BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 2019;48:38-71. [DOI: 10.1039/c8cs00001h] [Cited by in Crossref: 676] [Cited by in F6Publishing: 709] [Article Influence: 225.3] [Reference Citation Analysis]
Number Citing Articles
1 Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coordination Chemistry Reviews 2023;476:214908. [DOI: 10.1016/j.ccr.2022.214908] [Reference Citation Analysis]
2 Yang X, Wen L, Xu G, Lin H, Wang S, Liu J. Multifunctional organic nanomaterials with ultra-high photothermal conversion efficiency for photothermal therapy and inhibition of cancer metastasis. Bioorganic Chemistry 2023;130:106220. [DOI: 10.1016/j.bioorg.2022.106220] [Reference Citation Analysis]
3 Kar B, Das U, Roy N, Paira P. Recent advances on organelle specific Ru(II)/Ir(III)/Re(I) based complexes for photodynamic therapy. Coordination Chemistry Reviews 2023;474:214860. [DOI: 10.1016/j.ccr.2022.214860] [Reference Citation Analysis]
4 Fan Z, Jiang C. Engineered extracellular vesicles as drug delivery systems for the next generation of nanomedicine. Novel Platforms for Drug Delivery Applications 2023. [DOI: 10.1016/b978-0-323-91376-8.00010-0] [Reference Citation Analysis]
5 Zhang Y, Zhu J, Sun H, Li J. Modulation of tumor hypoxia and redox microenvironment using nanomedicines for enhanced cancer photodynamic therapy. Applied Materials Today 2022;29:101687. [DOI: 10.1016/j.apmt.2022.101687] [Reference Citation Analysis]
6 Liu P, Shi T, Li H, Chen H, Huang Y, Ma H, Zhu T, Zhao R, Li Y, Xin Q, Liu L, Sun S, Nie H, Long W, Wang H, Wang J, Zhang X, Ming D. Airy beam assisted NIR-II light-sheet microscopy. Nano Today 2022;47:101628. [DOI: 10.1016/j.nantod.2022.101628] [Reference Citation Analysis]
7 Malekmohammadi S, Mohammed R, Samadian H, Zarebkohan A, García-fernández A, Kokil G, Sharifi F, Esmaeili J, Bhia M, Razavi M, Bodaghi M, Kumeria T, Martínez-máñez R. Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Materials Today Chemistry 2022;26:101144. [DOI: 10.1016/j.mtchem.2022.101144] [Reference Citation Analysis]
8 Li M, Zhang Y, Zhang Q, Li J. Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Mater Today Bio 2022;16:100364. [PMID: 35875197 DOI: 10.1016/j.mtbio.2022.100364] [Reference Citation Analysis]
9 Yang B, Zhang Y, Sun L, Wang J, Zhao Z, Huang Z, Mao W, Xue R, Chen R, Luo J, Wang T, Jiang J, Qin Y. Modulated Ultrasmall γ‐Fe 2 O 3 Nanocrystal Assemblies for Switchable Magnetic Resonance Imaging and Photothermal‐Ferroptotic‐Chemical Synergistic Cancer Therapy. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202211251] [Reference Citation Analysis]
10 Zhou J, Qi F, Chen Y, Zhang S, Zheng X, He W, Guo Z. Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting. Biosensors 2022;12:1027. [DOI: 10.3390/bios12111027] [Reference Citation Analysis]
11 Yang S, Wu G, Li N, Wang M, Wu P, He Y, Zhou W, Xiao H, Tan X, Tang L, Yang Q. A mitochondria-targeted molecular phototheranostic platform for NIR-II imaging-guided synergistic photothermal/photodynamic/immune therapy. J Nanobiotechnol 2022;20:475. [DOI: 10.1186/s12951-022-01679-0] [Reference Citation Analysis]
12 Li X, He M, Zhou Q, Dutta D, Lu N, Li S, Ge Z. Multifunctional Mesoporous Hollow Cobalt Sulfide Nanoreactors for Synergistic Chemodynamic/Photodynamic/Photothermal Therapy with Enhanced Efficacy. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c15406] [Reference Citation Analysis]
13 Huang C, Shi T, Zhang J, Sun Y, Ma T, Li W, Li Y, Qiu H, Yin S. An NIR-II-absorbing photothermal agent containing multiple rotors with enhanced photothermal conversion capacity for multimodal-imaging-guided photothermal therapy. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110932] [Reference Citation Analysis]
14 Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Current Opinion in Colloid & Interface Science 2022. [DOI: 10.1016/j.cocis.2022.101657] [Reference Citation Analysis]
15 Jia T, Chen G. Lanthanide nanoparticles for near-infrared II theranostics. Coordination Chemistry Reviews 2022;471:214724. [DOI: 10.1016/j.ccr.2022.214724] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Du P, An R, Liang Y, Lei P, Zhang H. Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coordination Chemistry Reviews 2022;471:214745. [DOI: 10.1016/j.ccr.2022.214745] [Reference Citation Analysis]
17 Du Y, Shan C, You Y, Chen M, Zhu L, Shu G, Han G, Wu L, Ji J, Yu H, Du Y. NIR-Ⅱ Fluorescence Imaging-Guided Hepatocellular Carcinoma Treatment via IR-1061-Acridine and Lenvatinib Co-loaded Thermal-Sensitive Micelles and Anti-PD-1 Combinational Therapy. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140437] [Reference Citation Analysis]
18 Li W, Zhang J, Gao Z, Qi J, Ding D. Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews 2022;471:214754. [DOI: 10.1016/j.ccr.2022.214754] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Rasheed T. Carbon dots as potential greener and sustainable fluorescent nanomaterials in service of pollutants sensing. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116841] [Reference Citation Analysis]
20 Wang F, Pu K, Li J. Activating Nanomedicines with Electromagnetic Energy for Deep‐Tissue Induction of Immunogenic Cell Death in Cancer Immunotherapy. Small Methods 2022. [DOI: 10.1002/smtd.202201083] [Reference Citation Analysis]
21 Pham TD, Phan LMT, Cho S, Park J. Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: a review. Science and Technology of Advanced Materials. [DOI: 10.1080/14686996.2022.2134976] [Reference Citation Analysis]
22 Chen P, Qu F, Chen S, Li J, Shen Q, Sun P, Fan Q. Bandgap Modulation and Lipid Intercalation Generates Ultrabright D–A–D‐Based Zwitterionic Small‐Molecule Nanoagent for Precise NIR‐II Excitation Phototheranostic Applications. Adv Funct Materials. [DOI: 10.1002/adfm.202208463] [Reference Citation Analysis]
23 Yang K, Yu B, Liu W, Zhang Z, Huang L, Zhao S, Wang B, Yi J, Yuan J, Zou Y, Lin C, Song X, Lan M. All-in-one phototheranostics based on BTP-4F-DMO nanoparticles for NIR-II fluorescence/photoacoustic dual-mode imaging and combinational therapy. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107889] [Reference Citation Analysis]
24 Wu M, Wei Q, Xian C, Dai C, He X, Wu C, Sun G, Chen L. Highly efficient and non-doped red conjugated polymer dot for photostable cell imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107867] [Reference Citation Analysis]
25 Lee K, Chen H, Wan Y, Zhang Z, Huang Z, Li S, Lee C. Innovative probes with aggregation-induced emission characteristics for sensing gaseous signaling molecules. Biomaterials 2022;289:121753. [DOI: 10.1016/j.biomaterials.2022.121753] [Reference Citation Analysis]
26 Zhou W, Yin L, Zhang X, Liang T, Guo Z, Liu Y, Xie C, Fan Q. Recent advances in small molecule dye-based nanotheranostics for NIR-II photoacoustic imaging-guided cancer therapy. Front Bioeng Biotechnol 2022;10:1002006. [DOI: 10.3389/fbioe.2022.1002006] [Reference Citation Analysis]
27 Shi W, Diao S, Liang T, Zhang X, Guo Z, Liu Y, Zhou W, Xie C, Fan Q. A Renal-Clearable PEGylated Semiconducting Oligomer for the NIR-II Fluorescence Imaging of Tumor. ACS Appl Bio Mater 2022. [PMID: 36167499 DOI: 10.1021/acsabm.2c00682] [Reference Citation Analysis]
28 Chen M, Yan C, Qin F, Zhang XE. Near-Infrared Luciferase Complementation Assay with Enhanced Bioluminescence for Studying Protein-Protein Interactions and Drug Evaluation Under Physiological Conditions. Anal Chem 2022. [PMID: 36135776 DOI: 10.1021/acs.analchem.2c01238] [Reference Citation Analysis]
29 Chu N, Cong L, Yue J, Xu W, Xu S. Fluorescent Imaging Probe Targeting Mitochondria Based on Supramolecular Host–Guest Assembly and Disassembly. ACS Omega. [DOI: 10.1021/acsomega.2c03766] [Reference Citation Analysis]
30 Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022;190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Reference Citation Analysis]
31 Zhang H, Zhang L, Zhong Y, Zhou J, Li Y, Zhang P, Xi J, Shi W, Qian H. A radical photochromic metal-organic framework for boosting NIR-II photothermal conversion and therapy. Chem Commun (Camb) 2022. [PMID: 36098177 DOI: 10.1039/d2cc04064f] [Reference Citation Analysis]
32 Attama AA, Nnamani PO, Onokala OB, Ugwu AA, Onugwu AL. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Front Pharmacol 2022;13:874510. [DOI: 10.3389/fphar.2022.874510] [Reference Citation Analysis]
33 Yang S, Wu G, Li N, Wang M, Wu P, He Y, Zhou W, Xiao H, Tan X, Tang L, Yang Q. A mitochondria-targeted molecular phototheranostics platform for NIR-II imaging-guided synergistic photothermal /photodynamic /immune therapy.. [DOI: 10.21203/rs.3.rs-2006795/v1] [Reference Citation Analysis]
34 Bachmann J, Helbig A, Crumbach M, Krummenacher I, Braunschweig H, Helten H. Fusion of Aza‐ and Oxadiborepins with Furans in a Reversible Ring‐Opening Process Furnishes Versatile Building Blocks for Extended π‐Conjugated Materials. Chemistry A European J 2022. [DOI: 10.1002/chem.202202455] [Reference Citation Analysis]
35 Wang Z, Wang Y, Gao H, Tang C, Feng Z, Lin L, Che S, Luo C, Ding D, Zheng D, Yu Z, Peng Z. Phototheranostic nanoparticles with aggregation-induced emission as a four-modal imaging platform for image-guided photothermal therapy and ferroptosis of tumor cells. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121779] [Reference Citation Analysis]
36 Han T, Wang Y, Ma S, Li M, Zhu N, Tao S, Xu J, Sun B, Jia Y, Zhang Y, Zhu S, Yang B. Near-Infrared Carbonized Polymer Dots for NIR-II Bioimaging. Adv Sci (Weinh) 2022;:e2203474. [PMID: 36047633 DOI: 10.1002/advs.202203474] [Reference Citation Analysis]
37 Wu MY, Wang Y, Wang LJ, Wang JL, Xia FW, Feng S. A novel furo[3,2-c]pyridine-based AIE photosensitizer for specific imaging and photodynamic ablation of Gram-positive bacteria. Chem Commun (Camb) 2022. [PMID: 36039808 DOI: 10.1039/d2cc04084k] [Reference Citation Analysis]
38 Ouyang M, Wang X, Fu Y, Xie G, Du S, Li Y, Zhang L, Tao J, Zhu J. Skin optical clearing enabled by dissolving hyaluronic acid microneedle patches. Int J Biol Macromol 2022:S0141-8130(22)01856-6. [PMID: 36044941 DOI: 10.1016/j.ijbiomac.2022.08.153] [Reference Citation Analysis]
39 Hu B, Zhang Y, Zhang G, Li Z, Jing Y, Yao J, Sun S. Research progress of bone-targeted drug delivery system on metastatic bone tumors. J Control Release 2022;350:377-88. [PMID: 36007681 DOI: 10.1016/j.jconrel.2022.08.034] [Reference Citation Analysis]
40 Lu B, Zhang Z, Huang Y, Zhang Y, Wang J, Ding Y, Wang Y, Yao Y. A nanoplatform for mild-temperature photothermal and type I & II photodynamic therapy in the NIR-II biowindow. Chem Commun (Camb) 2022. [PMID: 36004760 DOI: 10.1039/d2cc03248a] [Reference Citation Analysis]
41 Bai X, Wang K, Chen L, Zhou J, Wang J. Semiconducting polymer dots as fluorescent probes for in vitro biosensing. J Mater Chem B 2022;10:6248-62. [PMID: 35971822 DOI: 10.1039/d2tb01385a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Zheng Z, Chen X, Ma Y, Dai R, Wu S, Wang T, Xing J, Gao J, Zhang R. Dual H2 O2 -Amplified Nanofactory for Simultaneous Self-Enhanced NIR-II Fluorescence Activation Imaging and Synergistic Tumor Therapy. Small 2022;:e2203531. [PMID: 35962758 DOI: 10.1002/smll.202203531] [Reference Citation Analysis]
43 Hu J, Wu L, Li N. High dynamic range imaging with short- and long-exposures based on artificial remapping using multiscale exposure fusion. Journal of Visual Communication and Image Representation 2022;87:103585. [DOI: 10.1016/j.jvcir.2022.103585] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Yin X, Cheng Y, Feng Y, Stiles WR, Hun Park S, Kang H, Soo Choi H. Phototheranostics for Multifunctional Treatment of Cancer with Fluorescence Imaging. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114483] [Reference Citation Analysis]
45 Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Wu Y, Yang H, Shi C, Sun H, Yin S, Wang G. Luminescence-enhanced conjugated polymer dots through thermal treatment for cell imaging. Biomater Sci 2022. [PMID: 35848441 DOI: 10.1039/d2bm00516f] [Reference Citation Analysis]
47 Peng X, Yeh C, Wang SF, Yan J, Gan S, Su S, Zhou X, Zhang Y, Chi Y. Near‐Infrared OLEDs Based on Functional Pyrazinyl Azolate Os(II) Phosphors and Deuteration. Advanced Optical Materials. [DOI: 10.1002/adom.202201291] [Reference Citation Analysis]
48 Li J, Luo Y, Zeng Z, Cui D, Huang J, Xu C, Li L, Pu K, Zhang R. Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles. Nat Commun 2022;13:4032. [PMID: 35821238 DOI: 10.1038/s41467-022-31551-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Liu H, Li X, Li X, Huang J. Nanostructured self-assemblies of photosensitive dyes: Green and efficient theranostic approaches. Green Chemical Engineering 2022. [DOI: 10.1016/j.gce.2022.06.006] [Reference Citation Analysis]
50 Song S, Wang Y, Zhao Y, Huang W, Zhang F, Zhu S, Wu Q, Fu S, Tang BZ, Wang D. Molecular engineering of AIE luminogens for NIR-II/IIb bioimaging and surgical navigation of lymph nodes. Matter 2022. [DOI: 10.1016/j.matt.2022.06.030] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Zhao H, Guo Y, Yuan A, Xia S, Gao Z, Huang Y, Lv F, Liu L, Wang S. Nature-inspired nanothylakoids for multimodal cancer therapeutics. Sci China Mater 2022;65:1971-1979. [DOI: 10.1007/s40843-021-2003-5] [Reference Citation Analysis]
52 Zeng J, Wang X, Sun Y, Zhang X. Research progress in AIE-based crystalline porous materials for biomedical applications. Biomaterials 2022;286:121583. [DOI: 10.1016/j.biomaterials.2022.121583] [Reference Citation Analysis]
53 Liu H, Wang J, Song C, Zhou K, Yu B, Jiang J, Qian J, Zhang X, Wang H. Exogenously Triggered Nanozyme for Real-Time Magnetic Resonance Imaging-Guided Synergistic Cascade Tumor Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35735117 DOI: 10.1021/acsami.2c07375] [Reference Citation Analysis]
54 Dong MJ, Li W, Xiang Q, Tan Y, Xing X, Wu C, Dong H, Zhang X. Engineering Metal-Organic Framework Hybrid AIEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35737456 DOI: 10.1021/acsami.2c05860] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Li S, Li Q, Chen W, Song Z, An Y, Chen P, Wu Y, Wang G, He Y, Miao Q. A Renal-Clearable Activatable Molecular Probe for Fluoro-Photacoustic and Radioactive Imaging of Cancer Biomarkers. Small 2022;:e2201334. [PMID: 35723177 DOI: 10.1002/smll.202201334] [Reference Citation Analysis]
56 Zhang C, Huang J, Zeng Z, He S, Cheng P, Li J, Pu K. Catalytical nano-immunocomplexes for remote-controlled sono-metabolic checkpoint trimodal cancer therapy. Nat Commun 2022;13:3468. [PMID: 35710545 DOI: 10.1038/s41467-022-31044-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Shen W, Hu T, Liu X, Zha J, Meng F, Wu Z, Cui Z, Yang Y, Li H, Zhang Q, Gu L, Liang R, Tan C. Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nat Commun 2022;13:3384. [PMID: 35697679 DOI: 10.1038/s41467-022-31106-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
