BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mckenzie LK, El-khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021;50:5126-64. [DOI: 10.1039/d0cs01430c] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 36.0] [Reference Citation Analysis]
Number Citing Articles
1 Kimoto M, Tan HP, Tan YS, Mislan NABM, Hirao I. Success probability of high-affinity DNA aptamer generation by genetic alphabet expansion. Philos Trans R Soc Lond B Biol Sci 2023;378:20220031. [PMID: 36633272 DOI: 10.1098/rstb.2022.0031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Ni D, Huang K, Wang H, Zhou W, Guo M, Baimanov D, Xue Y, Chen Y, Liu Y. Two-in-one combination therapy of fluoronucleoside analogues and triplex forming oligonucleotides. Nano Today 2023;48:101699. [DOI: 10.1016/j.nantod.2022.101699] [Reference Citation Analysis]
3 Rajasree SC, Takezawa Y, Shionoya M. Cu(II)-mediated stabilisation of DNA duplexes bearing consecutive ethenoadenine lesions and its application to a metal-responsive DNAzyme. Chem Commun (Camb) 2023;59:1006-9. [PMID: 36524578 DOI: 10.1039/d2cc06179a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Lowe PT, O'Hagan D. 4'-Fluoro-nucleosides and nucleotides: from nucleocidin to an emerging class of therapeutics. Chem Soc Rev 2023;52:248-76. [PMID: 36472161 DOI: 10.1039/d2cs00762b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Lakshman MK. Base Modifications of Nucleosides via the Use of Peptide-Coupling Agents, and Beyond. Chem Rec 2023;23:e202200182. [PMID: 36166699 DOI: 10.1002/tcr.202200182] [Reference Citation Analysis]
6 Oh J, Min C, Park D, Han MS. Oligonucleotide-Chemosensor Conjugate as a Dual Responsive Detection Platform and Its Application for Simultaneous Detection of ATP and Zn(2). ACS Sens 2022;7:3933-9. [PMID: 36503238 DOI: 10.1021/acssensors.2c02006] [Reference Citation Analysis]
7 Figazzolo C, Bonhomme F, Saidjalolov S, Ethève-Quelquejeu M, Hollenstein M. Enzymatic Synthesis of Vancomycin-Modified DNA. Molecules 2022;27. [PMID: 36558056 DOI: 10.3390/molecules27248927] [Reference Citation Analysis]
8 Westarp S, Kaspar F, Neubauer P, Kurreck A. Industrial potential of the enzymatic synthesis of nucleoside analogs: existing challenges and perspectives. Curr Opin Biotechnol 2022;78:102829. [PMID: 36332344 DOI: 10.1016/j.copbio.2022.102829] [Reference Citation Analysis]
9 Palai BB, Panda SS, Sharma NK. Synthesis of Aminotroponyl-/Difluoroboronyl Aminotroponyl Deoxyuridine Phosphoramidites. Curr Protoc 2022;2:e609. [PMID: 36541868 DOI: 10.1002/cpz1.609] [Reference Citation Analysis]
10 Van Giesen KJD, Thompson MJ, Meng Q, Lovelock SL. Biocatalytic Synthesis of Antiviral Nucleosides, Cyclic Dinucleotides, and Oligonucleotide Therapies. JACS Au 2023;3:13-24. [PMID: 36711092 DOI: 10.1021/jacsau.2c00481] [Reference Citation Analysis]
11 Taylor AI, Wan CJK, Donde MJ, Peak-chew S, Holliger P. A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing. Nat Chem 2022;14:1295-1305. [DOI: 10.1038/s41557-022-01021-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Jo H, Beon J, Oh SS. Selective RNA Labeling by RNA-Compatible Type II Restriction Endonuclease and RNA-Extending DNA Polymerase. Life (Basel) 2022;12:1674. [PMID: 36295109 DOI: 10.3390/life12101674] [Reference Citation Analysis]
13 Chen J, Zhou J, Peng Y, Xie Y, Xiao Y. Aptamers: A prospective tool for infectious diseases diagnosis. J Clin Lab Anal 2022;:e24725. [PMID: 36245423 DOI: 10.1002/jcla.24725] [Reference Citation Analysis]
