1 |
Motiei M, Mišík O, Truong TH, Lizal F, Humpolíček P, Sedlařík V, Sáha P. Engineering of inhalable nano-in-microparticles for co-delivery of small molecules and miRNAs. Discover Nano 2023;18:38. [DOI: 10.1186/s11671-023-03781-0] [Reference Citation Analysis]
|
2 |
Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022;190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
|
3 |
Penczek S, Biela T, Cypryk M, Duda A, Lapienis G, Kubisa P, Pretula J, Slomkowski S, Szymanski R. Ionic and Coordination Ring‐Opening Polymerization. Macromolecular Engineering 2022. [DOI: 10.1002/9783527815562.mme0026] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
4 |
Ni P, Liu J, He J, Zhang M. A Codelivery System of Anticancer Drug Doxorubicin and Tumor-Suppressor Gene p53 Based on Polyphosphoester for Lung Cancer Therapy. Biomaterial Engineering 2022. [DOI: 10.1007/978-981-16-5419-0_27] [Reference Citation Analysis]
|
5 |
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. Advanced Therapeutics 2021;4:2100118. [DOI: 10.1002/adtp.202100118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
6 |
Hao D, Zhang Z, Ji Y. Responsive polymeric drug delivery systems for combination anticancer therapy: experimental design and computational insights. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.1960340] [Reference Citation Analysis]
|
7 |
Ringaci A, Yaremenko A, Shevchenko K, Zvereva S, Nikitin M. Metal-organic frameworks for simultaneous gene and small molecule delivery in vitro and in vivo. Chemical Engineering Journal 2021;418:129386. [DOI: 10.1016/j.cej.2021.129386] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
|
8 |
Tian H, Huang Y, He J, Zhang M, Ni P. CD147 Monoclonal Antibody Targeted Reduction-Responsive Camptothecin Polyphosphoester Nanomedicine for Drug Delivery in Hepatocellular Carcinoma Cells. ACS Appl Bio Mater 2021;4:4422-31. [PMID: 35006854 DOI: 10.1021/acsabm.1c00177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Li S, Lu H, Kang X, Wang P, Luo Y. DBU and TU synergistically induced ring-opening polymerization of phosphate esters: a mechanism study. New J Chem 2021;45:1953-8. [DOI: 10.1039/d0nj05422d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Ni P, Liu J, He J, Zhang M. A Codelivery System of Anticancer Drug Doxorubicin and Tumor-Suppressor Gene p53 Based on Polyphosphoester for Lung Cancer Therapy. Biomaterial Engineering 2021. [DOI: 10.1007/978-981-33-6198-0_27-1] [Reference Citation Analysis]
|
11 |
Lapienis G. Ring-Opening Polymerization of Cyclic Phosphorus Monomers. Reference Module in Materials Science and Materials Engineering 2019. [DOI: 10.1016/b978-0-12-803581-8.01387-4] [Reference Citation Analysis]
|
12 |
Tambe P, Sayed N, Paknikar KM, Gajbhiye V. Poly(Phospho Ester) and Poly(Phosphazene) Nanoparticles as a Promising Tool for Anticancer Therapeutics. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics 2019. [DOI: 10.1016/b978-0-12-816963-6.00007-8] [Reference Citation Analysis]
|