58 Qi P, Dai Y, Luo Y, Tao G, Zheng L, Liu D, Zhang T, Zhou J, Shen B, Lin F, Liu Z, Fang Z. Giant excitonic upconverted emission from two-dimensional semiconductor in doubly resonant plasmonic nanocavity. Light Sci Appl 2022;11:176. [PMID: 35688809 DOI: 10.1038/s41377-022-00860-2] [Reference Citation Analysis]
59 Zhou X, Lin S, Yan H. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. J Nanobiotechnology 2022;20:257. [PMID: 35658974 DOI: 10.1186/s12951-022-01449-y] [Reference Citation Analysis]
60 Xu G, Li C, Chi C, Wu L, Sun Y, Zhao J, Xia XH, Gou S. A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nat Commun 2022;13:3064. [PMID: 35654794 DOI: 10.1038/s41467-022-30721-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
61 Liu Q, Shi L, Liao Y, Cao X, Liu X, Yu Y, Wang Z, Lu X, Wang J. Ultrathin-FeOOH-Coated MnO2 Sonosensitizers with Boosted Reactive Oxygen Species Yield and Remodeled Tumor Microenvironment for Efficient Cancer Therapy. Adv Sci (Weinh) 2022;9:e2200005. [PMID: 35484709 DOI: 10.1002/advs.202200005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
62 Jiao M, Portniagin AS, Luo X, Jing L, Han B, Rogach AL. Semiconductor Nanocrystals Emitting in the Second Near‐Infrared Window: Optical Properties and Application in Biomedical Imaging. Advanced Optical Materials. [DOI: 10.1002/adom.202200226] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
63 Tian R, Feng X, Wei L, Dai D, Ma Y, Pan H, Ge S, Bai L, Ke C, Liu Y, Lang L, Zhu S, Sun H, Yu Y, Chen X. A genetic engineering strategy for editing near-infrared-II fluorophores. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-30304-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
64 Li W, Li R, Chen R, Ai S, Zhu H, Huang L, Lin W. Activatable Fluorescent-Photoacoustic Integrated Probes with Deep Tissue Penetration for Pathological Diagnosis and Therapeutic Evaluation of Acute Inflammation in Mice. Anal Chem 2022. [PMID: 35604398 DOI: 10.1021/acs.analchem.2c01048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
65 Cao M, Liu C, Li M, Zhang X, Peng L, Liu L, Liao J, Yang J. Recent Research on Hybrid Hydrogels for Infection Treatment and Bone Repair. Gels 2022;8:306. [DOI: 10.3390/gels8050306] [Reference Citation Analysis]
66 Wang F, Zhu J, Wang Y, Li J. Recent Advances in Engineering Nanomedicines for Second Near-Infrared Photothermal-Combinational Immunotherapy. Nanomaterials 2022;12:1656. [DOI: 10.3390/nano12101656] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Lu B, Zhang Z, Ji Y, Zhou S, Jia B, Zhang Y, Wang J, Ding Y, Wang Y, Yao Y, Zhan X. Icing on the cake: combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Sci China Chem . [DOI: 10.1007/s11426-022-1232-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
68 Sun Z, Shi S, Guan P, Liu B. Construction of heteroaryl-bridged NIR AIEgens for specific imaging of lipid droplets and its application in photodynamic therapy. Spectrochim Acta A Mol Biomol Spectrosc 2022;272:120946. [PMID: 35149481 DOI: 10.1016/j.saa.2022.120946] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Xia R, Li C, Yuan X, Wu Q, Jiang B, Xie Z. Facile Preparation of a Thienoisoindigo-Based Nanoscale Covalent Organic Framework with Robust Photothermal Activity for Cancer Therapy. ACS Appl Mater Interfaces 2022;14:19129-38. [PMID: 35446556 DOI: 10.1021/acsami.2c01701] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
70 Ni N, Zhang X, Ma Y, Yuan J, Wang D, Ma G, Dong J, Sun X. Biodegradable two-dimensional nanomaterials for cancer theranostics. Coordination Chemistry Reviews 2022;458:214415. [DOI: 10.1016/j.ccr.2022.214415] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
71 Wang Z, Li C, Huang S, Ma X, Sun Y, Zhao J, Gou S. Boosting Phototherapy Efficacy of a NIR-Absorbing Ruthenium (II) Complex via Supramolecular Engineering. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100220] [Reference Citation Analysis]
72 Chen L, Wan X, Shan X, Zha W, Fan R. Smart PROTACs Enable Controllable Protein Degradation for Precision Cancer Therapy. Mol Diagn Ther 2022;26:283-91. [PMID: 35471699 DOI: 10.1007/s40291-022-00586-2] [Reference Citation Analysis]
73 Yang Y, Zeng Z, Almatrafi E, Huang D, Zhang C, Xiong W, Cheng M, Zhou C, Wang W, Song B, Tang X, Zeng G, Xiao R, Li Z. Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coordination Chemistry Reviews 2022;458:214427. [DOI: 10.1016/j.ccr.2022.214427] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
74 Liu Y, Teng L, Lyu Y, Song G, Zhang XB, Tan W. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nat Commun 2022;13:2216. [PMID: 35468901 DOI: 10.1038/s41467-022-29894-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
75 Gu K, Yan C, Guo Z, Zhu W. Morphology Modulation of Aggregation‐induced Emission. Handbook of Aggregation‐Induced Emission 2022. [DOI: 10.1002/9781119643098.ch17] [Reference Citation Analysis]
76 Wang Z, Zhan M, Hu X. Pulsed Laser Excited Photoacoustic Effect for Disease Diagnosis and Therapy. Chemistry 2022;:e202200042. [PMID: 35420714 DOI: 10.1002/chem.202200042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Peng JM, Wang HL, Zhu ZH, Bai J, Liang FP, Zou HH. Series of the Largest Dish-Shaped Dysprosium Nanoclusters Formed by In Situ Reactions. Inorg Chem 2022. [PMID: 35416660 DOI: 10.1021/acs.inorgchem.2c00221] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
78 Li B, Liu H, He Y, Zhao M, Ge C, Younis MR, Huang P, Chen X, Lin J. A "Self-Checking" pH/Viscosity-Activatable NIR-II Molecule for Real-Time Evaluation of Photothermal Therapy Efficacy. Angew Chem Int Ed Engl 2022;61:e202200025. [PMID: 35170174 DOI: 10.1002/anie.202200025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
79 Yuan Q, Bao B, Li M, Tang Y. Bioactive Composite Nanoparticles for Effective Microenvironment Regulation, Neuroprotection, and Cell Differentiation. ACS Appl Mater Interfaces 2022;14:15623-31. [PMID: 35322659 DOI: 10.1021/acsami.2c00579] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Zhang X, Che Y, Zheng L, Shu C. Optimization and decision-making of novel laser-induced thermal therapy for deep-lying tumor based on multi-objective genetic algorithm and three-way decisions method. Applied Mathematical Modelling 2022;104:682-700. [DOI: 10.1016/j.apm.2021.12.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Ma Q, Sun X, Wang W, Yang D, Yang C, Shen Q, Shao J. Diketopyrrolopyrrole‐derived organic small molecular dyes for tumor phototheranostics. Chinese Chemical Letters 2022;33:1681-92. [DOI: 10.1016/j.cclet.2021.10.054] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 36.0] [Reference Citation Analysis]
82 Sankaranarayanan SA, Thomas A, Revi N, Ramakrishna B, Rengan AK. Iron oxide nanoparticles for theranostic applications - Recent advances. Journal of Drug Delivery Science and Technology 2022;70:103196. [DOI: 10.1016/j.jddst.2022.103196] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
83 Zhang J, Yu J, Jiang Y, Chiu DT. Ultrabright Pdots with a Large Absorbance Cross Section and High Quantum Yield. ACS Appl Mater Interfaces 2022;14:13631-7. [PMID: 35258939 DOI: 10.1021/acsami.1c25215] [Reference Citation Analysis]
84 Duah IK, Khaligh A, Koç A, Başaran DDA, Tuncel D. Porphyrin cross‐linked conjugated polymer nanoparticles‐based photosensitizer for antimicrobial and anticancer photodynamic therapies. J Appl Polym Sci 2022;139:51777. [DOI: 10.1002/app.51777] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Zhou W, He X, Wang J, He S, Xie C, Fan Q, Pu K. Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation. Biomacromolecules 2022. [PMID: 35286085 DOI: 10.1021/acs.biomac.2c00065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
86 Li P, He X, Li Y, Lam JWY, Kwok RTK, Wang CC, Xia LG, Tang BZ. Recent advances in aggregation-induced emission luminogens in photoacoustic imaging. Eur J Nucl Med Mol Imaging. [DOI: 10.1007/s00259-022-05726-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
87 Mei L, Huang R, Shen C, Hu J, Wang P, Xu Z, Huang Z, Zhu L. Hybrid Halide Perovskite‐Based Near‐Infrared Photodetectors and Imaging Arrays. Advanced Optical Materials 2022;10:2102656. [DOI: 10.1002/adom.202102656] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
88 Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
89 Li D, Chen X, Wang D, Wu H, Wen H, Wang L, Jin Q, Wang D, Ji J, Tang BZ. Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-II window. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121476] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
90 Liang T, Guo Z, He Y, Wang Y, Li C, Li Z, Liu Z. Cyanine-Doped Lanthanide Metal-Organic Frameworks for Near-Infrared II Bioimaging. Adv Sci (Weinh) 2022;9:e2104561. [PMID: 35018733 DOI: 10.1002/advs.202104561] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
91 Wang K, Gao H, Zhang Y, Yan H, Si J, Mi X, Xia S, Feng X, Liu D, Kong D, Wang T, Ding D. Highly Bright AIE Nanoparticles by Regulating the Substituent of Rhodanine for Precise Early Detection of Atherosclerosis and Drug Screening. Adv Mater 2022;34:e2106994. [PMID: 34921573 DOI: 10.1002/adma.202106994] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
92 Jia X, Lv M, Fei Y, Dong Q, Wang H, Liu Q, Li D, Wang J, Wang E. Facile one-step synthesis of NIR-Responsive siRNA-Inorganic hybrid nanoplatform for imaging-guided photothermal and gene synergistic therapy. Biomaterials 2022;282:121404. [DOI: 10.1016/j.biomaterials.2022.121404] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
93 Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 42.0] [Reference Citation Analysis]
94 Deng H, Konopka CJ, Prabhu S, Sarkar S, Medina NG, Fayyaz M, Arogundade OH, Vidana Gamage HE, Shahoei SH, Nall D, Youn Y, Dobrucka IT, Audu CO, Joshi A, Melvin WJ, Gallagher KA, Selvin PR, Nelson ER, Dobrucki LW, Swanson KS, Smith AM. Dextran-Mimetic Quantum Dots for Multimodal Macrophage Imaging In Vivo, Ex Vivo, and In Situ. ACS Nano 2022;16:1999-2012. [PMID: 35107994 DOI: 10.1021/acsnano.1c07010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
95 Li Y, Fan X, Li Y, Liu S, Chuah C, Tang Y, Kwok RTK, Lam JWY, Lu X, Qian J, Tang BZ. Molecular Crystal Engineering of Organic Chromophores for NIR-II Fluorescence Quantification of Cerebrovascular Function. ACS Nano 2022;16:3323-31. [PMID: 35156810 DOI: 10.1021/acsnano.1c11424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
96 Li B, Liu H, He Y, Zhao M, Ge C, Younis MR, Huang P, Chen X, Lin J. A “Self‐Checking” pH/Viscosity‐Activatable NIR‐II Molecule for Real‐Time Evaluation of Photothermal Therapy Efficacy. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202200025] [Reference Citation Analysis]
97 Zhang S, Li Y, Li T, Zhang Y, Li H, Cheng Z, Peng N, Liu Y, Xu J, He H. Activable Targeted Protein Degradation Platform Based on Light-triggered Singlet Oxygen. J Med Chem 2022. [PMID: 35164509 DOI: 10.1021/acs.jmedchem.1c02037] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
98 Zhang X, Jiang C, He T, Zhao F, Qu J, Huang P, Lin J. Engineering Molecular Probes for In Vivo Near-Infrared Fluorescence/Photoacoustic Duplex Imaging of Human Neutrophil Elastase. Anal Chem 2022. [PMID: 35129959 DOI: 10.1021/acs.analchem.1c04891] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
99 Wang J, Liu Y, Morsch M, Lu Y, Shangguan P, Han L, Wang Z, Chen X, Song C, Liu S, Shi B, Tang BZ. Brain-Targeted Aggregation-Induced-Emission Nanoparticles with Near-Infrared Imaging at 1550 nm Boosts Orthotopic Glioblastoma Theranostics. Adv Mater 2022;34:e2106082. [PMID: 34713508 DOI: 10.1002/adma.202106082] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
100 Kang H, Shamim M, Yin X, Adluru E, Fukuda T, Yokomizo S, Chang H, Park SH, Cui Y, Moy AJ, Kashiwagi S, Henary M, Choi HS. Tumor-Associated Immune-Cell-Mediated Tumor-Targeting Mechanism with NIR-II Fluorescence Imaging. Adv Mater 2022;34:e2106500. [PMID: 34913533 DOI: 10.1002/adma.202106500] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
101 Ishida M. Synthesis of Near-Infrared Light-responsive Dyes Based on N-Confused Porphyrinoids. J Synth Org Chem Jpn 2022;80:139-48. [DOI: 10.5059/yukigoseikyokaishi.80.139] [Reference Citation Analysis]
102 Kaschuk JJ, Al Haj Y, Rojas OJ, Miettunen K, Abitbol T, Vapaavuori J. Plant-Based Structures as an Opportunity to Engineer Optical Functions in Next-Generation Light Management. Adv Mater 2022;34:e2104473. [PMID: 34699648 DOI: 10.1002/adma.202104473] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
103 He G, Lu Q, Xu F, Zhang D, Li Y, Xia J. Facile synthesis of poly(BODIPY)s via solid state polymerization and application in temperature sensor. Polymer 2022;241:124514. [DOI: 10.1016/j.polymer.2022.124514] [Reference Citation Analysis]
104 Wen K, Tan H, Peng Q, Chen H, Ma H, Wang L, Peng A, Shi Q, Cai X, Huang H. Achieving Efficient NIR-II Type-I Photosensitizers for Photodynamic/Photothermal Therapy upon Regulating Chalcogen Elements. Adv Mater 2022;34:e2108146. [PMID: 34935224 DOI: 10.1002/adma.202108146] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 19.0] [Reference Citation Analysis]
105 Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. Adv Mater 2022;34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
106 Li J, Yu X, Shi X, Shen M. Cancer nanomedicine based on polyethylenimine-mediated multifunctional nanosystems. Progress in Materials Science 2022;124:100871. [DOI: 10.1016/j.pmatsci.2021.100871] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
107 Xu Y, Tuo W, Yang L, Sun Y, Li C, Chen X, Yang W, Yang G, Stang PJ, Sun Y. Design of a Metallacycle‐Based Supramolecular Photosensitizer for In Vivo Image‐Guided Photodynamic Inactivation of Bacteria. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202110048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Ma D, Bian H, Long S, Zhou P, Tian R, Wu Y, Ge H, Li M, Du J, Fan J, Zhang Y, Peng X. Se-sensitized NIR hot band absorption photosensitizer for anti-Stokes excitation deep photodynamic therapy. Sci China Chem . [DOI: 10.1007/s11426-021-1179-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
109 Cheng Y, Borum RM, Clark AE, Jin Z, Moore C, Fajtová P, O'donoghue AJ, Carlin AF, Jokerst JV. A Dual‐Color Fluorescent Probe Allows Simultaneous Imaging of Main and Papain‐like Proteases of SARS‐CoV‐2‐Infected Cells for Accurate Detection and Rapid Inhibitor Screening. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202113617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
110 Jin Z, Mantri Y, Retout M, Cheng Y, Zhou J, Jorns A, Fajtova P, Yim W, Moore C, Xu M, Creyer MN, Borum RM, Zhou J, Wu Z, He T, Penny WF, O'donoghue AJ, Jokerst JV. A Charge‐Switchable Zwitterionic Peptide for Rapid Detection of SARS‐CoV‐2 Main Protease. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202112995] [Reference Citation Analysis]
111 Vincely VD, Vishwanath K. Accuracy of retrieving optical properties from liquid tissue phantoms using a single integrating sphere. Appl Opt 2022;61:375-85. [PMID: 35200872 DOI: 10.1364/AO.443854] [Reference Citation Analysis]
