BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu M, Ding Y, Li L. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy. Nanoscale. 2019;11:19658-19683. [PMID: 31612164 DOI: 10.1039/c9nr06651a] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu X, Pan X, Wang C, Liu H. Modulation of reactive oxygen species to enhance sonodynamic therapy. Particuology 2023;75:199-216. [DOI: 10.1016/j.partic.2022.08.001] [Reference Citation Analysis]
2 Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coordination Chemistry Reviews 2022;473:214821. [DOI: 10.1016/j.ccr.2022.214821] [Reference Citation Analysis]
3 Dong Z, Yang C, Wang Z, Zhong Z, Wong M, Li H. Tumor microenvironment-responsive Zn/Cu nanoparticles for enhanced chemodynamic therapy. Smart Materials in Medicine 2022. [DOI: 10.1016/j.smaim.2022.11.002] [Reference Citation Analysis]
4 Zhou H, Chen Y, Li P, He X, Zhong J, Hu Z, Liu L, Chen Y, Cui G, Sun D, Zheng T. Sonodynamic therapy for breast cancer: A literature review. Open Chemistry 2022;20:1045-1056. [DOI: 10.1515/chem-2022-0186] [Reference Citation Analysis]
5 Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022;15:132. [PMID: 36096856 DOI: 10.1186/s13045-022-01320-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Du JR, Wang Y, Yue ZH, Zhang HY, Wang H, Sui GQ, Sun ZX. Recent advances in sonodynamic immunotherapy. J Cancer Res Clin Oncol 2022. [PMID: 35831762 DOI: 10.1007/s00432-022-04190-z] [Reference Citation Analysis]
7 Shalaby M, Kodous AS, Yousif N. Structural, optical characteristics and Anti-Cancer effect of Cd0.99Ni0.01O nanoparticles on human neuroblastoma and cervical cancer cell lines. Inorganic Chemistry Communications 2022;141:109583. [DOI: 10.1016/j.inoche.2022.109583] [Reference Citation Analysis]
8 Wang Z, Yu N, Zhang J, Ren Q, Li M, Chen Z. Nanoscale Hf-hematoporphyrin frameworks for synergetic sonodynamic/radiation therapy of deep-seated tumors. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.06.174] [Reference Citation Analysis]
9 Zhao Y, Wang S, Ding Y, Zhang Z, Huang T, Zhang Y, Wan X, Wang ZL, Li L. Piezotronic Effect-Augmented Cu2-xO-BaTiO3 Sonosensitizers for Multifunctional Cancer Dynamic Therapy. ACS Nano 2022. [PMID: 35699224 DOI: 10.1021/acsnano.2c01968] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zhang C, Leng Z, Wang Y, Ran L, Qin X, Xin H, Xu X, Zhang G, Xu Z. PDGFB targeting biodegradable FePt alloy assembly for MRI guided starvation-enhancing chemodynamic therapy of cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01482-x] [Reference Citation Analysis]
11 Ding D, Mei Z, Huang H, Feng W, Chen L, Chen Y, Zhou J. Oxygen-Independent Sulfate Radical for Stimuli-Responsive Tumor Nanotherapy. Adv Sci (Weinh) 2022;9:e2200974. [PMID: 35488513 DOI: 10.1002/advs.202200974] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Chen M, Zhao S, Zhu J, Feng E, Lv F, Chen W, Lv S, Wu Y, Peng X, Song F. Open-Source and Reduced-Expenditure Nanosystem with ROS Self-Amplification and Glutathione Depletion for Simultaneous Augmented Chemodynamic/Photodynamic Therapy. ACS Appl Mater Interfaces 2022;14:20682-92. [PMID: 35500204 DOI: 10.1021/acsami.2c01782] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Liu Y, Wang Y, Song S, Zhang H. Cascade-responsive nanobomb with domino effect for anti-tumor synergistic therapies. Natl Sci Rev 2022;9:nwab139. [PMID: 35371516 DOI: 10.1093/nsr/nwab139] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomater Adv 2022;135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Tian M, Xin X, Wu R, Guan W, Zhou W. Advances in Intelligent-Responsive Nanocarriers for Cancer Therapy. Pharmacol Res 2022;:106184. [PMID: 35301111 DOI: 10.1016/j.phrs.2022.106184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
