BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B 2018;6:4274-92. [DOI: 10.1039/c8tb01245h] [Cited by in Crossref: 93] [Cited by in F6Publishing: 116] [Article Influence: 23.3] [Reference Citation Analysis]
Number Citing Articles
1 Lin Y, Zhang H, Zou Y, Lu K, Li L, Wu Y, Cheng J, Zhang Y, Chen H, Yu Q. Superhydrophobic photothermal coatings based on candle soot for prevention of biofilm formation. Journal of Materials Science & Technology 2023;132:18-26. [DOI: 10.1016/j.jmst.2022.06.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Wei Y, Liu J, Liu G, Gao S, Wu D, Yang L, Luo R, Zhang F, Wang Y. Hemocompatibility Multi-in-One Hydrogel Coating with ROS-Triggered Inflammation Suppression and Anti-Infection Properties for Blood-Contacting Device. Biomacromolecules 2022. [PMID: 36166656 DOI: 10.1021/acs.biomac.2c00815] [Reference Citation Analysis]
3 Liao X, Niu K, Liu F, Zhang Y. A Multiple-Stimuli-Responsive Amphiphilic Copolymer for Antifouling and Antibacterial Functionality via a “Resistance–Kill–Release” Mechanism. Molecules 2022;27:5059. [DOI: 10.3390/molecules27165059] [Reference Citation Analysis]
4 Iravani S. Silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses. Crit Rev Microbiol 2022;:1-13. [PMID: 35930235 DOI: 10.1080/1040841X.2022.2108309] [Reference Citation Analysis]
5 Liu B, Li J, Zhang Z, Roland JD, Lee BP. pH responsive antibacterial hydrogel utilizing catechol–boronate complexation chemistry. Chemical Engineering Journal 2022;441:135808. [DOI: 10.1016/j.cej.2022.135808] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Dutt Y, Dhiman R, Singh T, Vibhuti A, Gupta A, Pandey RP, Raj VS, Chang C, Priyadarshini A. The Association between Biofilm Formation and Antimicrobial Resistance with Possible Ingenious Bio-Remedial Approaches. Antibiotics 2022;11:930. [DOI: 10.3390/antibiotics11070930] [Reference Citation Analysis]
7 Qu Y, Zhu X, Kong R, Lu K, Fan T, Yu Q, Wang G. Dual-functional antibacterial hybrid film with antifouling and NIR-activated bactericidal properties. Composites Part B: Engineering 2022. [DOI: 10.1016/j.compositesb.2022.110143] [Reference Citation Analysis]
8 Kim YK, Roy PK, Ashrafudoulla M, Nahar S, Toushik SH, Hossain MI, Mizan MFR, Park SH, Ha S. Antibiofilm effects of quercetin against Salmonella enterica biofilm formation and virulence, stress response, and quorum-sensing gene expression. Food Control 2022;137:108964. [DOI: 10.1016/j.foodcont.2022.108964] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
9 Vahdati SN, Behboudi H, Navasatli SA, Tavakoli S, Safavi M. New insights into the inhibitory roles and mechanisms of D-amino acids in bacterial biofilms in medicine, industry, and agriculture. Microbiol Res 2022;263:127107. [PMID: 35843196 DOI: 10.1016/j.micres.2022.127107] [Reference Citation Analysis]
10 Fernandes TA, Costa IFM, Jorge P, Sousa AC, André V, Cabral RG, Cerca N, Kirillov AM. Hybrid Silver(I)-Doped Soybean Oil and Potato Starch Biopolymer Films to Combat Bacterial Biofilms. ACS Appl Mater Interfaces 2022;14:25104-14. [PMID: 35621184 DOI: 10.1021/acsami.2c03010] [Reference Citation Analysis]
11 Zhao X, Xin Q, Yang D, Zhai X, Li J, Chen X, Li J. Polylactic acid film surface functionalized by zwitterionic poly[2-(methacryloyloxy)ethyl choline phosphate] with improved biocompatibility. Colloids Surf B Biointerfaces 2022;214:112461. [PMID: 35305321 DOI: 10.1016/j.colsurfb.2022.112461] [Reference Citation Analysis]
12 Wang X, Shan M, Zhang S, Chen X, Liu W, Chen J, Liu X. Stimuli-Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications. Adv Sci (Weinh) 2022;9:e2104843. [PMID: 35224893 DOI: 10.1002/advs.202104843] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