112 Zhang T, Zhang J, Wang F, Cao H, Zhu D, Chen X, Xu C, Yang X, Huang W, Wang Z, Wang J, He Z, Zheng Z, Lam JWY, Tang BZ. Mitochondria‐Targeting Phototheranostics by Aggregation‐Induced NIR‐II Emission Luminogens: Modulating Intramolecular Motion by Electron Acceptor Engineering for Multi‐Modal Synergistic Therapy. Adv Funct Materials 2022;32:2110526. [DOI: 10.1002/adfm.202110526] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
113 Wang W, Zhang X, Ni X, Zhou W, Xie C, Huang W, Fan Q. Semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photothermal/thermodynamic combination therapy. Biomater Sci 2022. [PMID: 35006217 DOI: 10.1039/d1bm01646f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
114 Li B, Lin J, Huang P, Chen X. Near-infrared probes for luminescence lifetime imaging. Nanotheranostics 2022;6:91-102. [PMID: 34976583 DOI: 10.7150/ntno.63124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
115 Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XIX, 2019. Advances in Heterocyclic Chemistry 2022. [DOI: 10.1016/bs.aihch.2021.09.002] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
116 Tan Y, Xiong M, Liu Q, Yin Y, Yin X, Liao S, Wang Y, Hu L, Zhang X. Precisely controlling the cellular internalization of DNA-decorated semiconductor polymer nanoparticles for drug delivery. RSC Adv 2022;12:31173-31179. [DOI: 10.1039/d2ra05172a] [Reference Citation Analysis]
117 Xu M, Pu K. Semiconductor polymer nanoparticles for biological application. Reference Module in Materials Science and Materials Engineering 2022. [DOI: 10.1016/b978-0-12-822425-0.00077-4] [Reference Citation Analysis]
118 Wang B, Lu S. The light of carbon dots: From mechanism to applications. Matter 2022;5:110-49. [DOI: 10.1016/j.matt.2021.10.016] [Cited by in Crossref: 86] [Cited by in F6Publishing: 109] [Article Influence: 86.0] [Reference Citation Analysis]
119 Honeybone D, Peace H, Green M. Infrared emitting and absorbing conjugated polymer nanoparticles as biological imaging probes. J Mater Chem C. [DOI: 10.1039/d2tc02042d] [Reference Citation Analysis]
120 Amna B, Isci R, Siddiqi HM, Majewski LA, Faraji S, Ozturk T. High-performance, low-voltage organic field-effect transistors using thieno[3,2- b ]thiophene and benzothiadiazole co-polymers. J Mater Chem C 2022;10:8254-65. [DOI: 10.1039/d2tc01222g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
121 Chen H, Zhang H, Wang Z. A ratiometric fluorescent probe based on peptide modified MnFe2O4 nanoparticles for matrix metalloproteinase-7 activity detection in vitro and in vivo. Analyst 2022;147:1581-1588. [DOI: 10.1039/d2an00212d] [Reference Citation Analysis]
122 Zhou W, Lin W, Chen Y, Liu Y. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chem Sci 2022;13:7976-89. [DOI: 10.1039/d2sc01770a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
123 Hsu K, Su S, Lu H, Liu M, Chang YJ, Lee Y, Chiang HK, Hsu C, Lu C, Chan Y. TADF-based NIR-II semiconducting polymer dots for in vivo 3D bone imaging. Chem Sci 2022;13:10074-81. [DOI: 10.1039/d2sc03271f] [Reference Citation Analysis]
124 Li D, Liang X, Zhang F, Li J, Zhang Z, Wang S, Li Z, Xing Y, Guo K. Imine bond orientation manipulates AIEgen derived Schiff base isomers through the intramolecular hydrogen bond effect for different fluorescence properties and applications. J Mater Chem C. [DOI: 10.1039/d2tc01890j] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
125 Zhou Q, Yang J, Du M, Yu X, Li C, Zhang X, Peng Q, Zhang G, Zhang D. New near-infrared absorbing conjugated electron donor–acceptor molecules with a fused tetrathiafulvalene–naphthalene diimide framework. J Mater Chem C 2022;10:2814-20. [DOI: 10.1039/d1tc04291b] [Reference Citation Analysis]
126 Guan Q, Zhou L, Zhou W, Dong Y. A vinyl-decorated covalent organic framework for ferroptotic cancer therapy via visible-light-triggered cysteine depletion. J Mater Chem B 2022;10:8894-8909. [DOI: 10.1039/d2tb01815b] [Reference Citation Analysis]
127 Zhang C, Wang K, Guo X, Tang Y. A cationic conjugated polymer with high 808 nm NIR-triggered photothermal conversion for antibacterial treatment. J Mater Chem C 2022;10:2600-7. [DOI: 10.1039/d1tc03128g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
128 Yu D, Wang Y, Chen J, Liu S, Deng S, Liu C, McCulloch I, Yue W, Cheng D. Co-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy. Acta Biomater 2022;137:238-51. [PMID: 34653697 DOI: 10.1016/j.actbio.2021.10.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
129 Liang X, Xia L, Zhu Y, Zhang C, Gong F, Zhang W. An acid-triggered BODIPY-based photosensitizer for enhanced photodynamic antibacterial efficacy. Biomater Sci . [DOI: 10.1039/d2bm00780k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Han T, Wang Y, Xu J, Zhu N, Bai L, Liu X, Sun B, Yu C, Meng Q, Wang J, Su Q, Cai Q, Hettie KS, Zhang Y, Zhu S, Yang B. Surfactant-chaperoned donor–acceptor–donor NIR-II dye strategy efficiently circumvents intermolecular aggregation to afford enhanced bioimaging contrast. Chem Sci 2022. [DOI: 10.1039/d2sc05651h] [Reference Citation Analysis]
131 Wang X, Yuan W, Xu M, Su X, Li F. Visualization of Acute Inflammation through a Macrophage-Camouflaged Afterglow Nanocomplex. ACS Appl Mater Interfaces 2021. [PMID: 34957836 DOI: 10.1021/acsami.1c19388] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
132 Lagos KJ, Buzzá HH, Bagnato VS, Romero MP. Carbon-Based Materials in Photodynamic and Photothermal Therapies Applied to Tumor Destruction. Int J Mol Sci 2021;23:22. [PMID: 35008458 DOI: 10.3390/ijms23010022] [Cited by in Crossref: 33] [Cited by in F6Publishing: 41] [Article Influence: 33.0] [Reference Citation Analysis]
133 Yang RQ, Lou KL, Wang PY, Gao YY, Zhang YQ, Chen M, Huang WH, Zhang GJ. Surgical Navigation for Malignancies Guided by Near-Infrared-II Fluorescence Imaging. Small Methods 2021;5:e2001066. [PMID: 34927825 DOI: 10.1002/smtd.202001066] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 32.0] [Reference Citation Analysis]
134 Sobska J, Andreiuk B, Aparin IO, Reisch A, Krezel W, Klymchenko AS. Counterion-insulated near-infrared dyes in biodegradable polymer nanoparticles for in vivo imaging. Nanoscale Adv 2021;4:39-48. [PMID: 35028505 DOI: 10.1039/d1na00649e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Han J, Chiu A, Ganley C, McGuiggan P, Thon SM, Clancy P, Katz HE. 3,4,5-Trimethoxy Substitution on an N-DMBI Dopant with New N-Type Polymers: Polymer-Dopant Matching for Improved Conductivity-Seebeck Coefficient Relationship. Angew Chem Int Ed Engl 2021;60:27212-9. [PMID: 34695285 DOI: 10.1002/anie.202110505] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
136 Han J, Chiu A, Ganley C, Mcguiggan P, Thon SM, Clancy P, Katz HE. 3,4,5‐Trimethoxy Substitution on an N‐DMBI Dopant with New N‐Type Polymers: Polymer‐Dopant Matching for Improved Conductivity‐Seebeck Coefficient Relationship. Angew Chem 2021;133:27418-27425. [DOI: 10.1002/ange.202110505] [Reference Citation Analysis]
137 Qiao H, Wu J, Zhang X, Luo J, Wang H, Ming D. The Advance of CRISPR-Cas9-Based and NIR/CRISPR-Cas9-Based Imaging System. Front Chem 2021;9. [DOI: 10.3389/fchem.2021.786354] [Reference Citation Analysis]
138 Wang W, He X, Du M, Xie C, Zhou W, Huang W, Fan Q. Organic Fluorophores for 1064 nm Excited NIR-II Fluorescence Imaging. Front Chem 2021;9:769655. [PMID: 34869217 DOI: 10.3389/fchem.2021.769655] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
139 Du W, Zhou L, Zhang Q, Liu X, Wei X, Li Y. Inorganic Nanomaterial for Biomedical Imaging of Brain Diseases. Molecules 2021;26:7340. [PMID: 34885919 DOI: 10.3390/molecules26237340] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
140 Wang L, Huang Y, Yu Y, Zhong H, Xiao H, Zhang G, Zhang D. Photosensitizer with High Efficiency Generated in Cells via Light-Induced Self-Oligomerization of 4,6-Dibromothieno[3,4-b]thiophene Compound Entailing a Triphenyl Phosphonium Group. Adv Healthc Mater 2021;10:e2100896. [PMID: 34494390 DOI: 10.1002/adhm.202100896] [Reference Citation Analysis]
141 Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. Adv Sci (Weinh) 2021;8:e2102970. [PMID: 34705318 DOI: 10.1002/advs.202102970] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 22.0] [Reference Citation Analysis]
142 Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021;10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
143 Liu Y, Wang Y, Song S, Zhang H. Tumor Diagnosis and Therapy Mediated by Metal Phosphorus-Based Nanomaterials. Adv Mater 2021;33:e2103936. [PMID: 34596931 DOI: 10.1002/adma.202103936] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
144 Liu C, Scott CN. Design strategies to rhodamine analogue fluorophores for near-infrared II biological imaging applications. Dyes and Pigments 2021;196:109792. [DOI: 10.1016/j.dyepig.2021.109792] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
145 Li Y, Fan X, Li Y, Zhu L, Chen R, Zhang Y, Ni H, Xia Q, Feng Z, Tang BZ, Qian J, Lin H. Biologically excretable AIE nanoparticles wear tumor cell-derived “exosome caps” for efficient NIR-II fluorescence imaging-guided photothermal therapy. Nano Today 2021;41:101333. [DOI: 10.1016/j.nantod.2021.101333] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
146 Cheng D, Gong J, Wang P, Zhu J, Yu N, Zhao J, Zhang Q, Li J. 131I-Labeled gold nanoframeworks for radiotherapy-combined second near-infrared photothermal therapy of cancer. J Mater Chem B 2021;9:9316-23. [PMID: 34719700 DOI: 10.1039/d1tb02115j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
147 Liao Y, Wang R, Wang S, Xie Y, Chen H, Huang R, Shao L, Zhu Q, Liu Y. Highly Efficient Multifunctional Organic Photosensitizer with Aggregation-Induced Emission for In Vivo Bioimaging and Photodynamic Therapy. ACS Appl Mater Interfaces 2021;13:54783-93. [PMID: 34763423 DOI: 10.1021/acsami.1c17476] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
148 Gu X, Liao K, Lu X, Huang W, Fan Q. Thiadiazoloquinoxaline-Based Semiconducting Polymer Nanoparticles for NIR-II Fluorescence Imaging-Guided Photothermal Therapy. Front Bioeng Biotechnol 2021;9:780993. [PMID: 34805127 DOI: 10.3389/fbioe.2021.780993] [Reference Citation Analysis]
149 Xu Y, Tuo W, Yang L, Sun Y, Li C, Chen X, Yang W, Yang G, Stang PJ, Sun Y. Design of a Metallacycle-Based Supramolecular Photosensitizer for In Vivo Image-Guided Photodynamic Inactivation of Bacteria. Angew Chem Int Ed Engl 2021. [PMID: 34806264 DOI: 10.1002/anie.202110048] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
150 Zhao C, Pang X, Yang Z, Wang S, Deng H, Chen X. Nanomaterials targeting tumor associated macrophages for cancer immunotherapy. J Control Release 2021;341:272-84. [PMID: 34813877 DOI: 10.1016/j.jconrel.2021.11.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
151 Biradar MR, Bhosale RS, Bhosale SV. Aggregation induced emission materials for tissue imaging. Prog Mol Biol Transl Sci 2021;185:1-18. [PMID: 34782101 DOI: 10.1016/bs.pmbts.2021.07.005] [Reference Citation Analysis]
152 Yougbaré S, Mutalik C, Chung PF, Krisnawati DI, Rinawati F, Irawan H, Kristanto H, Kuo TR. Gold Nanorod-Decorated Metallic MoS2 Nanosheets for Synergistic Photothermal and Photodynamic Antibacterial Therapy. Nanomaterials (Basel) 2021;11:3064. [PMID: 34835828 DOI: 10.3390/nano11113064] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
153 Lu B, Zhang Z, Jin D, Yuan X, Wang J, Ding Y, Wang Y, Yao Y. A-DA'D-A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer. Chem Commun (Camb) 2021;57:12020-3. [PMID: 34713878 DOI: 10.1039/d1cc04629b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
154 Chen Y, Xue L, Zhu Q, Feng Y, Wu M. Recent Advances in Second Near-Infrared Region (NIR-II) Fluorophores and Biomedical Applications. Front Chem 2021;9:750404. [PMID: 34733821 DOI: 10.3389/fchem.2021.750404] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
155 Li J, Ou H, Li J, Yang X, Ge C, Ding D, Gao X. Large π-extended donor-acceptor polymers for highly efficient in vivo near-infrared photoacoustic imaging and photothermal tumor therapy. Sci China Chem 2021;64:2180-92. [DOI: 10.1007/s11426-021-1090-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
156 Ye J, Fu Q, Liu L, Chen L, Zhang X, Li Q, Li Z, Su L, Zhu R, Song J, Yang H. Ultrasound-propelled Janus Au NR-mSiO2 nanomotor for NIR-II photoacoustic imaging guided sonodynamic-gas therapy of large tumors. Sci China Chem 2021;64:2218-29. [DOI: 10.1007/s11426-021-1070-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
157 Wang C, Sun P, Fan Q, Huang W. NIR-II Fluorescent Molecular Bottlebrush Prepared by Ring-Opening Polymerization for Programmed Cell Death Ligand-1 Checkpoint Imaging. ACS Appl Polym Mater 2021;3:5950-8. [DOI: 10.1021/acsapm.1c01216] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
158 He L, Zhang Y, Chen J, Liu G, Zhu J, Li X, Li D, Yang Y, Lee CS, Shi J, Yin C, Lai P, Wang L, Fang C. A multifunctional targeted nanoprobe with high NIR-II PAI/MRI performance for precise theranostics of orthotopic early-stage hepatocellular carcinoma. J Mater Chem B 2021;9:8779-92. [PMID: 34635903 DOI: 10.1039/d1tb01729b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
159 Pinto SM, Almeida SF, Tomé VA, Prata AD, Calvete MJ, Serpa C, Pereira MM. Water soluble near infrared dyes based on PEGylated-Tetrapyrrolic macrocycles. Dyes and Pigments 2021;195:109677. [DOI: 10.1016/j.dyepig.2021.109677] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
160 Kim HJ, Kim B, Auh Y, Kim E. Conjugated Organic Photothermal Films for Spatiotemporal Thermal Engineering. Adv Mater 2021;33:e2005940. [PMID: 34050686 DOI: 10.1002/adma.202005940] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
161 Li R, Li W, Chen R, Lin W. An activatable water-soluble photoacoustic probe for real–time imaging of endogenous cysteine in the mouse tumor model. Sensors and Actuators B: Chemical 2021;347:130616. [DOI: 10.1016/j.snb.2021.130616] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
162 Liang YC, Cao Q, Liu KK, Peng XY, Sui LZ, Wang SP, Song SY, Wu XY, Zhao WB, Deng Y, Lou Q, Dong L, Shan CX. Phosphorescent Carbon-Nanodots-Assisted Förster Resonant Energy Transfer for Achieving Red Afterglow in an Aqueous Solution. ACS Nano 2021;15:16242-54. [PMID: 34623793 DOI: 10.1021/acsnano.1c05234] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
163 Wang Y, Ye Z, Song G, Liu Z. Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. Chem Res Chin Univ . [DOI: 10.1007/s40242-021-1315-z] [Reference Citation Analysis]
164 Wen D, Dong L, Li K, Du Y, Deng R, Feng J, Zhang H, Wang D. Selenium Vacancy Engineering Using Bi2Se3 Nanodots for Boosting Highly Efficient Photonic Hyperthermia. ACS Appl Mater Interfaces 2021;13:48378-85. [PMID: 34632756 DOI: 10.1021/acsami.1c13107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Cheng D, Wang X, Zhou X, Li J. Nanosonosensitizers With Ultrasound-Induced Reactive Oxygen Species Generation for Cancer Sonodynamic Immunotherapy. Front Bioeng Biotechnol 2021;9:761218. [PMID: 34660560 DOI: 10.3389/fbioe.2021.761218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