14 Osawa T, Yano N, Aoyama H, Obika S. Synthesis, Duplex-Forming Ability, and Nuclease Resistance of Oligonucleotides Containing a Thymidine Derivative with a 1-Oxaspiro[4.5]decane Skeleton. Chem Pharm Bull (Tokyo) 2022;70:699-706. [PMID: 36184452 DOI: 10.1248/cpb.c22-00458] [Reference Citation Analysis]
15 Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorganic & Medicinal Chemistry 2022;72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Reference Citation Analysis]
16 O’reilly D, Belgrad J, Ferguson C, Summers A, Sapp E, Mchugh C, Mathews E, Buchwald J, Ly S, Moreno DE, Kennedy Z, Hariharan V, Monopoli K, Yang XW, Carroll J, Difiglia M, Aronin N, Khvorova A. Di-valent siRNA Mediated Silencing of MSH3 Blocks Somatic Repeat Expansion in Mouse Models of Huntington’s Disease.. [DOI: 10.1101/2022.09.06.506795] [Reference Citation Analysis]
17 Yoo YJ, Choi KH, Kim BK, Choi SS, Kim ES. Isolation and Characterization of Engineered Nucleoside Deoxyribosyltransferase with Enhanced Activity Toward 2'-Fluoro-2'-Deoxynucleoside. J Microbiol Biotechnol 2022;32:1041-6. [PMID: 35791073 DOI: 10.4014/jmb.2204.04041] [Reference Citation Analysis]
18 Economos NG, Thapar U, Balasubramanian N, Karras GI, Glazer PM. An ELISA-based platform for rapid identification of structure-dependent nucleic acid-protein interactions detects novel DNA triplex interactors. J Biol Chem 2022;:102398. [PMID: 35988651 DOI: 10.1016/j.jbc.2022.102398] [Reference Citation Analysis]
19 Rodgers MT, Seidu YS, Israel E. Influence of 5-Halogenation on the Base-Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of Synthetic i-Motif Structures for DNA Nanotechnology Applications. J Am Soc Mass Spectrom 2022. [PMID: 35921530 DOI: 10.1021/jasms.2c00137] [Reference Citation Analysis]
20 Bege M, Borbás A. The Medicinal Chemistry of Artificial Nucleic Acids and Therapeutic Oligonucleotides. Pharmaceuticals 2022;15:909. [DOI: 10.3390/ph15080909] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Ziemkiewicz K, Warminski M, Wojcik R, Kowalska J, Jemielity J. Quick Access to Nucleobase-Modified Phosphoramidites for the Synthesis of Oligoribonucleotides Containing Post-Transcriptional Modifications and Epitranscriptomic Marks. J Org Chem 2022. [PMID: 35857285 DOI: 10.1021/acs.joc.2c01390] [Reference Citation Analysis]
22 Roignant M, Zhang J, Brioche J, Piettre SR. Second Generation Synthesis of Modified Dinucleotide Analogues Featuring a Difluorophosphin(othio)yl Linkage. European J Organic Chem 2022;2022. [DOI: 10.1002/ejoc.202200303] [Reference Citation Analysis]
23 Kimoto M, Tan HP, Sing Tan Y, Mohd Mislan NAB, Hirao I. Success probability of high-affinity DNA aptamer generation by genetic alphabet expansion.. [DOI: 10.1101/2022.06.27.497860] [Reference Citation Analysis]
24 Biegański P, Kovalski E, Israel N, Dmitrieva E, Trzybiński D, Woźniak K, Vrček V, Godel M, Riganti C, Kopecka J, Lang H, Kowalski K. Electronic Coupling in 1,2,3-Triazole Bridged Ferrocenes and Its Impact on Reactive Oxygen Species Generation and Deleterious Activity in Cancer Cells. Inorg Chem 2022;61:9650-66. [PMID: 35699521 DOI: 10.1021/acs.inorgchem.2c01110] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Maverick MA, Gaillard M, Vasseur J, Debart F, Smietana M. Direct Access to Unique C‐5’‐Acyl Modified Nucleosides through Liebeskind–Srogl Cross‐Coupling Reaction. Eur J Org Chem 2022;2022. [DOI: 10.1002/ejoc.202101061] [Reference Citation Analysis]
