BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020;49:4405-65. [DOI: 10.1039/c9cs00587k] [Cited by in Crossref: 59] [Cited by in F6Publishing: 121] [Article Influence: 29.5] [Reference Citation Analysis]
Number Citing Articles
1 Guagneli L, Mousavi Z, Sokalski T, Leito I, Bobacka J. Novel design of a planar flow-through potentiometric sensor. Journal of Electroanalytical Chemistry 2022;923:116785. [DOI: 10.1016/j.jelechem.2022.116785] [Reference Citation Analysis]
2 Wang S, Liu M, Shi Y, Yang X, Li L, Lu Q, Zheng H, Feng S, Bai Y, Zhang T. Vertically aligned conductive metal-organic framework nanowires array composite fiber as efficient solid-contact for wearable potentiometric sweat sensing. Sensors and Actuators B: Chemical 2022;369:132290. [DOI: 10.1016/j.snb.2022.132290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhang Y, Tang Y, Liang R, Zhong L, Xu J, Lu H, Xu X, Han T, Bao Y, Ma Y, Gan S, Niu L. Carbon-Based Transducers for Solid-Contact Calcium Ion-Selective Electrodes: Mesopore and Nitrogen-Doping Effects. Membranes (Basel) 2022;12:903. [PMID: 36135922 DOI: 10.3390/membranes12090903] [Reference Citation Analysis]
4 Saha A, Yermembetova A, Mi Y, Gopalakrishnan S, Sedaghat S, Waimin J, Wang P, Glassmaker N, Mousoulis C, Raghunathan N, Bagchi S, Rahimi R, Shakouri A, Wei A, Alam MA. Temperature Self-Calibration of Always-On, Field-Deployed Ion-Selective Electrodes Based on Differential Voltage Measurement. ACS Sens 2022. [PMID: 36074898 DOI: 10.1021/acssensors.2c01163] [Reference Citation Analysis]
5 Xu M, Wang X, Liu X. Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor. J Agric Food Chem 2022. [PMID: 36074997 DOI: 10.1021/acs.jafc.2c03916] [Reference Citation Analysis]
6 Gumus E, Bingol H, Zor E. Nanomaterials-enriched sensors for detection of chiral pharmaceuticals. J Pharm Biomed Anal 2022;221:115031. [PMID: 36115205 DOI: 10.1016/j.jpba.2022.115031] [Reference Citation Analysis]
7 Wei J, Zhang X, Mugo SM, Zhang Q. A Portable Sweat Sensor Based on Carbon Quantum Dots for Multiplex Detection of Cardiovascular Health Biomarkers. Anal Chem 2022. [PMID: 36066349 DOI: 10.1021/acs.analchem.2c02587] [Reference Citation Analysis]
8 Chai D, Sun Y, Li Z, Yang H, Mao S, Tang J, Gong W, Zeng X. A novel inorganic redox buffer of r-GO/Ag@AgCl/TMMCl utilized as an effective ion-to-electron transducer for a solid contact calcium ion-selective electrode. Sensors and Actuators B: Chemical 2022;367:132055. [DOI: 10.1016/j.snb.2022.132055] [Reference Citation Analysis]
9 Guo Z, Ren P, Lu Z, Hui K, Yang J, Zhang Z, Chen Z, Jin Y, Ren F. Multifunctional CoFe2O4@MXene-AgNWs/Cellulose Nanofiber Composite Films with Asymmetric Layered Architecture for High-Efficiency Electromagnetic Interference Shielding and Remarkable Thermal Management Capability. ACS Appl Mater Interfaces 2022. [PMID: 36045558 DOI: 10.1021/acsami.2c12555] [Reference Citation Analysis]
10 Sailapu SK, Menon C. Engineering Self-Powered Electrochemical Sensors Using Analyzed Liquid Sample as the Sole Energy Source. Adv Sci (Weinh) 2022;:e2203690. [PMID: 35981885 DOI: 10.1002/advs.202203690] [Reference Citation Analysis]
11 Alberti G, Zanoni C, Spina S, Magnaghi LR, Biesuz R. MIP-Based Screen-Printed Potentiometric Cell for Atrazine Sensing. Chemosensors 2022;10:339. [DOI: 10.3390/chemosensors10080339] [Reference Citation Analysis]
12 Liu Z, Jiang T, Qin W. Polymeric Membrane Marine Sensors with a Regenerable Antibiofouling Coating Based on Surface Modification of a Dual-Functionalized Magnetic Composite. Anal Chem 2022. [PMID: 35980333 DOI: 10.1021/acs.analchem.2c02672] [Reference Citation Analysis]