166 Omar ÖH, Del Cueto M, Nematiaram T, Troisi A. High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. J Mater Chem C Mater 2021;9:13557-83. [PMID: 34745630 DOI: 10.1039/d1tc03256a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
167 Ge W, Xu Y, Liu C, Xu W, Zhang Y, Si W, Zhao W, Ou C, Dong X. Structural effect of NIR-II absorbing charge transfer complexes and its application on cysteine-depletion mediated ferroptosis and phototherapy. J Mater Chem B 2021;9:8300-7. [PMID: 34518860 DOI: 10.1039/d1tb01696b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
168 Xiang Y, Kong Y, Feng W, Ye X, Liu Z. A ratiometric photoelectrochemical microsensor based on a small-molecule organic semiconductor for reliable in vivo analysis. Chem Sci 2021;12:12977-84. [PMID: 34745528 DOI: 10.1039/d1sc03069h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
169 Ren X, Zhang S, Liu L, Xu B, Tian W. Recent advances in assembled AIEgens for image-guided anticancer therapy. Nanotechnology 2021;32. [PMID: 34469876 DOI: 10.1088/1361-6528/ac22df] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
170 Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. Adv Mater 2021;33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 50.0] [Reference Citation Analysis]
171 Meng Y, Yang J, Jiang R, Wang S, Zheng L, Wang G, Tian X, Zhu H, Yan D, Liu C, Xu C, Bao Y, Liu Y. Biocompatible PLNP-GNR composite nanoplatforms for monitoring deep-tissue photothermal therapy process. Applied Surface Science 2021;562:150189. [DOI: 10.1016/j.apsusc.2021.150189] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
172 Mao L, Huang H, Hu D, Ma H, Tian M, Zhang X, Wei Y. A near-infrared bioprobe with aggregation-induced emission feature for in vitro photodynamic therapy. Dyes and Pigments 2021;194:109521. [DOI: 10.1016/j.dyepig.2021.109521] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
173 Huang W, Yang H, Hu Z, Fan Y, Guan X, Feng W, Liu Z, Sun Y. Rigidity Bridging Flexibility to Harmonize Three Excited-State Deactivation Pathways for NIR-II-Fluorescent-Imaging-Guided Phototherapy. Adv Healthc Mater 2021;10:e2101003. [PMID: 34160129 DOI: 10.1002/adhm.202101003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
174 Zhang H, Song F, Dong C, Yu L, Chang C, Chen Y. Co-delivery of nanoparticle and molecular drug by hollow mesoporous organosilica for tumor-activated and photothermal-augmented chemotherapy of breast cancer. J Nanobiotechnology 2021;19:290. [PMID: 34579711 DOI: 10.1186/s12951-021-01025-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
175 Liu M, Liu L, Zhang Z, Wan M, Guo H, Li D. An Active Catalyst System Based on Pd (0) and a Phosphine-Based Bulky Ligand for the Synthesis of Thiophene-Containing Conjugated Polymers. Front Chem 2021;9:743091. [PMID: 34557476 DOI: 10.3389/fchem.2021.743091] [Reference Citation Analysis]
176 Luthra R, Datta S, Roy A. Role of Different Peptides for Cancer Immunotherapy. Int J Pept Res Ther 2021;27:2777-93. [DOI: 10.1007/s10989-021-10289-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
177 Jiang Q, Liu X, Liang G, Sun X. Self-assembly of peptide nanofibers for imaging applications. Nanoscale 2021;13:15142-50. [PMID: 34494635 DOI: 10.1039/d1nr04992e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
178 Xie N, Hou Y, Wang S, Ai X, Bai J, Lai X, Zhang Y, Meng X, Wang X. Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Rev Neurosci 2021. [PMID: 34551223 DOI: 10.1515/revneuro-2021-0088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
179 Liu C, Ma H, Hu Z, Tian R, Ma R, Xu Y, Wang X, Zhu X, Yu P, Zhu S, Sun H, Liang Y. Shielding Unit Engineering of NIR-II Molecular Fluorophores for Improved Fluorescence Performance and Renal Excretion Ability. Front Chem 2021;9:739802. [PMID: 34540807 DOI: 10.3389/fchem.2021.739802] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
180 Li S, Yan X, Zhang J, Guo X, Zhang Y, Su M, Yang C, Zhang H, Li C. J‐Aggregation‐Driven Supramolecular Assembly of Dye‐Conjugated Block Polymers: From Morphological Tailoring to Anticancer Applications. Adv Funct Materials 2021;31:2105189. [DOI: 10.1002/adfm.202105189] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
181 Yan K, Steinbrueck A, Sedgwick AC, James TD. Fluorescent Chemosensors for Ion and Molecule Recognition: The Next Chapter. Front Sens 2021;2:731928. [DOI: 10.3389/fsens.2021.731928] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
182 Zhang X, Hu J, Han H, Li Z, Han T. Unraveling the defect-induced photoluminescence of a donor-acceptor AIE luminogen. Dyes and Pigments 2021;193:109566. [DOI: 10.1016/j.dyepig.2021.109566] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
183 Wang Y, Song G, Liao S, Qin Q, Zhao Y, Shi L, Guan K, Gong X, Wang P, Yin X, Chen Q, Zhang X. Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Anti‐cancer Efficiency. Angew Chem 2021;133:19932-19942. [DOI: 10.1002/ange.202104127] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
184 Liang S, Liu B, Xiao X, Yuan M, Yang L, Ma P, Cheng Z, Lin J. A Robust Narrow Bandgap Vanadium Tetrasulfide Sonosensitizer Optimized by Charge Separation Engineering for Enhanced Sonodynamic Cancer Therapy. Adv Mater 2021;33:e2101467. [PMID: 34296464 DOI: 10.1002/adma.202101467] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 29.0] [Reference Citation Analysis]
185 Xu Q, Qin Z, Wang N, Feng S, Xu X. Tetraphenylethylene based amphiphilic derivatives: The self-assembly, photo-responsiveness and their application for erasable fluorescent ink. Dyes and Pigments 2021;193:109479. [DOI: 10.1016/j.dyepig.2021.109479] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
186 Tuo W, Xu Y, Fan Y, Li J, Qiu M, Xiong X, Li X, Sun Y. Biomedical applications of Pt(II) metallacycle/metallacage-based agents: From mono-chemotherapy to versatile imaging contrasts and theranostic platforms. Coordination Chemistry Reviews 2021;443:214017. [DOI: 10.1016/j.ccr.2021.214017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 17] [Article Influence: 28.0] [Reference Citation Analysis]
187 Zhang Q, Wang Q, Xu X, Liu J, Lu X, Huang W, Fan Q. Diketopyrrolopyrrole derivatives-based NIR-II fluorophores for theranostics. Dyes and Pigments 2021;193:109480. [DOI: 10.1016/j.dyepig.2021.109480] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
188 Jiang J, Xu Z, Li T, Cai D, Zhou H, Chen Z. Deep NIR-I Emissive Iridium(III) Complex Bearing D-A Ligand: Synthesis, Photophysical Properties and DFT/TDDFT Calculation. Crystals 2021;11:1038. [DOI: 10.3390/cryst11091038] [Reference Citation Analysis]
189 Yin C, Zhang H, Sun B, Chen S, Jiang X, Miao X, Sun P, Hu W, Fan Q, Huang W. Remarkable Suppression of Vibrational Relaxation in Organic Semiconducting Polymers by Introducing a Weak Electron Donor for Improved NIR‐II Phototheranostics. Adv Funct Materials 2021;31:2106575. [DOI: 10.1002/adfm.202106575] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
190 Dou WT, Xu F, Xu CX, Gao J, Ru HB, Luan X, Zhang J, Zhu L, Sedgwick AC, Chen GR, Zang Y, James TD, Tian H, Li J, Mai Y, He XP. Graphene nanoribbon-based supramolecular ensembles with dual-receptor targeting function for targeted photothermal tumor therapy. Chem Sci 2021;12:11089-97. [PMID: 34522306 DOI: 10.1039/d1sc02154k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
191 Qu X, Hong Y, Cai H, Sun X, Shen Q, Yang D, Dong X, Jiao A, Chen P, Shao J. Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare Met 2022;41:56-66. [DOI: 10.1007/s12598-021-01795-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
192 He S, Li J, Cheng P, Zeng Z, Zhang C, Duan H, Pu K. Charge‐Reversal Polymer Nano‐modulators for Photodynamic Immunotherapy of Cancer. Angewandte Chemie 2021;133:19504-12. [DOI: 10.1002/ange.202106392] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
193 Oane M, Mahmood MA, Popescu AC. A State-of-the-Art Review on Integral Transform Technique in Laser-Material Interaction: Fourier and Non-Fourier Heat Equations. Materials (Basel) 2021;14:4733. [PMID: 34443257 DOI: 10.3390/ma14164733] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
194 Jiang Z, Zhang C, Wang X, Yan M, Ling Z, Chen Y, Liu Z. A Borondifluoride‐Complex‐Based Photothermal Agent with an 80 % Photothermal Conversion Efficiency for Photothermal Therapy in the NIR‐II Window. Angewandte Chemie 2021;133:22550-8. [DOI: 10.1002/ange.202107836] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
195 Gao H, Duan X, Jiao D, Zeng Y, Zheng X, Zhang J, Ou H, Qi J, Ding D. Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal‐to‐Acoustic Conversion Efficiency for Adaptive Image‐Guided Cancer Surgery. Angewandte Chemie 2021;133:21215-23. [DOI: 10.1002/ange.202109048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
196 Zhang Q, Hu X, Dai X, Ling P, Sun J, Chen H, Gao F. General Strategy to Achieve Color-Tunable Ratiometric Two-Photon Integrated Single Semiconducting Polymer Dot for Imaging Hypochlorous Acid. ACS Nano 2021. [PMID: 34374516 DOI: 10.1021/acsnano.1c04581] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
197 Ong SY, Zhang C, Dong X, Yao SQ. Recent Advances in Polymeric Nanoparticles for Enhanced Fluorescence and Photoacoustic Imaging. Angew Chem 2021;133:17941-53. [DOI: 10.1002/ange.202101964] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
198 Xu M, Zhang C, Zeng Z, Pu K. Semiconducting Polymer Nanoparticles as Activatable Nanomedicines for Combinational Phototherapy. ACS Appl Polym Mater 2021;3:4375-89. [DOI: 10.1021/acsapm.1c00695] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
199 Li X, Yin C, Liew SS, Lee C, Pu K. Organic Semiconducting Luminophores for Near‐Infrared Afterglow, Chemiluminescence, and Bioluminescence Imaging. Adv Funct Materials 2021;31:2106154. [DOI: 10.1002/adfm.202106154] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
200 Gholami Derami H, Gupta P, Weng KC, Seth A, Gupta R, Silva JR, Raman B, Singamaneni S. Reversible Photothermal Modulation of Electrical Activity of Excitable Cells using Polydopamine Nanoparticles. Adv Mater 2021;33:e2008809. [PMID: 34216406 DOI: 10.1002/adma.202008809] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
201 Li J, Su Z, Yu C, Yuan Y, Wu Q, Liu J, Peng B, Hu W, Lu X, Yu H, Li L, Huang W. Recent progress in the development of sensing systems for in vivo detection of biological hydrogen sulfide. Dyes and Pigments 2021;192:109451. [DOI: 10.1016/j.dyepig.2021.109451] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
202 Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews 2021;441:213978. [DOI: 10.1016/j.ccr.2021.213978] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
203 Zeng L, Han Y, Chen Z, Jiang K, Golberg D, Weng Q. Biodegradable and Peroxidase-Mimetic Boron Oxynitride Nanozyme for Breast Cancer Therapy. Adv Sci (Weinh) 2021;8:e2101184. [PMID: 34189868 DOI: 10.1002/advs.202101184] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
204 Xia J, Qing X, Shen J, Ding M, Wang Y, Yu N, Li J, Wang X. Enzyme-Loaded pH-Sensitive Photothermal Hydrogels for Mild-temperature-mediated Combinational Cancer Therapy. Front Chem 2021;9:736468. [PMID: 34395390 DOI: 10.3389/fchem.2021.736468] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
205 Cantelli A, Malferrari M, Soldà A, Simonetti G, Forni S, Toscanella E, Mattioli EJ, Zerbetto F, Zanelli A, Di Giosia M, Zangoli M, Barbarella G, Rapino S, Di Maria F, Calvaresi M. Human Serum Albumin-Oligothiophene Bioconjugate: A Phototheranostic Platform for Localized Killing of Cancer Cells by Precise Light Activation. JACS Au 2021;1:925-35. [PMID: 34467339 DOI: 10.1021/jacsau.1c00061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
206 Ding L, Jiang L, Liu G. The Application of Inorganic Optical Nanoprobes in Bacterial Infection. J Innov Opt Health Sci 2021;14:2130004. [DOI: 10.1142/s1793545821300044] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
207 Chapman DV, Hinckley JA, Erstling JA, Estroff LA, Wiesner UB. Orthogonal Nanoprobes Enabling Two-Color Optical Super-Resolution Microscopy Imaging of the Two Domains of Diblock Copolymer Thin Film Nanocomposites. Chem Mater 2021;33:5156-5167. [DOI: 10.1021/acs.chemmater.1c01204] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
208 Li J, Zhuang Z, Zhao Z, Tang BZ. Type I AIE photosensitizers: Mechanism and application. VIEW 2022;3:20200121. [DOI: 10.1002/viw.20200121] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
209 Sakurai M, Kabe R, Fuki M, Lin Z, Jinnai K, Kobori Y, Adachi C, Tachikawa T. Organic photostimulated luminescence associated with persistent spin-correlated radical pairs. Commun Mater 2021;2. [DOI: 10.1038/s43246-021-00178-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
210 Wang C, Wang W, Tan J, Zhang X, Yuan D, Zhou H. Coordination-based molecular nanomaterials for biomedically relevant applications. Coordination Chemistry Reviews 2021;438:213752. [DOI: 10.1016/j.ccr.2020.213752] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
211 Chen L, Li G, Wang X, Li J, Zhang Y. Spherical Nucleic Acids for Near-Infrared Light-Responsive Self-Delivery of Small-Interfering RNA and Antisense Oligonucleotide. ACS Nano 2021. [PMID: 34170121 DOI: 10.1021/acsnano.1c03072] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
212 Luo X, Hu D, Gao D, Wang Y, Chen X, Liu X, Zheng H, Sun M, Sheng Z. Metabolizable Near-Infrared-II Nanoprobes for Dynamic Imaging of Deep-Seated Tumor-Associated Macrophages in Pancreatic Cancer. ACS Nano 2021;15:10010-24. [PMID: 34060821 DOI: 10.1021/acsnano.1c01608] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
213 Zhang Z, Xu W, Xiao P, Kang M, Yan D, Wen H, Song N, Wang D, Tang BZ. Molecular Engineering of High-Performance Aggregation-Induced Emission Photosensitizers to Boost Cancer Theranostics Mediated by Acid-Triggered Nucleus-Targeted Nanovectors. ACS Nano 2021;15:10689-99. [PMID: 34077187 DOI: 10.1021/acsnano.1c03700] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
214 Yang N, Song S, Ren J, Liu C, Li Z, Qi H, Yu C. Controlled Aggregation of a Perylene-Derived Probe for Near-Infrared Fluorescence Imaging and Phototherapy. ACS Appl Bio Mater 2021;4:5008-5015. [DOI: 10.1021/acsabm.1c00289] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
215 Ma L, Geng J, Kolossov VL, Han Z, Pei Y, Lim SJ, Kilian KA, Smith AM. Antibody Self-Assembly Maximizes Cytoplasmic Immunostaining Accuracy of Compact Quantum Dots. Chem Mater 2021;33:4877-89. [DOI: 10.1021/acs.chemmater.1c00164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
216 Liu Q, Tian J, Tian Y, Sun Q, Sun D, Liu D, Wang F, Xu H, Ying G, Wang J, Yetisen AK, Jiang N. Thiophene donor for NIR-II fluorescence imaging-guided photothermal/photodynamic/chemo combination therapy. Acta Biomater 2021;127:287-97. [PMID: 33831570 DOI: 10.1016/j.actbio.2021.03.064] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
217 Ding F, Feng J, Zhang X, Sun J, Fan C, Ge Z. Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv Drug Deliv Rev 2021;173:141-63. [PMID: 33774116 DOI: 10.1016/j.addr.2021.03.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 23.0] [Reference Citation Analysis]