13 Huang Y, Zou L, Wang J, Jin Q, Ji J. Stimuli-responsive nanoplatforms for antibacterial applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1775. [PMID: 35142071 DOI: 10.1002/wnan.1775] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Filice S, Sciuto EL, Scalese S, Faro G, Libertino S, Corso D, Timpanaro RM, Laganà P, Coniglio MA. Innovative Antibiofilm Smart Surface against Legionella for Water Systems. Microorganisms 2022;10:870. [DOI: 10.3390/microorganisms10050870] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS Appl Bio Mater . [DOI: 10.1021/acsabm.1c01006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Shen J, Chen R, Wang J, Zhao Z, Gu R, Brash JL, Chen H. One-step surface modification strategy with composition-tunable microgels: From bactericidal surface to cell-friendly surface. Colloids Surf B Biointerfaces 2022;212:112372. [PMID: 35114438 DOI: 10.1016/j.colsurfb.2022.112372] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Roy PK, Song MG, Park SY. Impact of Quercetin against Salmonella Typhimurium Biofilm Formation on Food-Contact Surfaces and Molecular Mechanism Pattern. Foods 2022;11:977. [PMID: 35407064 DOI: 10.3390/foods11070977] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
18 Quek J, Uroro E, Goswami N, Vasilev K. Design principles for bacteria-responsive antimicrobial nanomaterials. Materials Today Chemistry 2022;23:100606. [DOI: 10.1016/j.mtchem.2021.100606] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Carrara S, Rouvier F, Auditto S, Brunel F, Jeanneau C, Camplo M, Sergent M, About I, Bolla JM, Raimundo JM. Nanoarchitectonics of Electrically Activable Phosphonium Self-Assembled Monolayers to Efficiently Kill and Tackle Bacterial Infections on Demand. Int J Mol Sci 2022;23:2183. [PMID: 35216303 DOI: 10.3390/ijms23042183] [Reference Citation Analysis]
20 Xu LC, Siedlecki CA. Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation. J Biomed Mater Res A 2022. [PMID: 35128791 DOI: 10.1002/jbm.a.37369] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Arndt NB, Schlüter F, Böckmann M, Adolphs T, Arlinghaus HF, Doltsinis NL, Ravoo BJ. Self-Assembled Monolayers of Arylazopyrazoles on Glass and Silicon Oxide: Photoisomerization and Photoresponsive Wettability. Langmuir 2022;38:735-42. [PMID: 34989243 DOI: 10.1021/acs.langmuir.1c02651] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Uneputty A, Dávila-lezama A, Garibo D, Oknianska A, Bogdanchikova N, Hernández-sánchez J, Susarrey-arce A. Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation. Colloid and Interface Science Communications 2022;46:100560. [DOI: 10.1016/j.colcom.2021.100560] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
23 Maher S, Linklater D, Rastin H, Liao ST, Martins de Sousa K, Lima-Marques L, Kingshott P, Thissen H, Ivanova EP, Losic D. Advancing of 3D-Printed Titanium Implants with Combined Antibacterial Protection Using Ultrasharp Nanostructured Surface and Gallium-Releasing Agents. ACS Biomater Sci Eng 2021. [PMID: 34963288 DOI: 10.1021/acsbiomaterials.1c01030] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Li X, Montague EC, Pollinzi A, Lofts A, Hoare T. Design of Smart Size-, Surface-, and Shape-Switching Nanoparticles to Improve Therapeutic Efficacy. Small 2021;:e2104632. [PMID: 34936204 DOI: 10.1002/smll.202104632] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Mathew A, Abraham S, Stephen S, Babu AS, Gowd SG, Vinod V, Biswas R, Nair MB, Unni AKK, Menon D. Superhydrophilic multifunctional nanotextured titanium dental implants: in vivo short and long-term response in a porcine model. Biomater Sci 2021. [PMID: 34935788 DOI: 10.1039/d1bm01223a] [Reference Citation Analysis]
26 Ma B, Chen Y, Hu G, Zeng Q, Lv X, Oh DH, Fu X, Jin Y. Ovotransferrin Antibacterial Peptide Coupling Mesoporous Silica Nanoparticle as an Effective Antibiotic Delivery System for Treating Bacterial Infection In Vivo. ACS Biomater Sci Eng 2021. [PMID: 34936344 DOI: 10.1021/acsbiomaterials.1c01267] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