13 Yeung KK, Li J, Huang T, Hosseini II, Al Mahdi R, Alam MM, Sun H, Mahshid S, Yang J, Ye TT, Gao Z. Utilizing Gradient Porous Graphene Substrate as the Solid-Contact Layer To Enhance Wearable Electrochemical Sweat Sensor Sensitivity. Nano Lett 2022. [PMID: 35943807 DOI: 10.1021/acs.nanolett.2c01969] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Migdalski J, Lewenstam A. Electrically Enhanced Sensitivity (EES) of Ion-Selective Membrane Electrodes and Membrane-Based Ion Sensors. Membranes 2022;12:763. [DOI: 10.3390/membranes12080763] [Reference Citation Analysis]
15 Ozer T, Agir I, Henry CS. Low-cost Internet of Things (IoT)-enabled a wireless wearable device for detecting potassium ions at the point of care. Sensors and Actuators B: Chemical 2022;365:131961. [DOI: 10.1016/j.snb.2022.131961] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
16 Cui X, Bao Y, Han T, Liu Z, Ma Y, Sun Z. A wearable electrochemical sensor based on β-CD functionalized graphene for pH and potassium ion analysis in sweat. Talanta 2022;245:123481. [DOI: 10.1016/j.talanta.2022.123481] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Lim H, Lee SM, Park S, Choi C, Kim H, Kim J, Mahmood M, Lee Y, Kim J, Yeo W. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosensors and Bioelectronics 2022;210:114329. [DOI: 10.1016/j.bios.2022.114329] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Hassan SS, Kamel AH, Fathy MA. A novel screen-printed potentiometric electrode with carbon nanotubes/polyaniline transducer and molecularly imprinted polymer for the determination of nalbuphine in pharmaceuticals and biological fluids. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Li Y, Li J, Qin W. Solid-contact polymeric membrane ion-selective electrodes based on electrodeposited NiCo2S4 nanosheet arrays. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123797] [Reference Citation Analysis]
20 Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. Sensors (Basel) 2022;22:5541. [PMID: 35898054 DOI: 10.3390/s22155541] [Reference Citation Analysis]
21 Xu L, Zhong L, Tang Y, Han T, Liu S, Sun Z, Bao Y, Wang H, He Y, Wang W, Gan S, Niu L. Beyond Nonactin: Potentiometric Ammonium Ion Sensing Based on Ion-selective Membrane-free Prussian Blue Analogue Transducers. Anal Chem 2022. [PMID: 35839308 DOI: 10.1021/acs.analchem.2c01765] [Reference Citation Analysis]
22 Niemiec B, Zambrzycki M, Piech R, Wardak C, Paczosa-Bator B. Hierarchical Nanocomposites Electrospun Carbon NanoFibers/Carbon Nanotubes as a Structural Element of Potentiometric Sensors. Materials (Basel) 2022;15:4803. [PMID: 35888272 DOI: 10.3390/ma15144803] [Reference Citation Analysis]
23 Yang H, Qian Z, Wang J, Feng J, Tang C, Wang L, Guo Y, Liu Z, Yang Y, Zhang K, Chen P, Sun X, Peng H. Carbon Nanotube Array‐Based Flexible Multifunctional Electrodes to Record Electrophysiology and Ions on the Cerebral Cortex in Real Time. Adv Funct Materials. [DOI: 10.1002/adfm.202204794] [Reference Citation Analysis]
24 González-quintela M, Viltres-portales M, Díaz-garcía AM, Bustamante-sánchez M, Sánchez-díaz G, Lazo-fraga AR, Estévez-hernández O. On the analytical response of lead(II) selective electrodes using 1-aroyl-3,3-dimethylthioureas as ionophores: membrane analysis and quantum chemical calculations. Phosphorus, Sulfur, and Silicon and the Related Elements. [DOI: 10.1080/10426507.2022.2085270] [Reference Citation Analysis]
25 Shao Y, Wei L, Wu X, Jiang C, Yao Y, Peng B, Chen H, Huangfu J, Ying Y, Zhang CJ, Ping J. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat Commun 2022;13:3223. [PMID: 35680851 DOI: 10.1038/s41467-022-30648-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Baumbauer CL, Goodrich PJ, Payne ME, Anthony T, Beckstoffer C, Toor A, Silver W, Arias AC. Printed Potentiometric Nitrate Sensors for Use in Soil. Sensors (Basel) 2022;22:4095. [PMID: 35684715 DOI: 10.3390/s22114095] [Reference Citation Analysis]