218 Yu N, Ding M, Li J. Near-Infrared Photoactivatable Immunomodulatory Nanoparticles for Combinational Immunotherapy of Cancer. Front Chem 2021;9:701427. [PMID: 34109160 DOI: 10.3389/fchem.2021.701427] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
219 Shen C, Lou Q, Lv C, Zheng G, Zang J, Jiang T, Cheng Z, Liu K, Niu C, Dong L, Shan C. Trigonal Nitrogen Activates High-Brightness Chemiluminescent Carbon Nanodots. ACS Materials Lett 2021;3:826-37. [DOI: 10.1021/acsmaterialslett.1c00157] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
220 Zhang C, Zeng Z, Cui D, He S, Jiang Y, Li J, Huang J, Pu K. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat Commun 2021;12:2934. [PMID: 34006860 DOI: 10.1038/s41467-021-23194-w] [Cited by in Crossref: 114] [Cited by in F6Publishing: 124] [Article Influence: 114.0] [Reference Citation Analysis]
221 Li Y, Zhang J, Liu S, Zhang C, Chuah C, Tang Y, Kwok RTK, Lam JWY, Ou H, Ding D, Tang BZ. Enlarging the Reservoir: High Absorption Coefficient Dyes Enable Synergetic Near Infrared‐II Fluorescence Imaging and Near Infrared‐I Photothermal Therapy. Adv Funct Mater 2021;31:2102213. [DOI: 10.1002/adfm.202102213] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
222 Lee KW, Wan Y, Li X, Cui X, Li S, Lee CS. Recent Progress of Alkyl Radicals Generation-Based Agents for Biomedical Applications. Adv Healthc Mater 2021;10:e2100055. [PMID: 33738983 DOI: 10.1002/adhm.202100055] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
223 Xu X, He Y, Wang Y. Near-infrared organic chromophores with pH-sensitive, non-radiative emission for intelligent disease treatment. Cell Reports Physical Science 2021;2:100433. [DOI: 10.1016/j.xcrp.2021.100433] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
224 Kim H, Jo S, Lee TS. Synthesis of chemically bound conjugated polymer on TiO2 for a visible-light-driven photocatalyst: Changeable surface wettability. Materials & Design 2021;203:109630. [DOI: 10.1016/j.matdes.2021.109630] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
225 Lan Y, Weng CW, Ahmed MM, Luo K, Ji W, Liu W, Yeh J. Aniline pentamer-modified reduced graphene oxide/epoxy composites as anticorrosion coatings. Materials Chemistry and Physics 2021;264:124446. [DOI: 10.1016/j.matchemphys.2021.124446] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
226 Jing L, Sun M, Xu P, Yao K, Yang J, Wang X, Liu H, Sun M, Sun Y, Ni R, Sun J, Huang D. Noninvasive In Vivo Imaging and Monitoring of 3D-Printed Polycaprolactone Scaffolds Labeled with an NIR Region II Fluorescent Dye. ACS Appl Bio Mater 2021;4:3189-202. [PMID: 35014406 DOI: 10.1021/acsabm.0c01587] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
227 Chen H, Yu J, Men X, Zhang J, Ding Z, Jiang Y, Wu C, Chiu DT. Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angew Chem Int Ed Engl 2021;60:12007-12. [PMID: 33730372 DOI: 10.1002/anie.202100774] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
228 Chen H, Yu J, Men X, Zhang J, Ding Z, Jiang Y, Wu C, Chiu DT. Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angew Chem 2021;133:12114-9. [DOI: 10.1002/ange.202100774] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
229 Ou C, Na W, Ge W, Huang H, Gao F, Zhong L, Zhao Y, Dong X. Biodegradable Charge‐Transfer Complexes for Glutathione Depletion Induced Ferroptosis and NIR‐II Photoacoustic Imaging Guided Cancer Photothermal Therapy. Angew Chem 2021;133:8238-44. [DOI: 10.1002/ange.202014852] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
230 Zhu T, Ren N, Liu X, Dong Y, Wang R, Gao J, Sun J, Zhu Y, Wang L, Fan C, Tian H, Li J, Zhao C. Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angew Chem 2021;133:8531-5. [DOI: 10.1002/ange.202015650] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
231 Hua S, Zhong S, Arami H, He J, Zhong D, Zhang D, Chen X, Qian J, Hu X, Zhou M. Simultaneous Deep Tracking of Stem Cells by Surface Enhanced Raman Imaging Combined with Single‐Cell Tracking by NIR‐II Imaging in Myocardial Infarction. Adv Funct Mater 2021;31:2100468. [DOI: 10.1002/adfm.202100468] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
232 Xu C, Jiang Y, Han Y, Pu K, Zhang R. A Polymer Multicellular Nanoengager for Synergistic NIR-II Photothermal Immunotherapy. Adv Mater 2021;33:e2008061. [PMID: 33634897 DOI: 10.1002/adma.202008061] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 52.0] [Reference Citation Analysis]
233 Li J, Fang Y, Zhang Y, Wang H, Yang Z, Ding D. Supramolecular Self-Assembly-Facilitated Aggregation of Tumor-Specific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. Adv Mater 2021;33:e2008518. [PMID: 33734518 DOI: 10.1002/adma.202008518] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 35.0] [Reference Citation Analysis]
234 Suárez-garcía S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-molina D. Coordination polymers nanoparticles for bioimaging. Coordination Chemistry Reviews 2021;432:213716. [DOI: 10.1016/j.ccr.2020.213716] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 26.0] [Reference Citation Analysis]
235 Wang Q, Zhang W, Su Y, Yuan L, Yu B, Shen Y, Cong H. Synthesis and Photothermal Application of D-A-D Conjugated Small Molecular Nanoparticles. Integrated Ferroelectrics 2021;215:47-52. [DOI: 10.1080/10584587.2021.1911223] [Reference Citation Analysis]
236 Su M, Han Q, Yan X, Liu Y, Luo P, Zhai W, Zhang Q, Li L, Li C. A Supramolecular Strategy to Engineering a Non-photobleaching and Near-Infrared Absorbing Nano-J-Aggregate for Efficient Photothermal Therapy. ACS Nano 2021;15:5032-42. [PMID: 33635051 DOI: 10.1021/acsnano.0c09993] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 30.0] [Reference Citation Analysis]
237 Zhao Y, He Z, Zhang Q, Wang J, Jia W, Jin L, Zhao L, Lu Y. 880 nm NIR-Triggered Organic Small Molecular-Based Nanoparticles for Photothermal Therapy of Tumor. Nanomaterials (Basel) 2021;11:773. [PMID: 33803677 DOI: 10.3390/nano11030773] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
238 Verma M, Chan YH, Saha S, Liu MH. Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging. ACS Appl Bio Mater 2021;4:2142-59. [PMID: 35014343 DOI: 10.1021/acsabm.0c01185] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
239 Wei X, Zhang W, Yu G. Semiconducting Polymers Based on Isoindigo and Its Derivatives: Synthetic Tactics, Structural Modifications, and Applications. Adv Funct Mater 2021;31:2010979. [DOI: 10.1002/adfm.202010979] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
240 Khiar‐fernández N, Macicior J, Marcos‐ramiro B, Ortega‐gutiérrez S. Chemistry for the Identification of Therapeutic Targets: Recent Advances and Future Directions. Eur J Org Chem 2021;2021:1307-1320. [DOI: 10.1002/ejoc.202001507] [Reference Citation Analysis]
241 Li B, Wang Y, Gao D, Ren S, Li L, Li N, An H, Zhu T, Yang Y, Zhang H, Xing C. Photothermal Modulation of Depression‐Related Ion Channel Function through Conjugated Polymer Nanoparticles. Adv Funct Mater 2021;31:2010757. [DOI: 10.1002/adfm.202010757] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
242 Zhang J, Jin J, Wan J, Jiang S, Wu Y, Wang W, Gong X, Wang H. Quantum dots-based hydrogels for sensing applications. Chemical Engineering Journal 2021;408:127351. [DOI: 10.1016/j.cej.2020.127351] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 25.0] [Reference Citation Analysis]
243 Deng J, Yang M, Li C, Liu G, Sun Q, Luo X, Wu F. Single molecular-based nanoparticles with aggregation-induced emission characteristics for fluorescence imaging and efficient cancer phototherapy. Dyes and Pigments 2021;187:109130. [DOI: 10.1016/j.dyepig.2020.109130] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
244 Auwalu MA, Cheng S. Diketopyrrolopyrrole Fluorescent Probes, Photophysical and Biological Applications. Chemosensors 2021;9:44. [DOI: 10.3390/chemosensors9030044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
245 Zeng W, Wu X, Chen T, Sun S, Shi Z, Liu J, Ji X, Zeng X, Guan J, Mei L, Wu M. Renal‐Clearable Ultrasmall Polypyrrole Nanoparticles with Size‐Regulated Property for Second Near‐Infrared Light‐Mediated Photothermal Therapy. Adv Funct Mater 2021;31:2008362. [DOI: 10.1002/adfm.202008362] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 32.0] [Reference Citation Analysis]
246 Liu R, Xu F, Wang L, Liu M, Cao X, Shi X, Guo R. Polydopamine-Coated Laponite Nanoplatforms for Photoacoustic Imaging-Guided Chemo-Phototherapy of Breast Cancer. Nanomaterials (Basel) 2021;11:394. [PMID: 33557046 DOI: 10.3390/nano11020394] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
247 Hu W, Prasad PN, Huang W. Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics. Acc Chem Res 2021;54:697-706. [PMID: 33301301 DOI: 10.1021/acs.accounts.0c00688] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 36.0] [Reference Citation Analysis]
248 Zhou X, Liu Q, Yuan W, Li Z, Xu Y, Feng W, Xu C, Li F. Ultrabright NIR-II Emissive Polymer Dots for Metastatic Ovarian Cancer Detection. Adv Sci (Weinh) 2021;8:2000441. [PMID: 33643783 DOI: 10.1002/advs.202000441] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
249 Liu JW, Yang YG, Wang K, Wang G, Shen CC, Chen YH, Liu YF, James TD, Jiang K, Zhang H. Activation and Monitoring of mtDNA Damage in Cancer Cells via the "Proton-Triggered" Decomposition of an Ultrathin Nanosheet. ACS Appl Mater Interfaces 2021;13:3669-78. [PMID: 33435678 DOI: 10.1021/acsami.0c20060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
250 Zhang L, Wu Y, Yin X, Zhu Z, Rojalin T, Xiao W, Zhang D, Huang Y, Li L, Baehr CM, Yu X, Ajena Y, Li Y, Wang L, Lam KS. Tumor Receptor-Mediated In Vivo Modulation of the Morphology, Phototherapeutic Properties, and Pharmacokinetics of Smart Nanomaterials. ACS Nano 2021;15:468-79. [PMID: 33332957 DOI: 10.1021/acsnano.0c05065] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
251 Ning H, Zeng Y, Zuo S, Kershaw SV, Hou Y, Li Y, Li X, Zhang J, Yi Y, Jing L, Li J, Gao M. Two-Dimensional and Subnanometer-Thin Quasi-Copper-Sulfide Semiconductor Formed upon Copper-Copper Bonding. ACS Nano 2021;15:873-83. [PMID: 33404214 DOI: 10.1021/acsnano.0c07388] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
252 Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. Innovation (N Y) 2021;2:100082. [PMID: 34557737 DOI: 10.1016/j.xinn.2021.100082] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 31.0] [Reference Citation Analysis]
253 Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. Innovation (N Y) 2021;2:100082. [PMID: 34557737 DOI: 10.1016/j.xinn.2021.100082] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
254 Peccianti M. Grand Challenges in Photonics: Route to Light. Front Photon 2021;1. [DOI: 10.3389/fphot.2020.626728] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
255 Li J, Ou H, Ding D. Recent Progress in Boosted PDT Induced Immunogenic Cell Death for Tumor Immunotherapy. Chem Res Chin Univ 2021;37:83-9. [DOI: 10.1007/s40242-021-0402-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
256 Fang B, Lai L, Fan M, Yin M. Designing organic room temperature phosphorescence with ultralong lifetime by substituent modification. J Mater Chem C 2021;9:11172-9. [DOI: 10.1039/d1tc02169a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
257 Ariga K, Tsai K, Shrestha LK, Hsu S. Life science nanoarchitectonics at interfaces. Mater Chem Front 2021;5:1018-32. [DOI: 10.1039/d0qm00615g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
258 Zeng Z, Zhang C, Li J, Cui D, Jiang Y, Pu K. Activatable Polymer Nanoenzymes for Photodynamic Immunometabolic Cancer Therapy. Adv Mater 2021;33:e2007247. [PMID: 33306220 DOI: 10.1002/adma.202007247] [Cited by in Crossref: 120] [Cited by in F6Publishing: 126] [Article Influence: 120.0] [Reference Citation Analysis]
259 Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021;10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
260 Guo Q, Tao L, Liu C, Zhao X, Wan D, Zhang J, Ai J, Li J. Orientation effects on C2(5)-C2ʹ(5ʹ) linked bioxazole isomers synthesized via regioselective and sequential C H arylation. Chinese Chemical Letters 2021;32:425-428. [DOI: 10.1016/j.cclet.2020.05.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
261 He S, Cheng Z. Near-Infrared II Optical Imaging. Molecular Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00025-9] [Reference Citation Analysis]
262 Hernández FJ, Crespo-otero R. Excited state mechanisms in crystalline carbazole: the role of aggregation and isomeric defects. J Mater Chem C 2021;9:11882-11892. [DOI: 10.1039/d1tc02019f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
263 Li J, Yu X, Jiang Y, He S, Zhang Y, Luo Y, Pu K. Second Near-Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy. Adv Mater 2021;33:e2003458. [PMID: 33325584 DOI: 10.1002/adma.202003458] [Cited by in Crossref: 103] [Cited by in F6Publishing: 111] [Article Influence: 103.0] [Reference Citation Analysis]
264 Gao H, Zhang L, Lian X, Wang Y, Jiang S, Wang G, Dai X, Zou H, Ding D. A dentin hypersensitivity treatment using highly stable photothermal conversion nanoparticles. Mater Chem Front 2021;5:3388-95. [DOI: 10.1039/d0qm01006e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
265 Song B, Zhang X, Wen X, Liu Q, Ma H, Guo W, Tan M, Jia L, Yuan J. Development of a tumor-targetable heteropolymetallic lanthanide-complex-based magnetoluminescent probe for dual-modal time-gated luminescence/magnetic resonance imaging of cancer cells in vitro and in vivo. New J Chem 2021;45:9181-9188. [DOI: 10.1039/d1nj00567g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
266 Liu J, Shi J, Nie W, Wang S, Liu G, Cai K. Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Adv Healthc Mater 2021;10:e2001207. [PMID: 33000920 DOI: 10.1002/adhm.202001207] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
267 Huang Z, Tian Z, Zhu M, Wu C, Zhu Y. Recent Advances in Biomaterial Scaffolds for Integrative Tumor Therapy and Bone Regeneration. Adv Therap 2021;4:2000212. [DOI: 10.1002/adtp.202000212] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
268 Zhao J, Yan K, Xu G, Liu X, Zhao Q, Xu C, Gou S. An Iridium (III) Complex Bearing a Donor–Acceptor–Donor Type Ligand for NIR‐Triggered Dual Phototherapy. Adv Funct Mater 2021;31:2008325. [DOI: 10.1002/adfm.202008325] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 16.5] [Reference Citation Analysis]
269 Xu C, Wang Y, Wang E, Yan N, Sheng S, Chen J, Lin L, Guo Z, Tian H, Chen X. Effective Eradication of Tumors by Enhancing Photoacoustic‐Imaging‐Guided Combined Photothermal Therapy and Ultrasonic Therapy. Adv Funct Mater 2021;31:2009314. [DOI: 10.1002/adfm.202009314] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
270 Yan X, Su M, Liu Y, Zhang Y, Zhang H, Li C. Molecularly Engineered Hierarchical Nanodisc from Antiparallel J‐stacked BODIPY Conjugates: Application to Theranostics with Mutually Beneficial Properties. Adv Funct Mater 2021;31:2008406. [DOI: 10.1002/adfm.202008406] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