26 Ghosh P, Kropp HM, Betz K, Ludmann S, Diederichs K, Marx A, Srivatsan SG. Microenvironment-Sensitive Fluorescent Nucleotide Probes from Benzofuran, Benzothiophene, and Selenophene as Substrates for DNA Polymerases. J Am Chem Soc 2022. [PMID: 35666775 DOI: 10.1021/jacs.2c03454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Flamme M, Hanlon S, Marzuoli I, Püntener K, Sladojevich F, Hollenstein M. Evaluation of 3'-phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and XNA oligonucleotides. Commun Chem 2022;5:68. [PMID: 36697944 DOI: 10.1038/s42004-022-00685-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Shet H, Sahu R, Sanghvi YS, Kapdi AR. Strategies for the Synthesis of Fluorinated Nucleosides, Nucleotides and Oligonucleotides. Chem Rec 2022;:e202200066. [PMID: 35638251 DOI: 10.1002/tcr.202200066] [Reference Citation Analysis]
29 Sabrowski W, Dreymann N, Möller A, Czepluch D, Albani PP, Theodoridis D, Menger MM. The use of high-affinity polyhistidine binders as masking probes for the selection of an NDM-1 specific aptamer. Sci Rep 2022;12:7936. [PMID: 35562409 DOI: 10.1038/s41598-022-12062-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Polák P, Cossy J. Ni-Catalyzed Cross-Coupling of 2-Iodoglycals and 2-Iodoribals with Grignard Reagents: A Route to 2-C-Glycosides and 2'-C-Nucleosides. Chemistry 2022;28:e202104311. [PMID: 35238093 DOI: 10.1002/chem.202104311] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Wang F, Liu LS, Li P, Lau CH, Leung HM, Chin YR, Tin C, Lo PK. Cellular uptake, tissue penetration, biodistribution, and biosafety of threose nucleic acids: Assessing in vitro and in vivo delivery. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100299] [Reference Citation Analysis]
32 Hu L, Takezawa Y, Shionoya M. Metal-mediated DNA base pairing of easily prepared 2-oxo-imidazole-4-carboxylate nucleotides. Chem Sci 2022;13:3977-83. [PMID: 35440985 DOI: 10.1039/d2sc00926a] [Reference Citation Analysis]
33 Beck KM, Nielsen P. Double-Headed 2'-Deoxynucleotides That Hybridize to DNA and RNA Targets via Normal and Reverse Watson-Crick Base Pairs. J Org Chem 2022. [PMID: 35363467 DOI: 10.1021/acs.joc.1c03063] [Reference Citation Analysis]
34 Hannauer F, Black R, Ray AD, Stulz E, Langley GJ, Holman SW. Advancements in the characterisation of oligonucleotides by high performance liquid chromatography‐mass spectrometry in 2021: A short review. Analytical Science Advances 2022;3:90-102. [DOI: 10.1002/ansa.202100066] [Reference Citation Analysis]
35 Lu X, Li J, Li C, Lou Q, Peng K, Cai B, Liu Y, Yao Y, Lu L, Tian Z, Ma H, Wang W, Cheng J, Guo X, Jiang H, Ma Y. Enzymatic DNA Synthesis by Engineering Terminal Deoxynucleotidyl Transferase. ACS Catal 2022;12:2988-97. [DOI: 10.1021/acscatal.1c04879] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Jana SK, Harikrishna S, Sudhakar S, El-Khoury R, Pradeepkumar PI, Damha MJ. Nucleoside Analogues with a Seven-Membered Sugar Ring: Synthesis and Structural Compatibility in DNA-RNA Hybrids. J Org Chem 2022. [PMID: 35133166 DOI: 10.1021/acs.joc.1c02254] [Reference Citation Analysis]
37 Wang F, Li P, Chu HC, Lo PK. Nucleic Acids and Their Analogues for Biomedical Applications. Biosensors (Basel) 2022;12:93. [PMID: 35200353 DOI: 10.3390/bios12020093] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
38 Roy V, Agrofoglio LA. Nucleosides and emerging viruses: a new story. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.02.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Liu S, Xiang K, Wang C, Zhang Y, Fan GC, Wang W, Han H. DNA Nanotweezers for Biosensing Applications: Recent Advances and Future Prospects. ACS Sens 2022;7:3-20. [PMID: 34989231 DOI: 10.1021/acssensors.1c01647] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