27 Kozma J, Papp S, Gyurcsányi RE. TEMPO-Functionalized Carbon Nanotubes for Solid-Contact Ion-Selective Electrodes with Largely Improved Potential Reproducibility and Stability. Anal Chem 2022. [PMID: 35622612 DOI: 10.1021/acs.analchem.2c00395] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Angizi S, Huang X, Hong L, Akbar MA, Selvaganapathy PR, Kruse P. Defect Density-Dependent pH Response of Graphene Derivatives: Towards the Development of pH-Sensitive Graphene Oxide Devices. Nanomaterials 2022;12:1801. [DOI: 10.3390/nano12111801] [Reference Citation Analysis]
29 Chen L, Chen F, Liu G, Lin H, Bao Y, Han D, Wang W, Ma Y, Zhang B, Niu L. Superhydrophobic Functionalized Ti3C2Tx MXene-Based Skin-Attachable and Wearable Electrochemical pH Sensor for Real-Time Sweat Detection. Anal Chem 2022. [PMID: 35536877 DOI: 10.1021/acs.analchem.2c00684] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
30 Kim M, Lee KH. Electrochemical Sensors for Sustainable Precision Agriculture—A Review. Front Chem 2022;10:848320. [DOI: 10.3389/fchem.2022.848320] [Reference Citation Analysis]
31 Du X, Li N, Chen Q, Wu Z, Zhai J, Xie X. Perspective on fluorescence cell imaging with ionophore-based ion-selective nano-optodes. Biomicrofluidics 2022;16:031301. [PMID: 35698631 DOI: 10.1063/5.0090599] [Reference Citation Analysis]
32 Chen XV, Bühlmann P. Ion-selective potentiometric sensors with silicone sensing membranes: A review. Current Opinion in Electrochemistry 2022;32:100896. [DOI: 10.1016/j.coelec.2021.100896] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 d’Astous É, Dauphin-ducharme P. Harnessing Host-Guest Chemistry for Electrochemical Sensing in Complex Matrices. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.101029] [Reference Citation Analysis]
34 Huang M, Li X. Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. Progress in Materials Science 2022;125:100885. [DOI: 10.1016/j.pmatsci.2021.100885] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
35 Abu Shawish HM, Saadeh SM, Al-kahlout ST. PVC membrane, coated-wire, and carbon-paste electrodes for potentiometric determination of vardenafil hydrochloride in tablet formulations and urine samples. Sensors International 2022. [DOI: 10.1016/j.sintl.2022.100175] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Gadhari NS, Patil SS, Gholave JV, Patil VR, Upadhyay SS. Highly efficient potentiometric sensing device for gadolinium based on Tetraazacyclododecane-1, 4, 7, 10 -tetraaceticacid crown ether and multiwalled carbon nanotube composite. Microchemical Journal 2022;175:107130. [DOI: 10.1016/j.microc.2021.107130] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Lenar N, Piech R, Paczosa-Bator B. Hydrous Cerium Dioxide-Based Materials as Solid-Contact Layers in Potassium-Selective Electrodes. Membranes (Basel) 2022;12:349. [PMID: 35448319 DOI: 10.3390/membranes12040349] [Reference Citation Analysis]
38 Veloz Martínez I, Ek JI, Ahn EC, Sustaita AO. Molecularly imprinted polymers via reversible addition-fragmentation chain-transfer synthesis in sensing and environmental applications. RSC Adv 2022;12:9186-201. [PMID: 35424874 DOI: 10.1039/d2ra00232a] [Reference Citation Analysis]
39 Tabasum H, Gill N, Mishra R, Lone S. Wearable microfluidic-based e-skin sweat sensors. RSC Adv 2022;12:8691-707. [PMID: 35424805 DOI: 10.1039/d1ra07888g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
40 Li Y, Jarosova R, Weese-Myers ME, Ross AE. Graphene-Fiber Microelectrodes for Ultrasensitive Neurochemical Detection. Anal Chem 2022. [PMID: 35274933 DOI: 10.1021/acs.analchem.1c05637] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Lin K, Xie J, Bao Y, Ma Y, Chen L, Wang H, Xu L, Tang Y, Liu Z, Sun Z, Gan S, Niu L. Self-adhesive and printable tannin–graphene supramolecular aggregates for wearable potentiometric pH sensing. Electrochemistry Communications 2022. [DOI: 10.1016/j.elecom.2022.107261] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Fan Y, Qian X, Wang X, Funk T, Herman B, Mccutcheon JR, Li B. Enhancing long-term accuracy and durability of wastewater monitoring using electrosprayed ultra-thin solid-state ion selective membrane sensors. Journal of Membrane Science 2022;643:119997. [DOI: 10.1016/j.memsci.2021.119997] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