271 Zhou H, Zeng X, Li A, Zhou W, Tang L, Hu W, Fan Q, Meng X, Deng H, Duan L, Li Y, Deng Z, Hong X, Xiao Y. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nat Commun 2020;11:6183. [PMID: 33273452 DOI: 10.1038/s41467-020-19945-w] [Cited by in Crossref: 86] [Cited by in F6Publishing: 88] [Article Influence: 43.0] [Reference Citation Analysis]
272 Dang Q, Jiang Y, Wang J, Wang J, Zhang Q, Zhang M, Luo S, Xie Y, Pu K, Li Q, Li Z. Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents. Adv Mater 2020;32:e2006752. [PMID: 33175432 DOI: 10.1002/adma.202006752] [Cited by in Crossref: 125] [Cited by in F6Publishing: 132] [Article Influence: 62.5] [Reference Citation Analysis]
273 Praveen P, Bhattacharya A, Kanagasekaran T. A DFT study on the electronic and photophysical properties of biphenylyl/thiophene derivatives for organic light emitting transistors. Materials Today Communications 2020;25:101509. [DOI: 10.1016/j.mtcomm.2020.101509] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
274 Zhou L, Ge J, Wang M, Chen M, Cheng W, Ji W, Lei B. Injectable muscle-adhesive antioxidant conductive photothermal bioactive nanomatrix for efficiently promoting full-thickness skeletal muscle regeneration. Bioact Mater 2021;6:1605-17. [PMID: 33294737 DOI: 10.1016/j.bioactmat.2020.11.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
275 Yin R, Zhang X, Ge J, Wen L, Chen L, Zeng J, Li Z, Gao M. Recent Advances in Renal Clearable Inorganic Nanoparticles for Cancer Diagnosis. Part Part Syst Charact 2021;38:2000270. [DOI: 10.1002/ppsc.202000270] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
276 Wang J, Zhang C. CuGeO3 Nanoparticles: An Efficient Photothermal Theragnosis Agent for CT Imaging-Guided Photothermal Therapy of Cancers. Front Bioeng Biotechnol 2020;8:590518. [PMID: 33330422 DOI: 10.3389/fbioe.2020.590518] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
277 Li Y, Tang R, Liu X, Gong J, Zhao Z, Sheng Z, Zhang J, Li X, Niu G, Kwok RTK, Zheng W, Jiang X, Tang BZ. Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS Nano 2020. [PMID: 33197171 DOI: 10.1021/acsnano.0c05610] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 19.5] [Reference Citation Analysis]
278 Zhao M, Li B, Zhang H, Zhang F. Activatable fluorescence sensors for in vivo bio-detection in the second near-infrared window. Chem Sci 2020;12:3448-59. [PMID: 34163618 DOI: 10.1039/d0sc04789a] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 22.5] [Reference Citation Analysis]
279 Huff ME, Gökmen FÖ, Barrera JS, Lara EJ, Tunnell J, Irvin J, Betancourt T. Induction of Immunogenic Cell Death in Breast Cancer by Conductive Polymer Nanoparticle-Mediated Photothermal Therapy. ACS Appl Polym Mater 2020;2:5602-20. [DOI: 10.1021/acsapm.0c00938] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
280 Jo G, Lee BY, Kim EJ, Park MH, Hyun H. Indocyanine Green and Methyl-β-Cyclodextrin Complex for Enhanced Photothermal Cancer Therapy. Biomedicines 2020;8:E476. [PMID: 33167365 DOI: 10.3390/biomedicines8110476] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
281 Liang S, Deng X, Ma P, Cheng Z, Lin J. Recent Advances in Nanomaterial-Assisted Combinational Sonodynamic Cancer Therapy. Adv Mater 2020;32:e2003214. [PMID: 33064322 DOI: 10.1002/adma.202003214] [Cited by in Crossref: 132] [Cited by in F6Publishing: 137] [Article Influence: 66.0] [Reference Citation Analysis]
282 Li L, Shao C, Liu T, Chao Z, Chen H, Xiao F, He H, Wei Z, Zhu Y, Wang H, Zhang X, Wen Y, Yang B, He F, Tian L. An NIR-II-Emissive Photosensitizer for Hypoxia-Tolerant Photodynamic Theranostics. Adv Mater 2020;32:e2003471. [PMID: 33029855 DOI: 10.1002/adma.202003471] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 34.0] [Reference Citation Analysis]
283 Qi Y, Ye J, Ren S, Wang G, Lv J, Zhang S, Che Y, Li Y, Chen B, Ning G. Temperature Feedback-Controlled Photothermal/Photodynamic/Chemodynamic Combination Cancer Therapy Based on NaGdF4 :Er,Yb@NaGdF4 :Nd@Cu-BIF Nanoassemblies. Adv Healthc Mater 2020;9:e2001205. [PMID: 33000903 DOI: 10.1002/adhm.202001205] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
284 Buch J, Hammond B. Photobiomodulation of the Visual System and Human Health. Int J Mol Sci 2020;21:E8020. [PMID: 33126530 DOI: 10.3390/ijms21218020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
285 Qiao B, Luo Y, Cheng HB, Ren J, Cao J, Yang C, Liang B, Yang A, Yuan X, Li J, Deng L, Li P, Ran HT, Hao L, Zhou Z, Li M, Zhang Y, Timashev PS, Liang XJ, Wang Z. Artificial Nanotargeted Cells with Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy. ACS Nano 2020;14:12652-67. [PMID: 32986406 DOI: 10.1021/acsnano.0c00771] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 18.0] [Reference Citation Analysis]
286 Pu K. Polymers for Photothermal Applications in Biology. ACS Appl Polym Mater 2020;2:4160-1. [DOI: 10.1021/acsapm.0c00994] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
287 Zhu W, Kang M, Wu Q, Zhang Z, Wu Y, Li C, Li K, Wang L, Wang D, Tang BZ. Zwitterionic AIEgens: Rational Molecular Design for NIR‐II Fluorescence Imaging‐Guided Synergistic Phototherapy. Adv Funct Mater 2021;31:2007026. [DOI: 10.1002/adfm.202007026] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 25.5] [Reference Citation Analysis]
288 Zhang Y, Shi M, Yan Z, Zhang S, Wang M, Xu H, Li H, Ying Y, Qiu S, Liu J, Yang H, Chen H, He H, Guo Z. Ultrastable Near-Infrared Nonlinear Organic Chromophore Nanoparticles with Intramolecular Charge Transfer for Dually Photoinduced Tumor Ablation. Adv Healthc Mater 2020;9:e2001042. [PMID: 32935929 DOI: 10.1002/adhm.202001042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
289 Song J, Jia X, Ariga K. Interfacial nanoarchitectonics for responsive cellular biosystems. Mater Today Bio 2020;8:100075. [PMID: 33024954 DOI: 10.1016/j.mtbio.2020.100075] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
290 Zhu Y, Chen C, Yang G, Wu Q, Tian J, Hao E, Cao H, Gao Y, Zhang W. Inhibiting Radiative Transition-Mediated Multifunctional Polymeric Nanoplatforms for Highly Efficient Tumor Phototherapeutics. ACS Appl Mater Interfaces 2020;12:44523-33. [DOI: 10.1021/acsami.0c12756] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
291 Ikariko I, Deguchi S, Fabre N, Ishida S, Kim S, Kurihara S, Métivier R, Fukaminato T. Highly-stable red-emissive photochromic nanoparticles based on a diarylethene-perylenebisimide dyad. Dyes and Pigments 2020;180:108490. [DOI: 10.1016/j.dyepig.2020.108490] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
292 Wang Y, Meng H, Song G, Li Z, Zhang X. Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy. ACS Appl Polym Mater 2020;2:4258-72. [DOI: 10.1021/acsapm.0c00680] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
293 Zhou W, Yang G, Ni X, Diao S, Xie C, Fan Q. Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers (Basel) 2020;12:E1902. [PMID: 32846923 DOI: 10.3390/polym12091902] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
294 Wang Y, Xie J, Kang J, Choi W, Jangili P, Zhang B, Xie N, Nie G, He J, Zhang H, Liu L, Kim JS. Smart Acid‐Activatable Self‐Assembly of Black Phosphorous as Photosensitizer to Overcome Poor Tumor Retention in Photothermal Therapy. Adv Funct Mater 2020;30:2003338. [DOI: 10.1002/adfm.202003338] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
295 Wang Y, Zhang H, Wang Z, Feng L. Photothermal Conjugated Polymers and Their Biological Applications in Imaging and Therapy. ACS Appl Polym Mater 2020;2:4222-40. [DOI: 10.1021/acsapm.0c00672] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
296 Lu L, Li B, Ding S, Fan Y, Wang S, Sun C, Zhao M, Zhao CX, Zhang F. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat Commun 2020;11:4192. [PMID: 32826886 DOI: 10.1038/s41467-020-18051-1] [Cited by in Crossref: 77] [Cited by in F6Publishing: 82] [Article Influence: 38.5] [Reference Citation Analysis]
297 Lu R, Zhu J, Yu C, Nie Z, Gao Y. Cu3BiS3 Nanocrystals as Efficient Nanoplatforms for CT Imaging Guided Photothermal Therapy of Arterial Inflammation. Front Bioeng Biotechnol 2020;8:981. [PMID: 32923437 DOI: 10.3389/fbioe.2020.00981] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
298 Huang J, Huang J, Cheng P, Jiang Y, Pu K. Near‐Infrared Chemiluminescent Reporters for In Vivo Imaging of Reactive Oxygen and Nitrogen Species in Kidneys. Adv Funct Mater 2020;30:2003628. [DOI: 10.1002/adfm.202003628] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 20.5] [Reference Citation Analysis]
299 Tian J, Liu Z, Jiang W, Shi D, Chen L, Zhang X, Zhang G, Di CA, Zhang D. A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Field-Effect Transistors Optically Tunable by Near Infra-Red Light. Angew Chem Int Ed Engl 2020;59:13844-51. [PMID: 32385919 DOI: 10.1002/anie.202003706] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
300 Tian J, Liu Z, Jiang W, Shi D, Chen L, Zhang X, Zhang G, Di C, Zhang D. A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Field‐Effect Transistors Optically Tunable by Near Infra‐Red Light. Angew Chem 2020;132:13948-55. [DOI: 10.1002/ange.202003706] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
301 Wu Y, Zhang F. Exploiting molecular probes to perform near‐infrared fluorescence‐guided surgery. View 2020;1:20200068. [DOI: 10.1002/viw.20200068] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
302 Zeng Z, Pu K. Improving Cancer Immunotherapy by Cell Membrane‐Camouflaged Nanoparticles. Adv Funct Mater 2020;30:2004397. [DOI: 10.1002/adfm.202004397] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 35.5] [Reference Citation Analysis]
303 Wang X, Xuan Z, Zhu X, Sun H, Li J, Xie Z. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J Nanobiotechnology 2020;18:108. [PMID: 32746846 DOI: 10.1186/s12951-020-00668-5] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 21.0] [Reference Citation Analysis]
304 Zhang Y, Xu C, Yang X, Pu K. Photoactivatable Protherapeutic Nanomedicine for Cancer. Adv Mater 2020;32:e2002661. [PMID: 32667701 DOI: 10.1002/adma.202002661] [Cited by in Crossref: 113] [Cited by in F6Publishing: 119] [Article Influence: 56.5] [Reference Citation Analysis]
305 Pang W, Jiang P, Ding S, Bao Z, Wang N, Wang H, Qu J, Wang D, Gu B, Wei X. Nucleolus-Targeted Photodynamic Anticancer Therapy Using Renal-Clearable Carbon Dots. Adv Healthc Mater 2020;9:e2000607. [PMID: 32548916 DOI: 10.1002/adhm.202000607] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
306 Song X, Lu X, Sun B, Zhang H, Sun P, Miao H, Fan Q, Huang W. Conjugated Polymer Nanoparticles with Absorption beyond 1000 nm for NIR-II Fluorescence Imaging System Guided NIR-II Photothermal Therapy. ACS Appl Polym Mater 2020;2:4171-9. [DOI: 10.1021/acsapm.0c00637] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
307 Li J, Wang X, Shen M, Shi X. Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS Appl Bio Mater 2020;3:3935-55. [PMID: 35025470 DOI: 10.1021/acsabm.0c00536] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
308 Wang K, Xiang Y, Pan W, Wang H, Li N, Tang B. Dual-targeted photothermal agents for enhanced cancer therapy. Chem Sci 2020;11:8055-72. [PMID: 34123080 DOI: 10.1039/d0sc03173a] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 17.5] [Reference Citation Analysis]
309 Xie C, Zhou W, Zeng Z, Fan Q, Pu K. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chem Sci 2020;11:10553-70. [PMID: 34094312 DOI: 10.1039/d0sc01721c] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 16.5] [Reference Citation Analysis]
310 Gao L, Zhang Y, Zhao L, Niu W, Tang Y, Gao F, Cai P, Yuan Q, Wang X, Jiang H, Gao X. An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging. Sci Adv 2020;6:eabb1421. [PMID: 32832637 DOI: 10.1126/sciadv.abb1421] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
311 Wen G, Li X, Zhang Y, Han X, Xu X, Liu C, Chan KWY, Lee CS, Yin C, Bian L, Wang L. Effective Phototheranostics of Brain Tumor Assisted by Near-Infrared-II Light-Responsive Semiconducting Polymer Nanoparticles. ACS Appl Mater Interfaces 2020;12:33492-9. [PMID: 32627525 DOI: 10.1021/acsami.0c08562] [Cited by in Crossref: 70] [Cited by in F6Publishing: 76] [Article Influence: 35.0] [Reference Citation Analysis]
312 Tang Y, Ji Y, Yi C, Cheng D, Wang B, Fu Y, Xu Y, Qian X, Choonara YE, Pillay V, Zhu W, Liu Y, Nie Z. Self-accelerating H2O2-responsive Plasmonic Nanovesicles for Synergistic Chemo/starving therapy of Tumors. Theranostics 2020;10:8691-704. [PMID: 32754272 DOI: 10.7150/thno.45392] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
313 Özkan M, Hadi SE, Tunç İ, Midilli Y, Ortaç B, Tuncel D. Cucurbit[7]uril-Capped Hybrid Conjugated Oligomer-Gold Nanoparticles for Combined Photodynamic-Photothermal Therapy and Cellular Imaging. ACS Appl Polym Mater 2020;2:3840-9. [DOI: 10.1021/acsapm.0c00540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
314 Park JM, Kim YJ, Jang W. Multimodal Stimuli-Responsive Fluorophore-Functionalized Heterotelechelic Poly(2-isopropyl-2-oxazoline). ACS Appl Polym Mater 2020;2:3535-42. [DOI: 10.1021/acsapm.0c00543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
315 Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020;12:E1397. [PMID: 32580366 DOI: 10.3390/polym12061397] [Cited by in Crossref: 142] [Cited by in F6Publishing: 147] [Article Influence: 71.0] [Reference Citation Analysis]
316 Zhu X, Liu C, Hu Z, Liu H, Wang J, Wang Y, Wang X, Ma R, Zhang X, Sun H, Liang Y. High brightness NIR-II nanofluorophores based on fused-ring acceptor molecules. Nano Res 2020;13:2570-5. [DOI: 10.1007/s12274-020-2901-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
317 Huang J, Pu K. Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases. Chem Sci 2020;12:3379-92. [PMID: 34163613 DOI: 10.1039/d0sc02925d] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 20.5] [Reference Citation Analysis]
318 Li B, Zhao M, Feng L, Dou C, Ding S, Zhou G, Lu L, Zhang H, Chen F, Li X, Li G, Zhao S, Jiang C, Wang Y, Zhao D, Cheng Y, Zhang F. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat Commun 2020;11:3102. [PMID: 32555157 DOI: 10.1038/s41467-020-16924-z] [Cited by in Crossref: 119] [Cited by in F6Publishing: 132] [Article Influence: 59.5] [Reference Citation Analysis]
319 Liu C, Zhang K, Sun Q, Li W. Bile acid-terpyridine conjugates: Steroidal skeleton controlled AIE effect and metal-tunable fluorescence and supramolecular assembly properties. Tetrahedron 2020;76:131283. [DOI: 10.1016/j.tet.2020.131283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
320 Tao T, Zhao J, Fan B, Chen Z, Sun J. Terminal modulation of asymmetrical D−A−D−π furan-containing diketopyrrolopyrrole chromophores for intramolecular charge transfer properties. Dyes and Pigments 2020;177:108277. [DOI: 10.1016/j.dyepig.2020.108277] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
321 Xiong H, Li X, Kang P, Perish J, Neuhaus F, Ploski JE, Kroener S, Ogunyankin MO, Shin JE, Zasadzinski JA, Wang H, Slesinger PA, Zumbuehl A, Qin Z. Near‐Infrared Light Triggered‐Release in Deep Brain Regions Using Ultra‐photosensitive Nanovesicles. Angew Chem 2020;132:8686-93. [DOI: 10.1002/ange.201915296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