40 Hasanzadeh A, Noori H, Jahandideh A, Haeri Moghaddam N, Kamrani Mousavi SM, Nourizadeh H, Saeedi S, Karimi M, Hamblin MR. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS Appl Bio Mater 2022. [PMID: 35040621 DOI: 10.1021/acsabm.1c01112] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet 2022. [PMID: 34983972 DOI: 10.1038/s41576-021-00439-4] [Cited by in Crossref: 36] [Cited by in F6Publishing: 44] [Article Influence: 36.0] [Reference Citation Analysis]
42 Figazzolo C, Ma Y, Tucker JHR, Hollenstein M. Ferrocene as a potential electrochemical reporting surrogate of abasic sites in DNA. Org Biomol Chem 2022;20:8125-8135. [DOI: 10.1039/d2ob01540d] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Levi-acobas F, Mckenzie LK, Hollenstein M. Towards polymerase-mediated synthesis of artificial RNA–DNA metal base pairs. New J Chem 2022;46:4871-6. [DOI: 10.1039/d2nj00427e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2021.107902] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
45 Sun L, Ma X, Zhang B, Qin Y, Ma J, Du Y, Chen T. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chem Biol 2022. [DOI: 10.1039/d2cb00116k] [Reference Citation Analysis]
46 Masaki Y, Tabira A, Hattori S, Wakatsuki S, Seio K. Insertion of a methylene group into the backbone of an antisense oligonucleotide reveals the importance of deoxyribose recognition by RNase H. Org Biomol Chem 2022. [DOI: 10.1039/d2ob01667b] [Reference Citation Analysis]
47 Mckenzie LK, Flamme M, Felder PS, Karges J, Bonhomme F, Gandioso A, Malosse C, Gasser G, Hollenstein M. A ruthenium–oligonucleotide bioconjugated photosensitizing aptamer for cancer cell specific photodynamic therapy. RSC Chem Biol 2022;3:85-95. [DOI: 10.1039/d1cb00146a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
48 Neidle S, Sanderson M. Non-standard and higher-order DNA structures: DNA–DNA recognition. Principles of Nucleic Acid Structure 2022. [DOI: 10.1016/b978-0-12-819677-9.00003-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Sanford AA, Manuel BA, Romero-reyes MA, Heemstra JM. Combating small molecule environmental contaminants: detection and sequestration using functional nucleic acids. Chem Sci . [DOI: 10.1039/d2sc00117a] [Reference Citation Analysis]
50 Hervey JRD, Freund N, Houlihan G, Dhaliwal G, Holliger P, Taylor AI. Efficient synthesis and replication of diverse sequence libraries composed of biostable nucleic acid analogues. RSC Chem Biol 2022. [DOI: 10.1039/d2cb00035k] [Reference Citation Analysis]
51 Dantsu Y, Zhang Y, Zhang W. Advances in Therapeutic L-Nucleosides and L-Nucleic Acids with Unusual Handedness. Genes (Basel) 2021;13:46. [PMID: 35052385 DOI: 10.3390/genes13010046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Kenderdine T, Fabris D. The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development. Mass Spectrom Rev 2021;:e21766. [PMID: 34939674 DOI: 10.1002/mas.21766] [Reference Citation Analysis]
53 Beck KM, Pham RL, Nanim RA, Laustsen A, Nielsen P. Double‐Headed Nucleotides with Increased Base‐Pairing Affinity and Specificity. European J Organic Chem 2021;2021:6717-24. [DOI: 10.1002/ejoc.202101209] [Reference Citation Analysis]
54 Zhang L, Wu T, Shan Y, Li G, Ni X, Chen X, Hu X, Lin L, Li Y, Guan Y, Gao J, Chen D, Zhang Y, Pei Z, Chen X. Therapeutic reversal of Huntington's disease by in vivo self-assembled siRNAs. Brain 2021;144:3421-35. [PMID: 34918046 DOI: 10.1093/brain/awab354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