27 Riduan SN, Zhang Y. Nanostructured Surfaces with Multimodal Antimicrobial Action. Acc Chem Res 2021;54:4508-17. [PMID: 34874710 DOI: 10.1021/acs.accounts.1c00542] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 González-Henríquez CM, Rodríguez-Umanzor FE, Alegría-Gómez MN, Terraza-Inostroza CA, Martínez-Campos E, Cue-López R, Sarabia-Vallejos MA, García-Herrera C, Rodríguez-Hernández J. Wrinkling on Stimuli-Responsive Functional Polymer Surfaces as a Promising Strategy for the Preparation of Effective Antibacterial/Antibiofouling Surfaces. Polymers (Basel) 2021;13:4262. [PMID: 34883766 DOI: 10.3390/polym13234262] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Wang Y, Wang F, Zhang H, Yu B, Cong H, Shen Y. Antibacterial material surfaces/interfaces for biomedical applications. Applied Materials Today 2021;25:101192. [DOI: 10.1016/j.apmt.2021.101192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
30 Costa RC, Nagay BE, Bertolini M, Costa-Oliveira BE, Sampaio AA, Retamal-Valdes B, Shibli JA, Feres M, Barão VAR, Souza JGS. Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci 2021;298:102551. [PMID: 34757285 DOI: 10.1016/j.cis.2021.102551] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
31 Zhang J, Yang J, Li Q, Ding J, Liu L, Sun T, Li H. Preparation of WPU-based super-amphiphobic coatings functionalized by in situ modified SiOx particles and their anti-biofilm mechanism. Biomater Sci 2021;9:7504-21. [PMID: 34643189 DOI: 10.1039/d1bm01285a] [Reference Citation Analysis]
32 Richter AM, Buchberger G, Stifter D, Duchoslav J, Hertwig A, Bonse J, Heitz J, Schwibbert K. Spatial Period of Laser-Induced Surface Nanoripples on PET Determines Escherichia coli Repellence. Nanomaterials (Basel) 2021;11:3000. [PMID: 34835763 DOI: 10.3390/nano11113000] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 Zhan Y, Yu S, Amirfazli A, Rahim Siddiqui A, Li W. Recent Advances in Antibacterial Superhydrophobic Coatings. Adv Eng Mater 2022;24:2101053. [DOI: 10.1002/adem.202101053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
34 Al-Wrafy FA, Al-Gheethi AA, Ponnusamy SK, Noman EA, Fattah SA. Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical review. Chemosphere 2021;:132603. [PMID: 34678351 DOI: 10.1016/j.chemosphere.2021.132603] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Tian X, Xue R, Yang F, Yin L, Luan S, Tang H. Single-Chain Nanoparticle-Based Coatings with Improved Bactericidal Activity and Antifouling Properties. Biomacromolecules 2021;22:4306-15. [PMID: 34569790 DOI: 10.1021/acs.biomac.1c00865] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
36 Maher S, Linklater D, Rastin H, Le Yap P, Ivanova EP, Losic D. Tailoring Additively Manufactured Titanium Implants for Short-Time Pediatric Implantations with Enhanced Bactericidal Activity. ChemMedChem 2021. [PMID: 34606176 DOI: 10.1002/cmdc.202100580] [Reference Citation Analysis]
37 Xue R, Zhang X, Wei Y, Zhao Z, Liu H, Yang F, Yin L, Song Z, Luan S, Tang H. A sulfonate-based polypeptide toward infection-resistant coatings. Biomater Sci 2021;9:6425-33. [PMID: 34582529 DOI: 10.1039/d1bm00951f] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
38 Schmidt M, Franken A, Wilms D, Fehm T, Neubauer HJ, Schmidt S. Selective Adhesion and Switchable Release of Breast Cancer Cells via Hyaluronic Acid Functionalized Dual Stimuli-Responsive Microgel Films. ACS Appl Bio Mater 2021;4:6371-80. [PMID: 35006876 DOI: 10.1021/acsabm.1c00586] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Li S, Fan Y, Liu Y, Niu S, Han Z, Ren L. Smart Bionic Surfaces with Switchable Wettability and Applications. J Bionic Eng 2021;18:473-500. [PMID: 34131422 DOI: 10.1007/s42235-021-0038-7] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
40 Sahoo A, Swain SS, Behera A, Sahoo G, Mahapatra PK, Panda SK. Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review. Front Microbiol 2021;12:661195. [PMID: 34248873 DOI: 10.3389/fmicb.2021.661195] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
41 He X, Gopinath K, Sathishkumar G, Guo L, Zhang K, Lu Z, Li C, Kang E, Xu L. UV-Assisted Deposition of Antibacterial Ag–Tannic Acid Nanocomposite Coating. ACS Appl Mater Interfaces 2021;13:20708-17. [DOI: 10.1021/acsami.1c03566] [Cited by in Crossref: 1] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
