BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sha Y, Zhang Y, Xu E, McAlister CW, Zhu T, Craig SL, Tang C. Generalizing metallocene mechanochemistry to ruthenocene mechanophores. Chem Sci 2019;10:4959-65. [PMID: 31183044 DOI: 10.1039/c9sc01347d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Luo SM, Barber RW, Overholts AC, Robb MJ. Competitive Activation Experiments Reveal Significantly Different Mechanochemical Reactivity of Furan–Maleimide and Anthracene–Maleimide Mechanophores. ACS Polym Au 2022. [DOI: 10.1021/acspolymersau.2c00047] [Reference Citation Analysis]
2 Müller S, Lee W, Song JY, Kang E, Joo JM. Nondirected Pd-catalyzed aerobic C-H alkenylation of ruthenocene and ferrocene. Chem Commun (Camb) 2022;58:10809-12. [PMID: 36069397 DOI: 10.1039/d2cc04208h] [Reference Citation Analysis]
3 Campagna D, Göstl R. Mechanoresponsive Carbamoyloximes for the Activation of Secondary Amines in Polymers. Angew Chem Int Ed Engl 2022;61:e202207557. [PMID: 35905139 DOI: 10.1002/anie.202207557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Sha Y, Zhou Z, Zhu M, Luo Z, Xu E, Li X, Yan H. The Mechanochemistry of Carboranes. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202203169] [Reference Citation Analysis]
5 Moon SY, Jeon S, Lee S, Lee A, Kim SM. High Purity Single Wall Carbon Nanotube by Oxygen-Containing Functional Group of Ferrocene-Derived Catalyst Precursor by Floating Catalyst Chemical Vapor Deposition. Nanomaterials 2022;12:863. [DOI: 10.3390/nano12050863] [Reference Citation Analysis]
6 Cha Y, Hwang J, Ramos L, Lin H, Zhu T, Tang C. Synthesis of cationic cobaltocenophane monomers: Isomerization and ring-opening metathesis polymerization. Polymer 2022;242:124544. [DOI: 10.1016/j.polymer.2022.124544] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhu J, Chen Y, Gu Y, Ma H, Hu M, Gao X, Liu T. Feasibility study on the electrochemical reductive decomposition of PFOA by a Rh/Ni cathode. J Hazard Mater 2022;422:126953. [PMID: 34449337 DOI: 10.1016/j.jhazmat.2021.126953] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Versaw BA, Zeng T, Hu X, Robb MJ. Harnessing the Power of Force: Development of Mechanophores for Molecular Release. J Am Chem Soc 2021;143:21461-73. [PMID: 34927426 DOI: 10.1021/jacs.1c11868] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
9 Aleksanyan DV, Churusova SG, Brunova VV, Peregudov AS, Shakhov AM, Rybalkina EY, Klemenkova ZS, Kononova EG, Denisov GL, Kozlov VA. Mechanochemistry for the synthesis of non-classical N-metalated palladium(II) pincer complexes. Dalton Trans 2021;50:16726-38. [PMID: 34761776 DOI: 10.1039/d1dt03259c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Hemmer JR, Rader C, Wilts BD, Weder C, Berrocal JA. Heterolytic Bond Cleavage in a Scissile Triarylmethane Mechanophore. J Am Chem Soc 2021;143:18859-63. [PMID: 34735137 DOI: 10.1021/jacs.1c10004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
11 Zhang H, Zhou Z, Chen X, Yu B, Luo Z, Li X, Rahman MA, Sha Y. Sequence-Controlled Metallopolymers: Synthesis and Properties. Macromolecules 2021;54:9174-84. [DOI: 10.1021/acs.macromol.1c01436] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Yu Y, Wang C, Wang L, Sun CL, Boulatov R, Widenhoefer RA, Craig SL. Force-modulated reductive elimination from platinum(ii) diaryl complexes. Chem Sci 2021;12:11130-7. [PMID: 34522310 DOI: 10.1039/d1sc03182a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Sammon MS, Biewend M, Michael P, Schirra S, Ončák M, Binder WH, Beyer MK. Activation of a Copper Biscarbene Mechano-Catalyst Using Single-Molecule Force Spectroscopy Supported by Quantum Chemical Calculations. Chemistry 2021;27:8723-9. [PMID: 33822419 DOI: 10.1002/chem.202100555] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