55 Wang Y, Zhang X, Liu H, Zhou X. Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chem Soc Rev 2021;50:13481-97. [PMID: 34792050 DOI: 10.1039/d1cs00920f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
56 Gimenez Molina A, Raguraman P, Delcomyn L, Veedu RN, Nielsen P. Oligonucleotides containing 2'-O-methyl-5-(1-phenyl-1,2,3-triazol-4-yl)uridines demonstrate increased affinity for RNA and induce exon-skipping in vitro. Bioorg Med Chem 2021;55:116559. [PMID: 34999527 DOI: 10.1016/j.bmc.2021.116559] [Reference Citation Analysis]
57 Krell K, Pfeuffer B, Rönicke F, Chinoy ZS, Favre C, Friscourt F, Wagenknecht HA. Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strain-Promoted Sydnone-Alkyne Cycloadditions. Chemistry 2021;27:16093-7. [PMID: 34633713 DOI: 10.1002/chem.202103026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Váradi Z, Paragi G, Kupihár Z, Kele Z, Kovács L. Synthesis of Heterocycles and Nucleosides Forming Higher—Order Structures. ECSOC-25 2021. [DOI: 10.3390/ecsoc-25-11705] [Reference Citation Analysis]
59 Schönrath I, Aukam H, Jasper-Peter B, Müller J. Silver(I)-mediated base pairing involving an S-glycosidic GNA nucleoside analogue. Nucleosides Nucleotides Nucleic Acids 2021;:1-13. [PMID: 34686119 DOI: 10.1080/15257770.2021.1994146] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Alamudi SH, Kimoto M, Hirao I. Uptake mechanisms of cell-internalizing nucleic acid aptamers for applications as pharmacological agents. RSC Med Chem 2021;12:1640-9. [PMID: 34778766 DOI: 10.1039/d1md00199j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
61 Zhou Y, Zhuo Y, Peng R, Zhang Y, Du Y, Zhang Q, Sun Y, Qiu L. Functional nucleic acid-based cell imaging and manipulation. Sci China Chem 2021;64:1817-25. [DOI: 10.1007/s11426-021-1115-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
62 Chardet C, Payrastre C, Gerland B, Escudier JM. Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules 2021;26:5925. [PMID: 34641475 DOI: 10.3390/molecules26195925] [Reference Citation Analysis]
63 Beck KM, Sharma PK, Hornum M, Risgaard NA, Nielsen P. Double-headed nucleic acids condense the molecular information of DNA to half the number of nucleotides. Chem Commun (Camb) 2021;57:9128-31. [PMID: 34498649 DOI: 10.1039/d1cc03539h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
64 Balasubramaniyam T, Oh KI, Jin HS, Ahn HB, Kim BS, Lee JH. Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. Int J Mol Sci 2021;22:9552. [PMID: 34502459 DOI: 10.3390/ijms22179552] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Laurent Q, Martinent R, Moreau D, Winssinger N, Sakai N, Matile S. Oligonucleotide Phosphorothioates Enter Cells by Thiol‐Mediated Uptake. Angewandte Chemie 2021;133:19250-4. [DOI: 10.1002/ange.202107327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Hara RI, Wada T. Inhibition of off-target cleavage by RNase H using an artificial cationic oligosaccharide. Org Biomol Chem 2021;19:6865-70. [PMID: 34323246 DOI: 10.1039/d1ob00983d] [Reference Citation Analysis]
67 Verma V, Maity J, Maikhuri VK, Sharma R, Ganguly HK, Prasad AK. Double-headed nucleosides: Synthesis and applications. Beilstein J Org Chem 2021;17:1392-439. [PMID: 34194579 DOI: 10.3762/bjoc.17.98] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 El-Khoury R, Damha MJ. 2'-Fluoro-arabinonucleic Acid (FANA): A Versatile Tool for Probing Biomolecular Interactions. Acc Chem Res 2021;54:2287-97. [PMID: 33861067 DOI: 10.1021/acs.accounts.1c00125] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]