BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Le Fur M, Caravan P. The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics 2019;11:240-54. [PMID: 30516229 DOI: 10.1039/c8mt00302e] [Cited by in Crossref: 55] [Cited by in F6Publishing: 17] [Article Influence: 27.5] [Reference Citation Analysis]
Number Citing Articles
1 Davies J, Siebenhandl-Wolff P, Tranquart F, Jones P, Evans P. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch Toxicol 2022. [PMID: 34997254 DOI: 10.1007/s00204-021-03189-8] [Reference Citation Analysis]
2 Sousa NR, Rocha S, Santos-Silva A, Coimbra S, Valente MJ. Cellular and molecular pathways underlying the nephrotoxicity of gadolinium. Toxicol Sci 2021:kfab148. [PMID: 34878122 DOI: 10.1093/toxsci/kfab148] [Reference Citation Analysis]
3 Pota K, Molnár E, Kálmán FK, Freire DM, Tircsó G, Green KN. Manganese Complex of a Rigidified 15-Membered Macrocycle: A Comprehensive Study. Inorg Chem 2020;59:11366-76. [PMID: 32709206 DOI: 10.1021/acs.inorgchem.0c01053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
4 Uzal-Varela R, Rodríguez-Rodríguez A, Martínez-Calvo M, Carniato F, Lalli D, Esteban-Gómez D, Brandariz I, Pérez-Lourido P, Botta M, Platas-Iglesias C. Mn2+ Complexes Containing Sulfonamide Groups with pH-Responsive Relaxivity. Inorg Chem 2020;59:14306-17. [PMID: 32962345 DOI: 10.1021/acs.inorgchem.0c02098] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Baranyai Z, Carniato F, Nucera A, Horváth D, Tei L, Platas-Iglesias C, Botta M. Defining the conditions for the development of the emerging class of FeIII-based MRI contrast agents. Chem Sci 2021;12:11138-45. [PMID: 34522311 DOI: 10.1039/d1sc02200h] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021;11:8706-37. [PMID: 34522208 DOI: 10.7150/thno.57004] [Reference Citation Analysis]
7 Khizar S, Ahmad NM. pH Tunable Thin Film Gradients of Magnetic Polymer Colloids for MRI Diagnostics. Polymers (Basel) 2020;12:E2116. [PMID: 32957488 DOI: 10.3390/polym12092116] [Reference Citation Analysis]
8 Brünjes R, Hofmann T. Anthropogenic gadolinium in freshwater and drinking water systems. Water Res 2020;182:115966. [PMID: 32599421 DOI: 10.1016/j.watres.2020.115966] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
9 Uzal-Varela R, Lalli D, Brandariz I, Rodríguez-Rodríguez A, Platas-Iglesias C, Botta M, Esteban-Gómez D. Rigid versions of PDTA4- incorporating a 1,3-diaminocyclobutyl spacer for Mn2+ complexation: stability, water exchange dynamics and relaxivity. Dalton Trans 2021;50:16290-303. [PMID: 34730583 DOI: 10.1039/d1dt02498a] [Reference Citation Analysis]
10 Adams LC, Brangsch J, Reimann C, Kaufmann JO, Nowak K, Buchholz R, Karst U, Botnar RM, Hamm B, Makowski MR. Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin-binding probe. Sci Rep 2020;10:3231. [PMID: 32094414 DOI: 10.1038/s41598-020-59842-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
11 Xu S, Wang J, Wei Y, Zhao H, Tao T, Wang H, Wang Z, Du J, Wang H, Qian J, Ma K, Wang J. In Situ One-Pot Synthesis of Fe2O3@BSA Core-Shell Nanoparticles as Enhanced T1-Weighted Magnetic Resonance Imagine Contrast Agents. ACS Appl Mater Interfaces 2020;12:56701-11. [PMID: 33296181 DOI: 10.1021/acsami.0c13825] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Bárta J, Hermann P, Kotek J. Coordination Behavior of 1,4-Disubstituted Cyclen Endowed with Phosphonate, Phosphonate Monoethylester, and H-Phosphinate Pendant Arms. Molecules 2019;24:E3324. [PMID: 31547345 DOI: 10.3390/molecules24183324] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
13 Snyder EM, Asik D, Abozeid SM, Burgio A, Bateman G, Turowski SG, Spernyak JA, Morrow JR. A Class of FeIII Macrocyclic Complexes with Alcohol Donor Groups as Effective T1 MRI Contrast Agents. Angew Chem Int Ed Engl 2020;59:2414-9. [PMID: 31725934 DOI: 10.1002/anie.201912273] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
14 van der Molen AJ. Gadolinium Deposition in the Brain and Body. Journal of the Belgian Society of Radiology 2019;103:71. [DOI: 10.5334/jbsr.1945] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wang H, Revia R, Mu Q, Lin G, Yen C, Zhang M. Single-layer boron-doped graphene quantum dots for contrast-enhanced in vivo T1-weighted MRI. Nanoscale Horiz 2020;5:573-9. [PMID: 32118222 DOI: 10.1039/c9nh00608g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
