech MA, Du C, Shi B, Hu L, He S, Liao P, Tlili C, Wang D. Highly sensitive fluorescence multiplexed miRNAs biosensors for accurate clinically diagnosis lung cancer disease using LNA-modified DNA probe and DSN enzyme. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339778] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Vilímová I, Chourpa I, David S, Soucé M, Hervé-Aubert K. Two-step formulation of magnetic nanoprobes for microRNA capture. RSC Adv 2022;12:7179-88. [PMID: 35424703 DOI: 10.1039/d1ra09016j] [Reference Citation Analysis]
7 Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. Small 2022;:e2104783. [PMID: 35132796 DOI: 10.1002/smll.202104783] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Zada S, Lu H, Dai W, Tang S, Khan S, Yang F, Qiao Y, Fu P, Dong H, Zhang X. Multiple amplified microRNAs monitoring in living cells based on fluorescence quenching of Mo2B and hybridization chain reaction. Biosens Bioelectron 2022;197:113815. [PMID: 34814033 DOI: 10.1016/j.bios.2021.113815] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Renner AM, Derichsweiler C, Ilyas S, Gessner I, Fries JWU, Mathur S. High efficiency capture of biomarker miRNA15a for noninvasive diagnosis of malignant kidney tumors. Biomater Sci 2022. [PMID: 35048092 DOI: 10.1039/d1bm01737c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Djebbi K, Shi B, Weng T, Bahri M, Elaguech MA, Liu J, Tlili C, Wang D. Highly Sensitive Fluorescence Assay for miRNA Detection: Investigation of the DNA Spacer Effect on the DSN Enzyme Activity toward Magnetic-Bead-Tethered Probes. ACS Omega 2022;7:2224-33. [PMID: 35071911 DOI: 10.1021/acsomega.1c05775] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Gessner I, Park JH, Lin HY, Lee H, Weissleder R. Magnetic Gold Nanoparticles with Idealized Coating for Enhanced Point-Of-Care Sensing. Adv Healthc Mater 2022;11:e2102035. [PMID: 34747576 DOI: 10.1002/adhm.202102035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Gessner I. Optimizing nanoparticle design and surface modification toward clinical translation. MRS Bull 2021;:1-7. [PMID: 34305307 DOI: 10.1557/s43577-021-00132-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Abedini-Nassab R, Pouryosef Miandoab M, Şaşmaz M. Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review. Micromachines (Basel) 2021;12:768. [PMID: 34210058 DOI: 10.3390/mi12070768] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
14 Eftekhari A, Arjmand A, Asheghvatan A, Švajdlenková H, Šauša O, Abiyev H, Ahmadian E, Smutok O, Khalilov R, Kavetskyy T, Cucchiarini M. The Potential Application of Magnetic Nanoparticles for Liver Fibrosis Theranostics. Front Chem 2021;9:674786. [PMID: 34055744 DOI: 10.3389/fchem.2021.674786] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
15 Jat SK, Gandhi HA, Bhattacharya J, Sharma MK. Magnetic nanoparticles: an emerging nano-based tool to fight against viral infections. Mater Adv 2021;2:4479-96. [DOI: 10.1039/d1ma00240f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]