BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang J, Zuo T, Liang X, Xu Y, Yang Y, Fang T, Li J, Chen D, Shen Q. Fenton-reaction-stimulative nanoparticles decorated with a reactive-oxygen-species (ROS)-responsive molecular switch for ROS amplification and triple negative breast cancer therapy. J Mater Chem B 2019;7:7141-51. [DOI: 10.1039/c9tb01702j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Chen J, Wan S, Fu Y, Zhou Y, Li X, Wang H. An implantable composite scaffold for amplified chemodynamic therapy and tissue regeneration. J Mater Chem B 2023. [PMID: 36930171 DOI: 10.1039/d2tb02699f] [Reference Citation Analysis]
2 Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023;15. [PMID: 36678877 DOI: 10.3390/pharmaceutics15010246] [Reference Citation Analysis]
3 Niveria K, Yadav M, Dangi K, Verma AK. Overcoming challenges to enable targeting of metastatic breast cancer tumour microenvironment with nano-therapeutics: Current status and future perspectives. OpenNano 2022;8:100083. [DOI: 10.1016/j.onano.2022.100083] [Reference Citation Analysis]
4 Raju GSR, Pavitra E, Varaprasad GL, Bandaru SS, Nagaraju GP, Farran B, Huh YS, Han YK. Nanoparticles mediated tumor microenvironment modulation: current advances and applications. J Nanobiotechnology 2022;20:274. [PMID: 35701781 DOI: 10.1186/s12951-022-01476-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Yu Y, Wu Q, Niu M, Gou L, Tan L, Fu C, Ren X, Ren J, Zheng Y, Meng X. A core-shell liquid metal-Cu nanoparticle with glutathione consumption via an in situ replacement strategy for tumor combination treatment of chemodynamic, microwave dynamic and microwave thermal therapy. Biomater Sci 2022. [PMID: 35593298 DOI: 10.1039/d2bm00435f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zuo S, Guan Z, Yang F, Xia D, Li D. Reactive oxygen species regulation and synergistic effect for effective water purification through Fenton-like catalysis on single-atom Cu–N sites. J Mater Chem A 2022;10:10503-13. [DOI: 10.1039/d2ta00561a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
7 Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021;19:192. [PMID: 34183023 DOI: 10.1186/s12951-021-00936-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
8 Xu C, Han R, Liu H, Zhu Y, Zhang J, Xu L. Construction of Polymeric Micelles for Improving Cancer Chemotherapy by Promoting the Production of Intracellular Reactive Oxygen Species and Self‐Accelerating Drug Release. ChemistrySelect 2021;6:3277-85. [DOI: 10.1002/slct.202100480] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Zhang J, Zuo T, Yang J, Hu Z, Wang Z, Xu R, Ma S, Wei Y, Shen Q. Hierarchically Releasing Bio-Responsive Nanoparticles for Complete Tumor Microenvironment Modulation via TGF-β Pathway Inhibition and TAF Reduction. ACS Appl Mater Interfaces 2021;13:2256-68. [PMID: 33423468 DOI: 10.1021/acsami.0c18545] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yin-ku L, Shiu-wei W, Ren-shen L. Photo and redox dual-stimuli-responsive β-cyclodextrin-ferrocene supramolecules for drug delivery. Journal of Macromolecular Science, Part A 2021;58:8-21. [DOI: 10.1080/10601325.2020.1814158] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]