43 Hjort RG, Soares RRA, Li J, Jing D, Hartfiel L, Chen B, Van Belle B, Soupir M, Smith E, McLamore E, Claussen JC, Gomes CL. Hydrophobic laser-induced graphene potentiometric ion-selective electrodes for nitrate sensing. Mikrochim Acta 2022;189:122. [PMID: 35218439 DOI: 10.1007/s00604-022-05233-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Li Y, Cui B, Zhang S, Li B, Li J, Liu S, Zhao Q. Ion-Selective Organic Electrochemical Transistors: Recent Progress and Challenges. Small 2022;:e2107413. [PMID: 35182018 DOI: 10.1002/smll.202107413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
45 Li Y, Li J, Qin W. All-Solid-State Polymeric Membrane Ion-Selective Electrodes Based on NiCo2S4 as a Solid Contact. Anal Chem 2022. [PMID: 35175037 DOI: 10.1021/acs.analchem.1c04748] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Kalisz J, Wȩgrzyn K, Maksymiuk K, Michalska A. 3D-Drawn Supports for Ion-Selective Electrodes. Anal Chem 2022. [PMID: 35175046 DOI: 10.1021/acs.analchem.1c05431] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Qi L, Liang R, Jiang T, Qin W. Anti-fouling polymeric membrane ion-selective electrodes. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116572] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Tabata M, Miyahara Y. From new materials to advanced biomedical applications of solid-state biosensor: A review. Sensors and Actuators B: Chemical 2022;352:131033. [DOI: 10.1016/j.snb.2021.131033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Kościelniak P, Dębosz M, Wieczorek M, Migdalski J, Szufla M, Matoga D, Kochana J. The Use of an Acylhydrazone-Based Metal-Organic Framework in Solid-Contact Potassium-Selective Electrode for Water Analysis. Materials (Basel) 2022;15:579. [PMID: 35057298 DOI: 10.3390/ma15020579] [Reference Citation Analysis]
50 Al-khalqi EM, Abdul Hamid MA, Al-hardan NH, Keng LK, Jalar A. Magnesium-doped ZnO nanorod electrolyte–insulator–semiconductor (EIS) sensor for detecting calcium ions. J Mater Sci: Mater Electron 2022;33:1618-30. [DOI: 10.1007/s10854-022-07696-x] [Reference Citation Analysis]
51 Abdollahzadeh M, Bayatsarmadi B, Vepsäläinen M, Razmjou A, Asadnia M. Highly stable Li+ selective electrode with metal-organic framework as ion-to-electron transducer. Sensors and Actuators B: Chemical 2022;350:130799. [DOI: 10.1016/j.snb.2021.130799] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Sedaghat S, Kasi V, Nejati S, Krishnakumar A, Rahimi R. Improved performance of printed electrochemical sensors via cold atmospheric plasma surface modification. J Mater Chem C 2022;10:10562-73. [DOI: 10.1039/d2tc00905f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Sala A, Brisset H, Margaillan A, Mullot J, Branger C. Electrochemical sensors modified with ion-imprinted polymers for metal ion detection. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116536] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Xu L, Gan S, Zhong L, Sun Z, Tang Y, Han T, Lin K, Liao C, He D, Ma Y, Wang W, Niu L. Conductive metal organic framework for ion-selective membrane-free solid-contact potentiometric Cu2+ sensing. Journal of Electroanalytical Chemistry 2022;904:115923. [DOI: 10.1016/j.jelechem.2021.115923] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Yu Q, Pan J, Li J, Su C, Huang Y, Bi S, Jiang J, Chen N. A general strategy to immobilize metal nanoparticles on MXene composite fabrics for enhanced sensing performance and endowed multifunctionality. J Mater Chem C. [DOI: 10.1039/d2tc02177c] [Reference Citation Analysis]