14 Küng R, Pausch T, Rasch D, Göstl R, Schmidt BM. Mechanochemische Freisetzung nichtkovalent gebundener Gäste aus einem mit Polymerketten dekorierten supramolekularen Käfig. Angew Chem 2021;133:13738-13742. [DOI: 10.1002/ange.202102383] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Küng R, Pausch T, Rasch D, Göstl R, Schmidt BM. Mechanochemical Release of Non-Covalently Bound Guests from a Polymer-Decorated Supramolecular Cage. Angew Chem Int Ed Engl 2021;60:13626-30. [PMID: 33729649 DOI: 10.1002/anie.202102383] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
16 Cravotto G, Martina K, Moran MJ, Cintas P. Sonomechanochemistry. Nontraditional Activation Methods in Green and Sustainable Applications 2021. [DOI: 10.1016/b978-0-12-819009-8.00005-0] [Reference Citation Analysis]
17 Ayer MA, Verde-sesto E, Liu CH, Weder C, Lattuada M, Simon YC. Modeling ultrasound-induced molecular weight decrease of polymers with multiple scissile azo-mechanophores. Polym Chem 2021;12:4093-103. [DOI: 10.1039/d1py00420d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Li W. Mechanophores in polymer mechanochemistry: Insights from single-molecule experiments and computer simulations. Functional Tactile Sensors 2021. [DOI: 10.1016/b978-0-12-820633-1.00005-x] [Reference Citation Analysis]
19 Sha Y, Zhang H, Zhou Z, Luo Z. Stress-responsive properties of metallocenes in metallopolymers. Polym Chem 2021;12:2509-21. [DOI: 10.1039/d1py00311a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
20 Schubert US, Winter A, Newkome GR. Polymers Incorporating Ru Complexes. Ruthenium-Containing Polymers 2021. [DOI: 10.1007/978-3-030-75598-0_2] [Reference Citation Analysis]
21 Lin X, Xie W, Lin Q, Cai Y, Hua Y, Lin J, He G, Chen J. NIR-responsive metal-containing polymer hydrogel for light-controlled microvalve. Polym Chem 2021;12:3375-82. [DOI: 10.1039/d1py00404b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Wu M, Guo Z, He W, Yuan W, Chen Y. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range. Chem Sci 2020;12:1245-50. [PMID: 34163886 DOI: 10.1039/d0sc06140a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
23 Lin Y, Craig SL. Oxidative regulation of the mechanical strength of a C-S bond. Chem Sci 2020;11:10444-8. [PMID: 34094302 DOI: 10.1039/d0sc04381h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Sha Y, Jia H, Shen Z, Luo Z. Synthetic strategies, properties, and applications of unsaturated main-chain metallopolymers prepared by olefin metathesis polymerization. Polymer Reviews 2021;61:415-55. [DOI: 10.1080/15583724.2020.1801727] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
25 Guo F, Tsoureas N, Huang G, Tong M, Mansikkamäki A, Layfield RA. Isolation of a Perfectly Linear Uranium(II) Metallocene. Angew Chem 2020;132:2319-2323. [DOI: 10.1002/ange.201912663] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
26 Hu H, Ma Z, Jia X. Reaction Cascades in Polymer Mechanochemistry. Mater Chem Front 2020;4:3115-29. [DOI: 10.1039/d0qm00435a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
27 Sha Y, Zhu T, Rahman A, Cha Y, Hwang J, Luo Z, Tang C. Synthesis of Site-specific Charged Metallopolymers via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Polymer (Guildf) 2020;187:122095. [PMID: 32863439 DOI: 10.1016/j.polymer.2019.122095] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
28 Bowser BH, Ho C, Craig SL. High Mechanophore Content, Stress-Relieving Copolymers Synthesized via RAFT Polymerization. Macromolecules 2019;52:9032-8. [DOI: 10.1021/acs.macromol.9b01792] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
29 Sha Y, Rahman MA, Zhu T, Cha Y, McAlister CW, Tang C. ROMPI-CDSA: ring-opening metathesis polymerization-induced crystallization-driven self-assembly of metallo-block copolymers. Chem Sci 2019;10:9782-7. [PMID: 32055347 DOI: 10.1039/c9sc03056e] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]