16 Huang J, Huang Q, Liu M, Chen Q, Ai K. Emerging Bismuth Chalcogenides Based Nanodrugs for Cancer Radiotherapy. Front Pharmacol 2022;13:844037. [DOI: 10.3389/fphar.2022.844037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
17 Zhu Y, Zhao T, Liu M, Wang S, Liu S, Yang Y, Yang Y, Nan Y, Huang Q, Ai K. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today 2022;42:101358. [DOI: 10.1016/j.nantod.2021.101358] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 21.0] [Reference Citation Analysis]
18 Cao Y, Ren Q, Hao R, Sun Z. Innovative strategies to boost photothermal therapy at mild temperature mediated by functional nanomaterials. Materials & Design 2022;214:110391. [DOI: 10.1016/j.matdes.2022.110391] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
19 Pon Janani S, Thillai Arasu P, Muzaddadi IU, Murugan A, Ravikumar C, Yadav NN, Yadav HS. Photodynamic therapy with nanomaterials to combat microbial infections. Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance 2022. [DOI: 10.1016/b978-0-323-90792-7.00016-6] [Reference Citation Analysis]
20 Hu C, Hou B, Xie S. Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Adv 2022;12:22722-47. [DOI: 10.1039/d2ra03786f] [Reference Citation Analysis]
21 Zhao F, Yao J, Tong Y, Su D, Xu Q, Ying Y, Li W, Li J, Zheng J, Qiao L, Cai W, Mou X, Che S, Yu J, Hou Y. H 2 O 2 -replenishable and GSH-depletive ROS ‘bomb’ for self-enhanced chemodynamic therapy. Mater Adv 2022;3:1191-9. [DOI: 10.1039/d1ma00646k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews 2022;451:214267. [DOI: 10.1016/j.ccr.2021.214267] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
23 Ding Y, Dai Y, Wu M, Li L. Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chemical Engineering Journal 2021;426:128880. [DOI: 10.1016/j.cej.2021.128880] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
24 Li W, Zhou X, Liu S, Zhou J, Ding H, Gai S, Li R, Zhong L, Jiang H, Yang P. Biodegradable Nanocatalyst with Self-Supplying Fenton-like Ions and H2O2 for Catalytic Cascade-Amplified Tumor Therapy. ACS Appl Mater Interfaces 2021;13:50760-73. [PMID: 34672620 DOI: 10.1021/acsami.1c14598] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
25 Chen T, Chu Q, Li M, Han G, Li X. Fe3O4@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy. J Nanobiotechnology 2021;19:206. [PMID: 34246260 DOI: 10.1186/s12951-021-00957-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
26 Wang X, Wu M, Zhang X, Li F, Zeng Y, Lin X, Liu X, Liu J. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. J Nanobiotechnology 2021;19:204. [PMID: 34238297 DOI: 10.1186/s12951-021-00952-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
27 dos Santos AF, Arini GS, de Almeida DRQ, Labriola L. Nanophotosensitizers for cancer therapy: a promising technology? J Phys Mater 2021;4:032006. [DOI: 10.1088/2515-7639/abf7dd] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
28 Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021;19:192. [PMID: 34183023 DOI: 10.1186/s12951-021-00936-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
29 Zhong X, Wang X, Li J, Hu J, Cheng L, Yang X. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coordination Chemistry Reviews 2021;437:213828. [DOI: 10.1016/j.ccr.2021.213828] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 31.0] [Reference Citation Analysis]
30 Bai Z, Zhou Q, Zhu H, Ye X, Wu P, Ma L. QTMP, a Novel Thiourea Polymer, Causes DNA Damage to Exert Anticancer Activity and Overcome Multidrug Resistance in Colorectal Cancer Cells. Front Oncol 2021;11:667689. [PMID: 34123833 DOI: 10.3389/fonc.2021.667689] [Reference Citation Analysis]
31 Wang L, Niu C. IR780-based nanomaterials for cancer imaging and therapy. J Mater Chem B 2021;9:4079-97. [PMID: 33912889 DOI: 10.1039/d1tb00407g] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