42 Phoungtawee P, Seidi F, Treetong A, Warin C, Klamchuen A, Crespy D. Polymers with Hemiaminal Ether Linkages for pH-Responsive Antibacterial Materials. ACS Macro Lett 2021;10:365-9. [PMID: 35549058 DOI: 10.1021/acsmacrolett.1c00009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
43 Xiao Q, Mai B, Nie Y, Yuan C, Xiang M, Shi Z, Wu J, Leung W, Xu C, Yao SQ, Wang P, Gao L. In Vitro and In Vivo Demonstration of Ultraefficient and Broad-Spectrum Antibacterial Agents for Photodynamic Antibacterial Chemotherapy. ACS Appl Mater Interfaces 2021;13:11588-96. [PMID: 33656316 DOI: 10.1021/acsami.0c20837] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
44 Pierau L, Versace DL. Light and Hydrogels: A New Generation of Antimicrobial Materials. Materials (Basel) 2021;14:787. [PMID: 33562335 DOI: 10.3390/ma14040787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
45 Senevirathne SWMAI, Hasan J, Mathew A, Woodruff M, Yarlagadda PKDV. Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective. RSC Adv 2021;11:1883-900. [DOI: 10.1039/d0ra08878a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
46 Wang B, Zeng J, Guo Y, Liang L, Jin Y, Qian S, Miao R, Hu L, Lu F. Reversible grafting of antibiotics onto contact lens mediated by labile chemical bonds for smart prevention and treatment of corneal bacterial infections. Journal of Materials Science & Technology 2021;61:169-75. [DOI: 10.1016/j.jmst.2020.05.062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
47 Kong Y, Tang X, Zhao Y, Chen X, Yao K, Zhang L, Han Q, Zhang L, Ling J, Wang Y, Yang Y. Degradable tough chitosan dressing for skin wound recovery. Nanotechnology Reviews 2020;9:1576-85. [DOI: 10.1515/ntrev-2020-0105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
48 Zaccarian F, Baker MB, Webber MJ. Biomedical Uses of Sulfobetaine-Based Zwitterionic Materials. Organic Materials 2020;02:342-57. [DOI: 10.1055/s-0040-1721741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Roy A, Srivastava SK, Shrivastava SL, Mandal AK. Hierarchical Assembly of Nanodimensional Silver-Silver Oxide Physical Gels Controlling Nosocomial Infections. ACS Omega 2020;5:32617-31. [PMID: 33376899 DOI: 10.1021/acsomega.0c04957] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
50 Rodríguez-Cerdeira C, Martínez-Herrera E, Carnero-Gregorio M, López-Barcenas A, Fabbrocini G, Fida M, El-Samahy M, González-Cespón JL. Pathogenesis and Clinical Relevance of Candida Biofilms in Vulvovaginal Candidiasis. Front Microbiol 2020;11:544480. [PMID: 33262741 DOI: 10.3389/fmicb.2020.544480] [Cited by in Crossref: 4] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
51 Li Z, Wang S, Yang X, Liu H, Shan Y, Xu X, Shang S, Song Z. Antimicrobial and antifouling coating constructed using rosin acid-based quaternary ammonium salt and N-vinylpyrrolidone via RAFT polymerization. Applied Surface Science 2020;530:147193. [DOI: 10.1016/j.apsusc.2020.147193] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
52 Yousefzade O, Katsarava R, Puiggalí J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics (Basel) 2020;5:E49. [PMID: 33050136 DOI: 10.3390/biomimetics5040049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
53 Yang Y, Guo Y, Zhou Y, Gao Y, Wang X, Wang J, Niu X. Discovery of a Novel Natural Allosteric Inhibitor That Targets NDM-1 Against Escherichia coli. Front Pharmacol 2020;11:581001. [PMID: 33123013 DOI: 10.3389/fphar.2020.581001] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
54 Li P, Yang X, Zhang X, Pan J, Tang W, Cao W, Zhou J, Gong X, Xing X. Surface chemistry-dependent antibacterial and antibiofilm activities of polyamine-functionalized carbon quantum dots. J Mater Sci 2020;55:16744-57. [DOI: 10.1007/s10853-020-05262-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
55 Linklater DP, Baulin VA, Juodkazis S, Crawford RJ, Stoodley P, Ivanova EP. Mechano-bactericidal actions of nanostructured surfaces. Nat Rev Microbiol 2021;19:8-22. [PMID: 32807981 DOI: 10.1038/s41579-020-0414-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 106] [Article Influence: 19.5] [Reference Citation Analysis]