56 Paut A, Prkić A, Mitar I, Guć L, Marciuš M, Vrankić M, Krehula S, Tomaško L. The New Ion-Selective Electrodes Developed for Ferric Cations Determination, Modified with Synthesized Al and Fe-Based Nanoparticles. Sensors (Basel) 2021;22:297. [PMID: 35009839 DOI: 10.3390/s22010297] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Napier BS, Matzeu G, Presti ML, Omenetto FG. Dry Spun, Bulk‐Functionalized rGO Fibers for Textile Integrated Potentiometric Sensors. Adv Materials Technologies 2022;7:2101508. [DOI: 10.1002/admt.202101508] [Reference Citation Analysis]
58 Dufil G, Bernacka-Wojcik I, Armada-Moreira A, Stavrinidou E. Plant Bioelectronics and Biohybrids: The Growing Contribution of Organic Electronic and Carbon-Based Materials. Chem Rev 2021. [PMID: 34928592 DOI: 10.1021/acs.chemrev.1c00525] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
59 Kałuża D, Michalska A, Maksymiuk K. Solid‐Contact Ion‐Selective Electrodes Paving the Way for Improved Non‐Zero Current Sensors: A Minireview. ChemElectroChem 2022;9. [DOI: 10.1002/celc.202100892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Liao C, Zhong L, Tang Y, Sun Z, Lin K, Xu L, Lyu Y, He D, He Y, Ma Y, Bao Y, Gan S, Niu L. Solid-Contact Potentiometric Anion Sensing Based on Classic Silver/Silver Insoluble Salts Electrodes without Ion-Selective Membrane. Membranes (Basel) 2021;11:959. [PMID: 34940460 DOI: 10.3390/membranes11120959] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
61 Chandrasekaran S, Zhang C, Shu Y, Wang H, Chen S, Nesakumar Jebakumar Immanuel Edison T, Liu Y, Karthik N, Misra R, Deng L, Yin P, Ge Y, Al-hartomy OA, Al-ghamdi A, Wageh S, Zhang P, Bowen C, Han Z. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coordination Chemistry Reviews 2021;449:214209. [DOI: 10.1016/j.ccr.2021.214209] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
62 Ivanišević I, Milardović S, Ressler A, Kassal P. Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. Chemosensors 2021;9:333. [DOI: 10.3390/chemosensors9120333] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 Kalisz J, Węgrzyn K, Maksymiuk K, Michalska A. Fluorimetric Readout of Ion Selective Electrode Signals Operating under Chronopotentiometric Conditions. ChemElectroChem 2021;8:4129-34. [DOI: 10.1002/celc.202100884] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
64 Liu Y, Zeng X, Waterhouse GI, Jiang X, Zhang Z, Yu L. Potential stability improvement in Pb2+ ion selective electrodes by applying hydrophobic polyaniline as ion-to-electron transducer. Synthetic Metals 2021;281:116898. [DOI: 10.1016/j.synthmet.2021.116898] [Reference Citation Analysis]
65 Ding R, Cheong YH, Zhao K, Lisak G. Acidified paper substrates for microfluidic solution sampling integrated with potentiometric sensors for determination of heavy metals. Sensors and Actuators B: Chemical 2021;347:130567. [DOI: 10.1016/j.snb.2021.130567] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
66 Zeng X, Jiang W, Waterhouse GIN, Jiang X, Zhang Z, Yu L. Stable Pb(II) ion-selective electrodes with a low detection limit using silver nanoparticles/polyaniline as the solid contact. Mikrochim Acta 2021;188:393. [PMID: 34698939 DOI: 10.1007/s00604-021-05046-y] [Reference Citation Analysis]
67 Sailapu SK, Sabaté N, Bakker E. Self-Powered Potentiometric Sensors with Memory. ACS Sens 2021;6:3650-6. [PMID: 34582164 DOI: 10.1021/acssensors.1c01273] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