322 Lu F, Zhan C, Gong Y, Tang Y, Xie C, Wang Q, Wang W, Fan Q, Huang W. A General Strategy to Encapsulate Semiconducting Polymers within PEGylated Mesoporous Silica Nanoparticles for Optical Imaging and Drug Delivery. Part Part Syst Charact 2020;37:1900483. [DOI: 10.1002/ppsc.201900483] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
323 Merkes JM, Zhu L, Bahukhandi SB, Rueping M, Kiessling F, Banala S. Photoacoustic Imaging Probes Based on Tetrapyrroles and Related Compounds. Int J Mol Sci 2020;21:E3082. [PMID: 32349297 DOI: 10.3390/ijms21093082] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
324 Men X, Wang F, Chen H, Liu Y, Men X, Yuan Y, Zhang Z, Gao D, Wu C, Yuan Z. Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Near‐Infrared Photoacoustic Imaging and Photothermal Cancer Therapy. Adv Funct Mater 2020;30:1909673. [DOI: 10.1002/adfm.201909673] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 34.5] [Reference Citation Analysis]
325 Luo Y, Rong R, Li J, Chen X, Wang S, Li X, Wang K. Effective Renal Clearance and Photothermal Therapy of a Cyclodextrin-Modified Quaterrylene Derivative. ACS Appl Bio Mater 2020;3:3390-400. [DOI: 10.1021/acsabm.0c00311] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
326 Abdel Aziz I, Malferrari M, Roggiani F, Tullii G, Rapino S, Antognazza MR. Light-Triggered Electron Transfer between a Conjugated Polymer and Cytochrome C for Optical Modulation of Redox Signaling. iScience 2020;23:101091. [PMID: 32438318 DOI: 10.1016/j.isci.2020.101091] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
327 Li J, Pu K. Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer. Acc Chem Res 2020;53:752-62. [PMID: 32027481 DOI: 10.1021/acs.accounts.9b00569] [Cited by in Crossref: 227] [Cited by in F6Publishing: 239] [Article Influence: 113.5] [Reference Citation Analysis]
328 Jiang Y, Zhao X, Huang J, Li J, Upputuri PK, Sun H, Han X, Pramanik M, Miao Y, Duan H, Pu K, Zhang R. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat Commun 2020;11:1857. [PMID: 32312987 DOI: 10.1038/s41467-020-15730-x] [Cited by in Crossref: 207] [Cited by in F6Publishing: 214] [Article Influence: 103.5] [Reference Citation Analysis]
329 Tasche J, Sabattié EFD, Thompson RL, Campana M, Wilson MR. Oligomer/Polymer Blend Phase Diagram and Surface Concentration Profiles for Squalane/Polybutadiene: Experimental Measurements and Predictions from SAFT-γ Mie and Molecular Dynamics Simulations. Macromolecules 2020;53:2299-309. [PMID: 32308214 DOI: 10.1021/acs.macromol.9b02155] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
330 Huang Y, You X, Wang L, Zhang G, Gui S, Jin Y, Zhao R, Zhang D. Pyridinium‐Substituted Tetraphenylethylenes Functionalized with Alkyl Chains as Autophagy Modulators for Cancer Therapy. Angew Chem 2020;132:10128-37. [DOI: 10.1002/ange.202001906] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
331 Merkes JM, Lammers T, Kancherla R, Rueping M, Kiessling F, Banala S. Tuning Optical Properties of BODIPY Dyes by Pyrrole Conjugation for Photoacoustic Imaging. Adv Optical Mater 2020;8:1902115. [DOI: 10.1002/adom.201902115] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
332 He L, Qing F, Li M, Lan D. Paclitaxel/IR1061-Co-Loaded Protein Nanoparticle for Tumor-Targeted and pH/NIR-II-Triggered Synergistic Photothermal-Chemotherapy. Int J Nanomedicine 2020;15:2337-49. [PMID: 32308385 DOI: 10.2147/IJN.S240707] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
333 Cheng P, Chen W, Li S, He S, Miao Q, Pu K. Fluoro-Photoacoustic Polymeric Renal Reporter for Real-Time Dual Imaging of Acute Kidney Injury. Adv Mater 2020;32:e1908530. [PMID: 32141674 DOI: 10.1002/adma.201908530] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 35.5] [Reference Citation Analysis]
334 Chen G, Cao Y, Tang Y, Yang X, Liu Y, Huang D, Zhang Y, Li C, Wang Q. Advanced Near-Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems. Adv Sci (Weinh) 2020;7:1903783. [PMID: 32328436 DOI: 10.1002/advs.201903783] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 22.5] [Reference Citation Analysis]
335 Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020;21:E2323. [PMID: 32230871 DOI: 10.3390/ijms21072323] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
336 Ge X, Fu Q, Su L, Li Z, Zhang W, Chen T, Yang H, Song J. Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics 2020;10:4809-21. [PMID: 32308751 DOI: 10.7150/thno.44376] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 17.5] [Reference Citation Analysis]
337 Cao Y, Song W, Jiang Q, Xu Y, Cai S, Wang S, Yang W. Nanoparticles from Ancient Ink Endowing a Green and Effective Strategy for Cancer Photothermal Therapy in the Second Near-Infrared Window. ACS Omega 2020;5:6177-86. [PMID: 32226902 DOI: 10.1021/acsomega.0c00252] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
338 Xiong H, Li X, Kang P, Perish J, Neuhaus F, Ploski JE, Kroener S, Ogunyankin MO, Shin JE, Zasadzinski JA, Wang H, Slesinger PA, Zumbuehl A, Qin Z. Near-Infrared Light Triggered-Release in Deep Brain Regions Using Ultra-photosensitive Nanovesicles. Angew Chem Int Ed Engl 2020;59:8608-15. [PMID: 32124529 DOI: 10.1002/anie.201915296] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
339 Losada-Garcia N, Rodriguez-Oliva I, Simovic M, Bezbradica DI, Palomo JM. New Advances in Fabrication of Graphene Glyconanomaterials for Application in Therapy and Diagnosis. ACS Omega 2020;5:4362-9. [PMID: 32175483 DOI: 10.1021/acsomega.9b04332] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
340 Tian R, Ma H, Zhu S, Lau J, Ma R, Liu Y, Lin L, Chandra S, Wang S, Zhu X, Deng H, Niu G, Zhang M, Antaris AL, Hettie KS, Yang B, Liang Y, Chen X. Multiplexed NIR-II Probes for Lymph Node-Invaded Cancer Detection and Imaging-Guided Surgery. Adv Mater 2020;32:e1907365. [PMID: 32022975 DOI: 10.1002/adma.201907365] [Cited by in Crossref: 93] [Cited by in F6Publishing: 99] [Article Influence: 46.5] [Reference Citation Analysis]
341 Pozzoli GL, Merces L, Yassitepe E, de Morais VB, de Camargo DHS, Bufon CCB. Charge Transport and Gradient Doping in Nanostructured Polypyrrole Films for Applications in Photocurrent Generation. ACS Appl Nano Mater 2020;3:3060-70. [DOI: 10.1021/acsanm.0c00523] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
342 He Z, Zhao L, Zhang Q, Chang M, Li C, Zhang H, Lu Y, Chen Y. An Acceptor–Donor–Acceptor Structured Small Molecule for Effective NIR Triggered Dual Phototherapy of Cancer. Adv Funct Mater 2020;30:1910301. [DOI: 10.1002/adfm.201910301] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 25.0] [Reference Citation Analysis]
343 Almodôvar VAS, Tomé AC. Porphyrin–diketopyrrolopyrrole conjugates and related structures: Synthesis, properties and applications. J Porphyrins Phthalocyanines 2020;24:43-66. [DOI: 10.1142/s1088424619300271] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
344 Yang Z, Li L, Jin AJ, Huang W, Chen X. Rational design of semiconducting polymer brushes as cancer theranostics. Mater Horiz 2020;7:1474-94. [PMID: 33777400 DOI: 10.1039/d0mh00012d] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
345 Kalin AJ, Che S, Wang C, Mu AU, Duka EM, Fang L. Solution-Processable Porous Nanoparticles of a Conjugated Ladder Polymer Network. Macromolecules 2020;53:922-8. [DOI: 10.1021/acs.macromol.9b02635] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
346 Cui D, Li J, Zhao X, Pu K, Zhang R. Semiconducting Polymer Nanoreporters for Near-Infrared Chemiluminescence Imaging of Immunoactivation. Adv Mater 2020;32:e1906314. [PMID: 31833600 DOI: 10.1002/adma.201906314] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 39.0] [Reference Citation Analysis]
347 Zhang W, Liu X, Li P, Zhang W, Wang H, Tang B. Cellular fluorescence imaging based on resonance energy transfer. TrAC Trends in Analytical Chemistry 2020;123:115742. [DOI: 10.1016/j.trac.2019.115742] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
348 Zhang L, Liu C, Zhou S, Wang R, Fan Q, Liu D, Wu W, Jiang X. Improving Quantum Yield of a NIR-II Dye by Phenylazo Group. Adv Healthc Mater 2020;9:e1901470. [PMID: 31943913 DOI: 10.1002/adhm.201901470] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
349 Sarkar S, Levi-Polyachenko N. Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Adv Drug Deliv Rev 2020;163-164:40-64. [PMID: 32001326 DOI: 10.1016/j.addr.2020.01.002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 24.0] [Reference Citation Analysis]
350 Deng H, Konopka CJ, Cross TL, Swanson KS, Dobrucki LW, Smith AM. Multimodal Nanocarrier Probes Reveal Superior Biodistribution Quantification by Isotopic Analysis over Fluorescence. ACS Nano 2020;14:509-23. [PMID: 31887006 DOI: 10.1021/acsnano.9b06504] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
351 Wu X, Suo Y, Shi H, Liu R, Wu F, Wang T, Ma L, Liu H, Cheng Z. Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. Nanomicro Lett 2020;12:38. [PMID: 34138257 DOI: 10.1007/s40820-020-0378-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
352 Wu G, Zhang J, Zhao Q, Zhuang W, Ding J, Zhang C, Gao H, Pang D, Pu K, Xie H. Molecularly Engineered Macrophage‐Derived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. Angew Chem 2020;132:4097-103. [DOI: 10.1002/ange.201913700] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
353 Yoo Y, Jo G, Jung JS, Yang DH, Hyun H. Multivalent Sorbitol Probes for Near‐Infrared Photothermal Cancer Therapy. Part Part Syst Charact 2020;37:1900490. [DOI: 10.1002/ppsc.201900490] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
354 Dai J, Xu M, Wang Q, Yang J, Zhang J, Cui P, Wang W, Lou X, Xia F, Wang S. Cooperation therapy between anti-growth by photodynamic-AIEgens and anti-metastasis by small molecule inhibitors in ovarian cancer. Theranostics 2020;10:2385-98. [PMID: 32104509 DOI: 10.7150/thno.41708] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
355 Long Z, Dai J, Hu Q, Wang Q, Zhen S, Zhao Z, Liu Z, Hu JJ, Lou X, Xia F. Nanococktail Based on AIEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy. Theranostics 2020;10:2260-72. [PMID: 32104506 DOI: 10.7150/thno.41317] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
356 Ni JS, Li Y, Yue W, Liu B, Li K. Nanoparticle-based Cell Trackers for Biomedical Applications. Theranostics 2020;10:1923-47. [PMID: 32042345 DOI: 10.7150/thno.39915] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 22.0] [Reference Citation Analysis]
357 Demchenko AP. Non-conventional Generation and Transformation of Sensor Response. Introduction to Fluorescence Sensing 2020. [DOI: 10.1007/978-3-030-60155-3_14] [Reference Citation Analysis]
358 Guo L, Wang H, Wang Y, Feng L. Tailor-Made Polymer Nano-Assembly with Switchable Function and Amplified Anti-Tumor Therapy. Adv Healthc Mater 2020;9:e1901492. [PMID: 31800169 DOI: 10.1002/adhm.201901492] [Reference Citation Analysis]
359 Li M, Li F, Liu S, Zhao Q. Luminescent Coordination Compounds for Cell Imaging. Fluorescent Materials for Cell Imaging 2020. [DOI: 10.1007/978-981-15-5062-1_9] [Reference Citation Analysis]
360 Singh A, Pati AK, Mishra AK. Photophysics and photoreactivity of cross-conjugated enediynyl aggregates: Applications to multi-parametric sensing of microheterogeneity and reversible fluorescence switching. Chemical Physics 2020;529:110579. [DOI: 10.1016/j.chemphys.2019.110579] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
361 Demchenko AP. Fluorescent Organic Dyes and Conjugated Polymers in Nanoscale Ensembles. Introduction to Fluorescence Sensing 2020. [DOI: 10.1007/978-3-030-60155-3_8] [Reference Citation Analysis]
362 Sun T, Xie Z. Conjugated Polymers and Polymer Dots for Cell Imaging. Fluorescent Materials for Cell Imaging 2020. [DOI: 10.1007/978-981-15-5062-1_7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
363 Ariga K. Nano-architectonics for coordination assemblies at interfacial media. Nanoscale Coordination Chemistry 2020. [DOI: 10.1016/bs.adioch.2020.03.005] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
364 Chen C, Ou H, Liu R, Ding D. Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics. Adv Mater 2020;32:e1806331. [PMID: 30924971 DOI: 10.1002/adma.201806331] [Cited by in Crossref: 185] [Cited by in F6Publishing: 192] [Article Influence: 92.5] [Reference Citation Analysis]
365 Tang ZM, Liu YY, Ni DL, Zhou JJ, Zhang M, Zhao PR, Lv B, Wang H, Jin DY, Bu WB. Biodegradable Nanoprodrugs: "Delivering" ROS to Cancer Cells for Molecular Dynamic Therapy. Adv Mater 2020;32:e1904011. [PMID: 31793717 DOI: 10.1002/adma.201904011] [Cited by in Crossref: 68] [Cited by in F6Publishing: 74] [Article Influence: 34.0] [Reference Citation Analysis]
366 Zhang Z, Chen D, Liu Z, Wang D, Guo J, Zheng J, Qin W, Wu C. Near-Infrared Polymer Dots with Aggregation-Induced Emission for Tumor Imaging. ACS Appl Polym Mater 2020;2:74-9. [DOI: 10.1021/acsapm.9b00977] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
367 Liu S, Chen C, Li Y, Zhang H, Liu J, Wang R, Wong STH, Lam JWY, Ding D, Tang BZ. Constitutional Isomerization Enables Bright NIR‐II AIEgen for Brain‐Inflammation Imaging. Adv Funct Mater 2020;30:1908125. [DOI: 10.1002/adfm.201908125] [Cited by in Crossref: 118] [Cited by in F6Publishing: 123] [Article Influence: 39.3] [Reference Citation Analysis]
368 Zhang L, Zhang Z, Liu C, Zhang X, Fan Q, Wu W, Jiang X. NIR-II Dye-Labeled Cylindrical Polymer Brushes for in Vivo Imaging. ACS Macro Lett 2019;8:1623-8. [PMID: 35619383 DOI: 10.1021/acsmacrolett.9b00815] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
369 Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. Adv Mater 2019;31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Cited by in Crossref: 80] [Cited by in F6Publishing: 83] [Article Influence: 26.7] [Reference Citation Analysis]
370 Li X, Liu L, Li S, Wan Y, Chen JX, Tian S, Huang Z, Xiao YF, Cui X, Xiang C, Tan Q, Zhang XH, Guo W, Liang XJ, Lee CS. Biodegradable π-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS Nano 2019;13:12901-11. [PMID: 31682416 DOI: 10.1021/acsnano.9b05383] [Cited by in Crossref: 116] [Cited by in F6Publishing: 121] [Article Influence: 38.7] [Reference Citation Analysis]
371 Zhang J, Ning L, Huang J, Zhang C, Pu K. Activatable molecular agents for cancer theranostics. Chem Sci 2019;11:618-30. [PMID: 34123034 DOI: 10.1039/c9sc05460j] [Cited by in Crossref: 74] [Cited by in F6Publishing: 80] [Article Influence: 24.7] [Reference Citation Analysis]
372 Zhou L, Lv F, Liu L, Wang S. Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. Acc Chem Res 2019;52:3211-22. [PMID: 31609571 DOI: 10.1021/acs.accounts.9b00427] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 23.0] [Reference Citation Analysis]
373 Guo B, Huang Z, Shi Q, Middha E, Xu S, Li L, Wu M, Jiang J, Hu Q, Fu Z, Liu B. Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Adv Funct Mater 2019;30:1907093. [DOI: 10.1002/adfm.201907093] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 16.7] [Reference Citation Analysis]
