BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu M, Wen Y, Liu Y, Tan X, Chen X, Zhu X, Wei C, Chen L, Wang Z, Liu J. Hollow mesoporous ruthenium nanoparticles conjugated bispecific antibody for targeted anti-colorectal cancer response of combination therapy. Nanoscale 2019;11:9661-78. [DOI: 10.1039/c9nr01904a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Uthaman S, Cutshaw G, Ghazvini S, Bardhan R. Nanomaterials for Natural Killer Cell-Based Immunoimaging and Immunotherapies in Cancer. ACS Appl Mater Interfaces 2022. [PMID: 36006784 DOI: 10.1021/acsami.2c08619] [Reference Citation Analysis]
2 Wang X, Li S, Wang S, Zheng S, Chen Z, Song H. Protein Binding Nanoparticles as an Integrated Platform for Cancer Diagnosis and Treatment. Adv Sci (Weinh) 2022;:e2202453. [PMID: 35981878 DOI: 10.1002/advs.202202453] [Reference Citation Analysis]
3 Lin X, Li F, Gu Q, Wang X, Zheng Y, Li J, Guan J, Yao C, Liu X. Gold-seaurchin based immunomodulator enabling photothermal intervention and αCD16 transfection to boost NK cell adoptive immunotherapy. Acta Biomater 2022;146:406-20. [PMID: 35470078 DOI: 10.1016/j.actbio.2022.04.029] [Reference Citation Analysis]
4 Szewczyk OK, Roszczenko P, Czarnomysy R, Bielawska A, Bielawski K. An Overview of the Importance of Transition-Metal Nanoparticles in Cancer Research. Int J Mol Sci 2022;23:6688. [PMID: 35743130 DOI: 10.3390/ijms23126688] [Reference Citation Analysis]
5 Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. Adv Mater 2022;:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Wang K, Shen R, Meng T, Hu F, Yuan H. Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules 2022;27:2981. [DOI: 10.3390/molecules27092981] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Raghavan S. How inclusive are cell lines in preclinical engineered cancer models? Dis Model Mech 2022;15:dmm049520. [PMID: 35642685 DOI: 10.1242/dmm.049520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Hu M, Huang L. Strategies targeting tumor immune and stromal microenvironment and their clinical relevance. Adv Drug Deliv Rev 2022;183:114137. [PMID: 35143893 DOI: 10.1016/j.addr.2022.114137] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
9 Carlsen L, Huntington KE, El-deiry WS. Immunotherapy for Colorectal Cancer: Mechanisms and Predictive Biomarkers. Cancers 2022;14:1028. [DOI: 10.3390/cancers14041028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Liu M, Wang L, Lo Y, Shiu SC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022;11:159. [DOI: 10.3390/cells11010159] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
11 Pragti, Kundu BK, Mukhopadhyay S. Target based chemotherapeutic advancement of ruthenium complexes. Coordination Chemistry Reviews 2021;448:214169. [DOI: 10.1016/j.ccr.2021.214169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
12 Mikelez-Alonso I, Magadán S, González-Fernández Á, Borrego F. Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how nanoparticles enhance NK cell activity. Adv Drug Deliv Rev 2021;176:113860. [PMID: 34237404 DOI: 10.1016/j.addr.2021.113860] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
13 Mahmud KM, Niloy MS, Shakil MS, Islam MA. Ruthenium Complexes: An Alternative to Platinum Drugs in Colorectal Cancer Treatment. Pharmaceutics 2021;13:1295. [PMID: 34452256 DOI: 10.3390/pharmaceutics13081295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
14 Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coordination Chemistry Reviews 2021;441:213975. [DOI: 10.1016/j.ccr.2021.213975] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
15 Mohapatra A, Uthaman S, Park IK. External and Internal Stimuli-Responsive Metallic Nanotherapeutics for Enhanced Anticancer Therapy. Front Mol Biosci 2020;7:597634. [PMID: 33505987 DOI: 10.3389/fmolb.2020.597634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
16 Cabeza L, Perazzoli G, Mesas C, Jiménez-Luna C, Prados J, Rama AR, Melguizo C. Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS PharmSciTech 2020;21:178. [PMID: 32591920 DOI: 10.1208/s12249-020-01731-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
17 Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Nanovectors Design for Theranostic Applications in Colorectal Cancer. J Oncol 2019;2019:2740923. [PMID: 31662751 DOI: 10.1155/2019/2740923] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
18 Michlewska S, Kubczak M, Maroto-Díaz M, Sanz Del Olmo N, Ortega P, Shcharbin D, Gomez Ramirez R, Javier de la Mata F, Ionov M, Bryszewska M. Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drug. Biomolecules 2019;9:E411. [PMID: 31450702 DOI: 10.3390/biom9090411] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]