56 Zhang Y, Pi Y, Hua Y, Xie J, Wang C, Guo K, Zhao Z, Yong Y. Bacteria responsive polyoxometalates nanocluster strategy to regulate biofilm microenvironments for enhanced synergetic antibiofilm activity and wound healing. Theranostics 2020;10:10031-45. [PMID: 32929332 DOI: 10.7150/thno.49008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
57 Paunova-Krasteva T, Haladjova E, Petrov P, Forys A, Trzebicka B, Topouzova-Hristova T, R Stoitsova S. Destruction of Pseudomonas aeruginosa pre-formed biofilms by cationic polymer micelles bearing silver nanoparticles. Biofouling 2020;36:679-95. [PMID: 32741293 DOI: 10.1080/08927014.2020.1799354] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
58 Hussain MW, Bhardwaj V, Giri A, Chande A, Patra A. Multifunctional ionic porous frameworks for CO2 conversion and combating microbes. Chem Sci 2020;11:7910-20. [PMID: 34123075 DOI: 10.1039/d0sc01658f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
59 Balaure PC, Grumezescu AM. Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part I: Molecular Basis of Biofilm Recalcitrance. Passive Anti-Biofouling Nanocoatings. Nanomaterials (Basel) 2020;10:E1230. [PMID: 32599948 DOI: 10.3390/nano10061230] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
60 Strokov K, Schäfer AH, Dobrindt U, Galstyan A. Facile Fabrication of Silicon(IV)Phthalocyanine-Embedded Poly(vinyl alcohol)-Based Antibacterial and Antifouling Interfaces. ACS Appl Bio Mater 2020;3:3751-60. [PMID: 35025245 DOI: 10.1021/acsabm.0c00347] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
61 Piedade A, Pinho A, Branco R, Morais P. Evaluation of antimicrobial activity of ZnO based nanocomposites for the coating of non-critical equipment in medical-care facilities. Applied Surface Science 2020;513:145818. [DOI: 10.1016/j.apsusc.2020.145818] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
62 Bhuyan T, Singh AK, Ghosh SS, Bandyopadhyay D. Magnetotactic curcumin iButtonbots as efficient bactericidal agents. Bull Mater Sci 2020;43. [DOI: 10.1007/s12034-020-2076-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Bai S, Li X, Zhao Y, Ren L, Yuan X. Antifogging/Antibacterial Coatings Constructed by N-Hydroxyethylacrylamide and Quaternary Ammonium-Containing Copolymers. ACS Appl Mater Interfaces 2020;12:12305-16. [PMID: 32068389 DOI: 10.1021/acsami.9b21871] [Cited by in Crossref: 9] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
64 Song B, Zhang E, Han X, Zhu H, Shi Y, Cao Z. Engineering and Application Perspectives on Designing an Antimicrobial Surface. ACS Appl Mater Interfaces 2020;12:21330-41. [PMID: 32011846 DOI: 10.1021/acsami.9b19992] [Cited by in Crossref: 28] [Cited by in F6Publishing: 51] [Article Influence: 14.0] [Reference Citation Analysis]
65 Singh G, Satija P, Singh B, Sinha S, Sehgal R, Sahoo SC. Design, crystal structures and sustainable synthesis of family of antipyrine derivatives: Abolish to bacterial and parasitic infection. Journal of Molecular Structure 2020;1199:127010. [DOI: 10.1016/j.molstruc.2019.127010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
66 Nazeer N, Ahmed M. Hydrophilic and salt responsive polymers promote depletion aggregation of bacteria. European Polymer Journal 2019;119:148-54. [DOI: 10.1016/j.eurpolymj.2019.07.033] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
67 Lv J, Jin J, Chen J, Cai B, Jiang W. Antifouling and Antibacterial Properties Constructed by Quaternary Ammonium and Benzyl Ester Derived from Lysine Methacrylamide. ACS Appl Mater Interfaces 2019;11:25556-68. [DOI: 10.1021/acsami.9b06281] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
68 Wei T, Yu Q, Chen H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv Healthc Mater 2019;8:e1801381. [PMID: 30609261 DOI: 10.1002/adhm.201801381] [Cited by in Crossref: 176] [Cited by in F6Publishing: 172] [Article Influence: 58.7] [Reference Citation Analysis]