374 Yang Y, Wang L, Wan B, Gu Y, Li X. Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Front Bioeng Biotechnol 2019;7:320. [PMID: 31803728 DOI: 10.3389/fbioe.2019.00320] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
375 Xu Y, Yang W, Yao D, Bian K, Zeng W, Liu K, Wang D, Zhang B. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem Sci 2020;11:419-28. [PMID: 32190262 DOI: 10.1039/c9sc04901k] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
376 Li J, Cui D, Jiang Y, Huang J, Cheng P, Pu K. Near-Infrared Photoactivatable Semiconducting Polymer Nanoblockaders for Metastasis-Inhibited Combination Cancer Therapy. Adv Mater 2019;31:e1905091. [PMID: 31566279 DOI: 10.1002/adma.201905091] [Cited by in Crossref: 138] [Cited by in F6Publishing: 143] [Article Influence: 46.0] [Reference Citation Analysis]
377 Li Z, Hu Y, Fu Q, Liu Y, Wang J, Song J, Yang H. NIR/ROS‐Responsive Black Phosphorus QD Vesicles as Immunoadjuvant Carrier for Specific Cancer Photodynamic Immunotherapy. Adv Funct Mater 2019;30:1905758. [DOI: 10.1002/adfm.201905758] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 20.3] [Reference Citation Analysis]
378 Hu W, Miao X, Tao H, Baev A, Ren C, Fan Q, He T, Huang W, Prasad PN. Manipulating Nonradiative Decay Channel by Intermolecular Charge Transfer for Exceptionally Improved Photothermal Conversion. ACS Nano 2019;13:12006-14. [PMID: 31518102 DOI: 10.1021/acsnano.9b06208] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 16.3] [Reference Citation Analysis]
379 Mi Y, Cheng HB, Chu H, Zhao J, Yu M, Gu Z, Zhao Y, Li L. A photochromic upconversion nanoarchitecture: towards activatable bioimaging and dual NIR light-programmed singlet oxygen generation. Chem Sci 2019;10:10231-9. [PMID: 32206248 DOI: 10.1039/c9sc03524a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 10.7] [Reference Citation Analysis]
380 Jung D, Park S, Lee C, Kim H. Recent Progress on Near-Infrared Photoacoustic Imaging: Imaging Modality and Organic Semiconducting Agents. Polymers (Basel) 2019;11:E1693. [PMID: 31623160 DOI: 10.3390/polym11101693] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
381 Wei R, Jiang G, Lv M, Tan S, Wang X, Zhou Y, Cheng T, Gao X, Chen X, Wang W, Zou C, Li F, Ma X, Hu J, Ma D, Luo D, Xi L. TMTP1-modified Indocyanine Green-loaded Polymeric Micelles for Targeted Imaging of Cervical Cancer and Metastasis Sentinel Lymph Node in vivo. Theranostics 2019;9:7325-44. [PMID: 31695771 DOI: 10.7150/thno.35346] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
382 Hwang DW, Jo MJ, Lee JH, Kang H, Bao K, Hu S, Baek Y, Moon HG, Lee DS, Kashiwagi S, Henary M, Choi HS. Chemical Modulation of Bioengineered Exosomes for Tissue-Specific Biodistribution. Adv Ther (Weinh) 2019;2:1900111. [PMID: 32318623 DOI: 10.1002/adtp.201900111] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
383 Swavey S, Wertz A, Erb J. Bichromophoric Properties of Ruthenium(II) Polypyridyl Complexes Bridged by Boron Dipyrromethenes: Synthesis, Electrochemical, Spectroscopic, Computational Evaluation, and Plasmid DNA Photoreactions. Eur J Inorg Chem 2019;2019:3690-8. [DOI: 10.1002/ejic.201900527] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
384 Zhang K, Li H, Lang J, Li X, Yue W, Yin Y, Du D, Fang Y, Wu H, Zhao Y, Xu C. Quantum Yield‐Engineered Biocompatible Probes Illuminate Lung Tumor Based on Viscosity Confinement‐Mediated Antiaggregation. Adv Funct Mater 2019;29:1905124. [DOI: 10.1002/adfm.201905124] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
385 Merkes JM, Rueping M, Kiessling F, Banala S. Photoacoustic Detection of Superoxide Using Oxoporphyrinogen and Porphyrin. ACS Sens 2019;4:2001-8. [PMID: 31262172 DOI: 10.1021/acssensors.9b00224] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
386 Li X, Liu Y, Fu F, Cheng M, Liu Y, Yu L, Wang W, Wan Y, Yuan Z. Single NIR Laser-Activated Multifunctional Nanoparticles for Cascaded Photothermal and Oxygen-Independent Photodynamic Therapy. Nanomicro Lett 2019;11:68. [PMID: 34137996 DOI: 10.1007/s40820-019-0298-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
387 Tang Y, Pei F, Lu X, Fan Q, Huang W. Recent Advances on Activatable NIR‐II Fluorescence Probes for Biomedical Imaging. Adv Optical Mater 2019;7:1900917. [DOI: 10.1002/adom.201900917] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 25.3] [Reference Citation Analysis]
388 Yu Q, Huang T, Liu C, Zhao M, Xie M, Li G, Liu S, Huang W, Zhao Q. Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chem Sci 2019;10:9091-8. [PMID: 31827751 DOI: 10.1039/c9sc03161h] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 18.7] [Reference Citation Analysis]
389 Yang JC, Ho YC, Chan YH. Ultrabright Fluorescent Polymer Dots with Thermochromic Characteristics for Full-Color Security Marking. ACS Appl Mater Interfaces 2019;11:29341-9. [PMID: 31315396 DOI: 10.1021/acsami.9b10393] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
390 Li J, Duan H, Pu K. Nanotransducers for Near-Infrared Photoregulation in Biomedicine. Adv Mater 2019;31:e1901607. [PMID: 31199021 DOI: 10.1002/adma.201901607] [Cited by in Crossref: 97] [Cited by in F6Publishing: 97] [Article Influence: 32.3] [Reference Citation Analysis]
391 He S, Xie C, Jiang Y, Pu K. An Organic Afterglow Protheranostic Nanoassembly. Adv Mater 2019;31:e1902672. [PMID: 31206855 DOI: 10.1002/adma.201902672] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 20.3] [Reference Citation Analysis]
392 Zhang R, Xu Y, Zhang Y, Kim HS, Sharma A, Gao J, Yang G, Kim JS, Sun Y. Rational design of a multifunctional molecular dye for dual-modal NIR-II/photoacoustic imaging and photothermal therapy. Chem Sci 2019;10:8348-53. [PMID: 31803412 DOI: 10.1039/c9sc03504d] [Cited by in Crossref: 106] [Cited by in F6Publishing: 110] [Article Influence: 35.3] [Reference Citation Analysis]
393 Tullii G, Giona F, Lodola F, Bonfadini S, Bossio C, Varo S, Desii A, Criante L, Sala C, Pasini M, Verpelli C, Galeotti F, Antognazza MR. High-Aspect-Ratio Semiconducting Polymer Pillars for 3D Cell Cultures. ACS Appl Mater Interfaces 2019;11:28125-37. [PMID: 31356041 DOI: 10.1021/acsami.9b08822] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
394 Song G, Zheng X, Wang Y, Xia X, Chu S, Rao J. A Magneto-Optical Nanoplatform for Multimodality Imaging of Tumors in Mice. ACS Nano 2019;13:7750-8. [PMID: 31244043 DOI: 10.1021/acsnano.9b01436] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
395 Li Y, Liu Z, Ma Y, Chen Y, Ma K, Wang X, Zhang D, Wang Z. Semiconducting Nanocomposite with AIEgen‐Triggered Enhanced Photoluminescence and Photodegradation for Dual‐Modality Tumor Imaging and Therapy. Adv Funct Mater 2019;29:1903733. [DOI: 10.1002/adfm.201903733] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
396 Cui D, Li P, Zhen X, Li J, Jiang Y, Yu A, Hu X, Pu K. Thermoresponsive Semiconducting Polymer Nanoparticles for Contrast‐Enhanced Photoacoustic Imaging. Adv Funct Mater 2019;29:1903461. [DOI: 10.1002/adfm.201903461] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 15.7] [Reference Citation Analysis]
397 Das RJ, Mahata K. Mutualistic benefit in the self-sorted co-aggregates of peri-naphthoindigo and a 4-amino-1,8-naphthalimide derivative. Soft Matter 2019;15:5282-6. [PMID: 31232407 DOI: 10.1039/c9sm00454h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
398 Grabowska-jadach I, Drozd M, Kulpińska D, Komendacka K, Pietrzak M. Modification of fluorescent nanocrystals with 6-thioguanine: monitoring of drug delivery. Appl Nanosci 2020;10:83-93. [DOI: 10.1007/s13204-019-01101-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
399 Ding F, Fan Y, Sun Y, Zhang F. Beyond 1000 nm Emission Wavelength: Recent Advances in Organic and Inorganic Emitters for Deep-Tissue Molecular Imaging. Adv Healthc Mater 2019;8:e1900260. [PMID: 30983165 DOI: 10.1002/adhm.201900260] [Cited by in Crossref: 105] [Cited by in F6Publishing: 107] [Article Influence: 35.0] [Reference Citation Analysis]
400 Bao B, Su P, Yang Z, Zhai X, Zhang J, Xu Y, Liu Y, Gu B, Wang L. Highly Stable Core-Shell Structured Semiconducting Polymer Nanoparticles for FRET-Based Intracellular pH Imaging. Adv Healthc Mater 2019;8:e1900255. [PMID: 31148405 DOI: 10.1002/adhm.201900255] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
401 Ding F, Chen Z, Kim WY, Sharma A, Li C, Ouyang Q, Zhu H, Yang G, Sun Y, Kim JS. A nano-cocktail of an NIR-II emissive fluorophore and organoplatinum(ii) metallacycle for efficient cancer imaging and therapy. Chem Sci 2019;10:7023-8. [PMID: 31588269 DOI: 10.1039/c9sc02466b] [Cited by in Crossref: 75] [Cited by in F6Publishing: 76] [Article Influence: 25.0] [Reference Citation Analysis]
402 Wang J, Hsu SW, Gonzalez-Pech N, Jhunjhunwala A, Chen F, Hariri A, Grassian V, Tao A, Jokerst JV. Copper Sulfide Nanodisks and Nanoprisms for Photoacoustic Ovarian Tumor Imaging. Part Part Syst Charact 2019;36:1900171. [PMID: 32863594 DOI: 10.1002/ppsc.201900171] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
403 Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. Adv Mater 2019;31:e1900321. [PMID: 31025403 DOI: 10.1002/adma.201900321] [Cited by in Crossref: 343] [Cited by in F6Publishing: 362] [Article Influence: 114.3] [Reference Citation Analysis]
404 Hu X, Tang Y, Hu Y, Lu F, Lu X, Wang Y, Li J, Li Y, Ji Y, Wang W, Ye D, Fan Q, Huang W. Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy. Theranostics 2019;9:4168-81. [PMID: 31281539 DOI: 10.7150/thno.34390] [Cited by in Crossref: 64] [Cited by in F6Publishing: 73] [Article Influence: 21.3] [Reference Citation Analysis]
405 Yu G, Cen TY, He Z, Wang SP, Wang Z, Ying XW, Li S, Jacobson O, Wang S, Wang L, Lin LS, Tian R, Zhou Z, Ni Q, Li X, Chen X. Porphyrin Nanocage-Embedded Single-Molecular Nanoparticles for Cancer Nanotheranostics. Angew Chem Int Ed Engl 2019;58:8799-803. [PMID: 31034679 DOI: 10.1002/anie.201903277] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 14.3] [Reference Citation Analysis]
406 Zhang A, Pan S, Zhang Y, Chang J, Cheng J, Huang Z, Li T, Zhang C, de la Fuentea JM, Zhang Q, Cui D. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics 2019;9:3443-58. [PMID: 31281489 DOI: 10.7150/thno.33266] [Cited by in Crossref: 67] [Cited by in F6Publishing: 74] [Article Influence: 22.3] [Reference Citation Analysis]
407 Wang Q, Dai Y, Xu J, Cai J, Niu X, Zhang L, Chen R, Shen Q, Huang W, Fan Q. All‐in‐One Phototheranostics: Single Laser Triggers NIR‐II Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy. Adv Funct Mater 2019;29:1901480. [DOI: 10.1002/adfm.201901480] [Cited by in Crossref: 204] [Cited by in F6Publishing: 206] [Article Influence: 68.0] [Reference Citation Analysis]
408 Yang Z, Chen X. Semiconducting Perylene Diimide Nanostructure: Multifunctional Phototheranostic Nanoplatform. Acc Chem Res 2019;52:1245-54. [PMID: 30977625 DOI: 10.1021/acs.accounts.9b00064] [Cited by in Crossref: 63] [Cited by in F6Publishing: 81] [Article Influence: 21.0] [Reference Citation Analysis]
409 Taki S, Ardestani MS. Novel nanosized AS1411-chitosan-BODIPY conjugate for molecular fluorescent imaging. Int J Nanomedicine 2019;14:3543-55. [PMID: 31190811 DOI: 10.2147/IJN.S202561] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
410 Han X, Xu Y, Li Y, Zhao X, Zhang Y, Min H, Qi Y, Anderson GJ, You L, Zhao Y, Nie G. An Extendable Star-Like Nanoplatform for Functional and Anatomical Imaging-Guided Photothermal Oncotherapy. ACS Nano 2019;13:4379-91. [PMID: 30901191 DOI: 10.1021/acsnano.8b09607] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 17.0] [Reference Citation Analysis]
411 Yin S, Song G, Yang Y, Zhao Y, Wang P, Zhu L, Yin X, Zhang X. Persistent Regulation of Tumor Microenvironment via Circulating Catalysis of MnFe 2 O 4 @Metal–Organic Frameworks for Enhanced Photodynamic Therapy. Adv Funct Mater 2019;29:1901417. [DOI: 10.1002/adfm.201901417] [Cited by in Crossref: 145] [Cited by in F6Publishing: 146] [Article Influence: 48.3] [Reference Citation Analysis]
412 Chen L, Chen D, Jiang Y, Zhang J, Yu J, DuFort CC, Hingorani SR, Zhang X, Wu C, Chiu DT. A BODIPY-Based Donor/Donor-Acceptor System: Towards Highly Efficient Long-Wavelength-Excitable Near-IR Polymer Dots with Narrow and Strong Absorption Features. Angew Chem Int Ed Engl 2019;58:7008-12. [PMID: 30912228 DOI: 10.1002/anie.201902077] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
413 Jiang J, Qian Y, Xu Z, Lv Z, Tao P, Xie M, Liu S, Huang W, Zhao Q. Enhancing singlet oxygen generation in semiconducting polymer nanoparticles through fluorescence resonance energy transfer for tumor treatment. Chem Sci 2019;10:5085-94. [PMID: 31183060 DOI: 10.1039/c8sc05501g] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 17.3] [Reference Citation Analysis]
414 Kumar A. Simultaneous Passivation and Encapsulation of Black Phosphorus Nanosheets (Phosphorene) by Optically Active Polypeptide Micelles for Biosensors. ACS Appl Nano Mater 2019;2:2397-404. [DOI: 10.1021/acsanm.9b00265] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
415 Fang Y, Li HY, Yin HH, Xu SH, Ren WW, Ding SS, Tang WZ, Xiang LH, Wu R, Guan X, Zhang K. Radiofrequency-Sensitive Longitudinal Relaxation Tuning Strategy Enabling the Visualization of Radiofrequency Ablation Intensified by Magnetic Composite. ACS Appl Mater Interfaces 2019;11:11251-61. [PMID: 30874421 DOI: 10.1021/acsami.9b02401] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
416 Wang Z, Guo B, Middha E, Huang Z, Hu Q, Fu Z, Liu B. Microfluidics-Prepared Uniform Conjugated Polymer Nanoparticles for Photo-Triggered Immune Microenvironment Modulation and Cancer Therapy. ACS Appl Mater Interfaces 2019;11:11167-76. [PMID: 30810026 DOI: 10.1021/acsami.8b22579] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
417 Zhang Q, Qu D, Tian H. Photo‐Regulated Supramolecular Polymers: Shining Beyond Disassembly and Reassembly. Adv Optical Mater 2019;7:1900033. [DOI: 10.1002/adom.201900033] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
418 Jiang Y, Upputuri PK, Xie C, Zeng Z, Sharma A, Zhen X, Li J, Huang J, Pramanik M, Pu K. Metabolizable Semiconducting Polymer Nanoparticles for Second Near-Infrared Photoacoustic Imaging. Adv Mater 2019;31:e1808166. [PMID: 30663820 DOI: 10.1002/adma.201808166] [Cited by in Crossref: 238] [Cited by in F6Publishing: 245] [Article Influence: 79.3] [Reference Citation Analysis]
419 Moore C, Jokerst JV. Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics 2019;9:1550-71. [PMID: 31037123 DOI: 10.7150/thno.32362] [Cited by in Crossref: 84] [Cited by in F6Publishing: 89] [Article Influence: 28.0] [Reference Citation Analysis]
420 Gao S, Xu K, Gui X, Sun L, Liu L. Synthesis of Soluble Silsesquioxane–Polythiophene Hybrid Copolymers with a Controlled Morphology. ACS Appl Polym Mater 2019;1:437-51. [DOI: 10.1021/acsapm.8b00149] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
421 Wei Z, Liang P, Xie J, Song C, Tang C, Wang Y, Yin X, Cai Y, Han W, Dong X. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. Chem Sci 2019;10:2778-84. [PMID: 30996997 DOI: 10.1039/c8sc04123g] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 23.3] [Reference Citation Analysis]