68 Cheong YH, Lisak G. Physically Tailoring Ion Fluxes by Introducing Foamlike Structures into Polymeric Membranes of Solid Contact Ion-Selective Electrodes. ACS Sens 2021;6:3667-76. [PMID: 34585917 DOI: 10.1021/acssensors.1c01413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Criscuolo F, Hanitra MIN, Taurino I, Carrara S, De Micheli G. All-Solid-State Ion-Selective Electrodes: A Tutorial for Correct Practice. IEEE Sensors J 2021;21:22143-54. [DOI: 10.1109/jsen.2021.3099209] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
70 Tang Y, Gan S, Zhong L, Sun Z, Xu L, Liao C, Lin K, Cui X, He D, Ma Y, Wang W, Niu L. Lattice Proton Intercalation to Regulate WO 3 ‐Based Solid‐Contact Wearable pH Sensor for Sweat Analysis. Adv Funct Materials 2022;32:2107653. [DOI: 10.1002/adfm.202107653] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
71 Ma S, Wang Y, Zhang W, Wang Y, Li G. Solid-Contact Ion-Selective Electrodes for Histamine Determination. Sensors (Basel) 2021;21:6658. [PMID: 34640978 DOI: 10.3390/s21196658] [Reference Citation Analysis]
72 Wang D, Xin Y, Yao D, Li X, Ning H, Zhang H, Wang Y, Ju X, He Z, Yang Z, Fan W, Li P, Zheng Y. Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Adv Funct Materials 2022;32:2104162. [DOI: 10.1002/adfm.202104162] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
73 Bakhtiarvand Bakhtiari A, Mohammadi B, Moazzam P, Didehroshan D, Razmjou A. An Evolving Insight into the Progress of Material Design for Membrane‐Based Electrochemical Lithium Ion Detection. Adv Mater Interfaces 2021;8:2100571. [DOI: 10.1002/admi.202100571] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Amali R, Lim H, Ibrahim I, Huang N, Zainal Z, Ahmad S. Significance of nanomaterials in electrochemical sensors for nitrate detection: A review. Trends in Environmental Analytical Chemistry 2021;31:e00135. [DOI: 10.1016/j.teac.2021.e00135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
75 Kim M, Lee J, Park DJ, Lee J, Myung NV, Kwon SH, Lee KH. Highly stable potentiometric sensor with reduced graphene oxide aerogel as a solid contact for detection of nitrate and calcium ions. Journal of Electroanalytical Chemistry 2021;897:115553. [DOI: 10.1016/j.jelechem.2021.115553] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
76 Teymourian H, Tehrani F, Mahato K, Wang J. Lab under the Skin: Microneedle Based Wearable Devices. Adv Healthc Mater 2021;10:e2002255. [PMID: 33646612 DOI: 10.1002/adhm.202002255] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 37.0] [Reference Citation Analysis]
77 Kisiel A, Korol D, Michalska A, Maksymiuk K. Polypyrrole nanoparticles of high electroactivity. Simple synthesis methods and studies on electrochemical properties. Electrochimica Acta 2021;390:138787. [DOI: 10.1016/j.electacta.2021.138787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA Jr, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021;6:2787-801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 19.0] [Reference Citation Analysis]
79 Wang S, Zhong L, Gan S, Tang Y, Qiu S, Lyu Y, Ma Y, Niu L. Defective vs high-quality graphene for solid-contact ion-selective electrodes: Effects of capacitance and hydrophobicity. Electrochemistry Communications 2021;129:107091. [DOI: 10.1016/j.elecom.2021.107091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
80 Al-hardan NH, Hamid MAA, Firdaus-raih M, Keng LK, Al-khalqi EM, Jalar A. Calcium ion-selective electrode based on the facile synthesis of CuO over Cu wires. J Mater Sci: Mater Electron 2021;32:20240-51. [DOI: 10.1007/s10854-021-06527-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Guzinski M, Lindner E, Pendley B, Chaum E. Polymeric membrane-modified voltammetric sensors for lipophilic analytes with nanomolar detection limit: Key parameters influencing the response characteristics. Anal Chim Acta 2021;1171:338642. [PMID: 34112432 DOI: 10.1016/j.aca.2021.338642] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Niemiec B, Lenar N, Piech R, Skupień K, Paczosa-Bator B. Graphene Flakes Decorated with Dispersed Gold Nanoparticles as Nanomaterial Layer for ISEs. Membranes (Basel) 2021;11:548. [PMID: 34357198 DOI: 10.3390/membranes11070548] [Reference Citation Analysis]