16 Woods M, Payne KM, Valente EJ, Kucera BE, Young VG Jr. Crystal Structures of DOTMA Chelates from Ce3+ to Yb3+ : Evidence for a Continuum of Metal Ion Hydration States. Chemistry 2019;25:9997-10005. [PMID: 31121070 DOI: 10.1002/chem.201902068] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
17 Tear LR, Maguire ML, Tropiano M, Yao K, Farrer NJ, Faulkner S, Schneider JE. Enhancing 31P NMR relaxation rates with a kinetically inert gadolinium complex. Dalton Trans 2020;49:2989-93. [PMID: 32080690 DOI: 10.1039/c9dt03761f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Rodríguez-Rodríguez A, Shuvaev S, Rotile N, Jones CM, Probst CK, Dos Santos Ferreira D, Graham-O Regan K, Boros E, Knipe RS, Griffith JW, Tager AM, Bogdanov A Jr, Caravan P. Peroxidase Sensitive Amplifiable Probe for Molecular Magnetic Resonance Imaging of Pulmonary Inflammation. ACS Sens 2019;4:2412-9. [PMID: 31397156 DOI: 10.1021/acssensors.9b01010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
19 Marasini R, Rayamajhi S, Moreno-sanchez A, Aryal S. Iron( iii ) chelated paramagnetic polymeric nanoparticle formulation as a next-generation T1 -weighted MRI contrast agent. RSC Adv 2021;11:32216-26. [DOI: 10.1039/d1ra05544e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Di Gregorio E, Lattuada L, Maiocchi A, Aime S, Ferrauto G, Gianolio E. Supramolecular adducts between macrocyclic Gd(iii) complexes and polyaromatic systems: a route to enhance the relaxivity through the formation of hydrophobic interactions. Chem Sci 2020;12:1368-77. [PMID: 34163900 DOI: 10.1039/d0sc03504a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Erstad DJ, Ramsay IA, Jordan VC, Sojoodi M, Fuchs BC, Tanabe KK, Caravan P, Gale EM. Tumor Contrast Enhancement and Whole-Body Elimination of the Manganese-Based Magnetic Resonance Imaging Contrast Agent Mn-PyC3A. Invest Radiol 2019;54:697-703. [PMID: 31356382 DOI: 10.1097/RLI.0000000000000593] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
22 Werner P, Taupitz M, Schröder L, Schuenke P. An NMR relaxometry approach for quantitative investigation of the transchelation of gadolinium ions from GBCAs to a competing macromolecular chelator. Sci Rep 2021;11:21731. [PMID: 34741037 DOI: 10.1038/s41598-021-00974-4] [Reference Citation Analysis]
23 Tircsó G, Tircsóné Benyó E, Garda Z, Singh J, Trokowski R, Brücher E, Sherry AD, Tóth É, Kovács Z. Comparison of the equilibrium, kinetic and water exchange properties of some metal ion-DOTA and DOTA-bis(amide) complexes. J Inorg Biochem 2020;206:111042. [PMID: 32146160 DOI: 10.1016/j.jinorgbio.2020.111042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
24 Le Fur M, Rotile NJ, Correcher C, Clavijo Jordan V, Ross AW, Catana C, Caravan P. Yttrium-86 Is a Positron Emitting Surrogate of Gadolinium for Noninvasive Quantification of Whole-Body Distribution of Gadolinium-Based Contrast Agents. Angew Chem Int Ed Engl 2020;59:1474-8. [PMID: 31750991 DOI: 10.1002/anie.201911858] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
25 Liu M. Lifecycle of Gadolinium-Based Contrast Agents. J Magn Reson Imaging 2021;53:1295-9. [PMID: 32989902 DOI: 10.1002/jmri.27374] [Reference Citation Analysis]
26 Jiang Q, Liu L, Li Q, Cao Y, Chen D, Du Q, Yang X, Huang D, Pei R, Chen X, Huang G. NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer. J Nanobiotechnology 2021;19:64. [PMID: 33653352 DOI: 10.1186/s12951-021-00811-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Besenhard MO, Panariello L, Kiefer C, LaGrow AP, Storozhuk L, Perton F, Begin S, Mertz D, Thanh NTK, Gavriilidis A. Small iron oxide nanoparticles as MRI T1 contrast agent: scalable inexpensive water-based synthesis using a flow reactor. Nanoscale 2021;13:8795-805. [PMID: 34014243 DOI: 10.1039/d1nr00877c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
28 Ben Salem D, Barrat JA. Determination of rare earth elements in gadolinium-based contrast agents by ICP-MS. Talanta 2021;221:121589. [PMID: 33076124 DOI: 10.1016/j.talanta.2020.121589] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]