32 Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS Nano 2021;15:8039-68. [PMID: 33974797 DOI: 10.1021/acsnano.1c00498] [Cited by in Crossref: 69] [Cited by in F6Publishing: 83] [Article Influence: 69.0] [Reference Citation Analysis]
33 Liu X, Feng W, Xiang H, Liu B, Ye M, Wei M, Dong R, Chen Y, Dong K. Multifunctional cascade nanocatalysts for NIR-II-synergized photonic hyperthermia-strengthened nanocatalytic therapy of epithelial and embryonal tumors. Chemical Engineering Journal 2021;411:128364. [DOI: 10.1016/j.cej.2020.128364] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
34 Li X, Wang Z, Ma M, Chen Z, Tang XL, Wang Z. Self-Assembly Iron Oxide Nanoclusters for Photothermal-Mediated Synergistic Chemo/Chemodynamic Therapy. J Immunol Res 2021;2021:9958239. [PMID: 33880384 DOI: 10.1155/2021/9958239] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Zhang L, Zhu C, Huang R, Ding Y, Ruan C, Shen XC. Mechanisms of Reactive Oxygen Species Generated by Inorganic Nanomaterials for Cancer Therapeutics. Front Chem 2021;9:630969. [PMID: 33816437 DOI: 10.3389/fchem.2021.630969] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
36 Kong F, Bai H, Ma M, Wang C, Xu H, Gu N, Zhang Y. Fe3O4@Pt nanozymes combining with CXCR4 antagonists to synergistically treat acute myeloid leukemia. Nano Today 2021;37:101106. [DOI: 10.1016/j.nantod.2021.101106] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 16.0] [Reference Citation Analysis]
37 Zhang Y, Khan AR, Yang X, Shi Y, Zhao X, Zhai G. A sonosensitiser-based polymeric nanoplatform for chemo-sonodynamic combination therapy of lung cancer. J Nanobiotechnology 2021;19:57. [PMID: 33632266 DOI: 10.1186/s12951-021-00804-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
38 Zhao F, Yu J, Gao W, Yang X, Liang L, Sun X, Su D, Ying Y, Li W, Li J, Zheng J, Qiao L, Cai W, Che S, Mou X. H2O2-independent chemodynamic therapy initiated from magnetic iron carbide nanoparticle-assisted artemisinin synergy. RSC Adv 2021;11:37504-37513. [DOI: 10.1039/d1ra04975e] [Reference Citation Analysis]
39 Pidamaimaiti G, Huang X, Pang K, Su Z, Wang F. A microenvironment-mediated Cu 2 O–MoS 2 nanoplatform with enhanced Fenton-like reaction activity for tumor chemodynamic/photothermal therapy. New J Chem 2021;45:10296-302. [DOI: 10.1039/d1nj01272j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
40 Zhang Y, Zhang J, Jia Q, Ge J, Wang P. Innovative strategies of hydrogen peroxide-involving tumor therapeutics. Mater Chem Front 2021;5:4474-501. [DOI: 10.1039/d1qm00134e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
41 Wang B, Zhang X, Wang Z, Shi D. Ferroptotic nanomaterials enhance cancer therapy via boosting Fenton-reaction. Journal of Drug Delivery Science and Technology 2020;59:101883. [DOI: 10.1016/j.jddst.2020.101883] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
42 Dong S, Dong Y, Jia T, Liu S, Liu J, Yang D, He F, Gai S, Yang P, Lin J. GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy. Adv Mater 2020;32:e2002439. [PMID: 32914495 DOI: 10.1002/adma.202002439] [Cited by in Crossref: 156] [Cited by in F6Publishing: 165] [Article Influence: 78.0] [Reference Citation Analysis]
43 Zhang S, Zhu P, He J, Dong S, Li P, Zhang CY, Ma T. TME-Responsive Polyprodrug Micelles for Multistage Delivery of Doxorubicin with Improved Cancer Therapeutic Efficacy in Rodents. Adv Healthc Mater 2020;9:e2000387. [PMID: 32815646 DOI: 10.1002/adhm.202000387] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
44 Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12(7): 562-584 [PMID: 32843914 DOI: 10.4252/wjsc.v12.i7.562] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
45 Li XY, Tan LC, Dong LW, Zhang WQ, Shen XX, Lu X, Zheng H, Lu YG. Susceptibility and Resistance Mechanisms During Photodynamic Therapy of Melanoma. Front Oncol 2020;10:597. [PMID: 32528867 DOI: 10.3389/fonc.2020.00597] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]