83 Bartoszewicz B, Lewenstam A, Migdalski J. Solid-Contact Electrode with Composite PVC-Based 3D-Printed Membrane. Optimization of Fabrication and Performance. Sensors (Basel) 2021;21:4909. [PMID: 34300652 DOI: 10.3390/s21144909] [Reference Citation Analysis]
84 Zeng X, Liu Y, Jiang X, Waterhouse GI, Zhang Z, Yu L. Improving the stability of Pb2+ ion-selective electrodes by using 3D polyaniline nanowire arrays as the inner solid-contact transducer. Electrochimica Acta 2021;384:138414. [DOI: 10.1016/j.electacta.2021.138414] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
85 Su Y, Liu T, Song C, Fan A, Zhu N, Sun B, Yang C. Using MoS2/Fe3O4 as Ion-Electron Transduction Layer to Manufacture All-Solid-State Ion-Selective Electrode for Determination of Serum Potassium. Chemosensors 2021;9:155. [DOI: 10.3390/chemosensors9070155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Li H, Wu G, Weng Z, Sun H, Nistala R, Zhang Y. Microneedle-Based Potentiometric Sensing System for Continuous Monitoring of Multiple Electrolytes in Skin Interstitial Fluids. ACS Sens 2021;6:2181-90. [PMID: 34038108 DOI: 10.1021/acssensors.0c02330] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
87 Rutkowska M, Lindfors T, Boeva Z, Strawski M. Low-cost flexible laminated graphene paper solid-contact ion-selective electrodes. Sensors and Actuators B: Chemical 2021;337:129808. [DOI: 10.1016/j.snb.2021.129808] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
88 Moaaz EM, Mahmoud AM, Fayed AS, Rezk MR, Abdel‐moety EM. Determination of Tedizolid Phosphate Using Graphene Nanocomposite Based Solid Contact Ion Selective Electrode; Green Profile Assessment by Eco‐scale and GAPI Approach. Electroanalysis 2021;33:1895-901. [DOI: 10.1002/elan.202100067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
89 Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021;2:20200165. [DOI: 10.1002/viw.20200165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
90 Abdel-Haleem FM, Mahmoud S, Abdel-Ghani NET, El Nashar RM, Bechelany M, Barhoum A. Polyvinyl Chloride Modified Carbon Paste Electrodes for Sensitive Determination of Levofloxacin Drug in Serum, Urine, and Pharmaceutical Formulations. Sensors (Basel) 2021;21:3150. [PMID: 34062895 DOI: 10.3390/s21093150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
91 Lenar N, Piech R, Paczosa-Bator B. Potentiometric Sensor with High Capacity Composite Composed of Ruthenium Dioxide and Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate. Materials (Basel) 2021;14:1891. [PMID: 33920197 DOI: 10.3390/ma14081891] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
92 Abd-Rabboh HSM, E Amr AE, Almehizia AA, Kamel AH. All-Solid-State Potentiometric Ion-Sensors Based on Tailored Imprinted Polymers for Pholcodine Determination. Polymers (Basel) 2021;13:1192. [PMID: 33917178 DOI: 10.3390/polym13081192] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
93 Lenar N, Piech R, Wyrwa J, Paczosa-Bator B. Potassium-Selective Solid-Contact Electrode with High-Capacitance Hydrous Iridium Dioxide in the Transduction Layer. Membranes (Basel) 2021;11:259. [PMID: 33916506 DOI: 10.3390/membranes11040259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Lenar N, Piech R, Paczosa-Bator B. High Capacity Nanocomposite Layers Based on Nanoparticles of Carbon Materials and Ruthenium Dioxide for Potassium Sensitive Electrode. Materials (Basel) 2021;14:1308. [PMID: 33803173 DOI: 10.3390/ma14051308] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
95 Liu Y, Yu J, Zhang F, He P. All-Solid-State Potentiometric Aptasensing of Streptomycin Based on Signal Amplification by Polycation. IEEE Sensors J 2021;21:6300-5. [DOI: 10.1109/jsen.2020.3041305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Paut A, Prkić A, Mitar I, Bošković P, Jozić D, Jakić M, Vukušić T. Potentiometric Response of Solid-State Sensors Based on Ferric Phosphate for Iron(III) Determination. Sensors (Basel) 2021;21:1612. [PMID: 33668940 DOI: 10.3390/s21051612] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
97 Mohan B, Kumar S, Ma S, You H, Ren P. Mechanistic Insight into Charge and Energy Transfers of Luminescent Metal–Organic Frameworks Based Sensors for Toxic Chemicals. Adv Sustainable Syst 2021;5:2000293. [DOI: 10.1002/adsu.202000293] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
98 Gadhari NS, Gholave JV, Patil SS, Patil VR, Upadhyay SS. Enantioselective high performance new solid contact ion-selective electrode potentiometric sensor based on sulphated γ-cyclodextrin‑carbon nanofiber composite for determination of multichiral drug moxifloxacin. Journal of Electroanalytical Chemistry 2021;882:114981. [DOI: 10.1016/j.jelechem.2021.114981] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
99 Kozma J, Papp S, Gyurcsányi RE. Solid-contact ion-selective electrodes based on ferrocene-functionalized multi-walled carbon nanotubes. Electrochemistry Communications 2021;123:106903. [DOI: 10.1016/j.elecom.2020.106903] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
100 Ivanko I, Lindfors T, Emanuelsson R, Sjödin M. Conjugated redox polymer with poly(3,4-ethylenedioxythiophene) backbone and hydroquinone pendant groups as the solid contact in potassium-selective electrodes. Sensors and Actuators B: Chemical 2021;329:129231. [DOI: 10.1016/j.snb.2020.129231] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
101 Abd-Rabboh HSM, Amr AEE, Kamel AH, Al-Omar MA, Sayed AYA. Integrated all-solid-state sulfite sensors modified with two different ion-to-electron transducers: rapid assessment of sulfite in beverages. RSC Adv 2021;11:3783-91. [PMID: 35424314 DOI: 10.1039/d0ra09903a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
102 Zhang H, Ding G, Cui D, Yousaf A, Chen L, Wang X, Shan G, Sun C, Su Z. A fluorescent porous covalent-organic polymer (COP-3) for highly selective and sensitive detection of Fe 3+ in aqueous solution. New J Chem 2021;45:2370-3. [DOI: 10.1039/d0nj05698g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Zayed M, Abbas AA, Mahmoud WH, Ali AE, Mohamed GG. Development and surface characterization of a bis(aminotriazoles) derivative based renewable carbon paste electrode for selective potentiometric determination of Cr(III) ion in real water samples. Microchemical Journal 2020;159:105478. [DOI: 10.1016/j.microc.2020.105478] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
104 Li J, Qin W. An integrated all-solid-state screen-printed potentiometric sensor based on a three-dimensional self-assembled graphene aerogel. Microchemical Journal 2020;159:105453. [DOI: 10.1016/j.microc.2020.105453] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
105 Kim J, Kim DH, Yang JC, Kim JS, Lee JH, Jung SH. Beryllium-Ion-Selective PEDOT Solid Contact Electrode Based on 9,10-Dinitrobenzo-9-Crown-3-Ether. Sensors (Basel) 2020;20:E6375. [PMID: 33182260 DOI: 10.3390/s20216375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
106 Wang Z, Shin J, Park J, Lee H, Kim D, Liu H. Engineering Materials for Electrochemical Sweat Sensing. Adv Funct Mater 2021;31:2008130. [DOI: 10.1002/adfm.202008130] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
107 Maksymiuk K, Stelmach E, Michalska A. Unintended Changes of Ion-Selective Membranes Composition-Origin and Effect on Analytical Performance. Membranes (Basel) 2020;10:E266. [PMID: 32998393 DOI: 10.3390/membranes10100266] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]