BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: De Bo G. Mechanochemistry of the mechanical bond. Chem Sci 2018;9:15-21. [PMID: 29629069 DOI: 10.1039/c7sc04200k] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 10.6] [Reference Citation Analysis]
Number Citing Articles
1 Colley ND, Nosiglia MA, Tran SL, Harlan GH, Chang C, Li R, Delawder AO, Zhang Y, Barnes JC. Topologically Controlled Syntheses of Unimolecular Oligo[n]catenanes. ACS Cent Sci 2022. [DOI: 10.1021/acscentsci.2c00697] [Reference Citation Analysis]
2 Wang J, Gao X, Boarino A, Célerse F, Corminboeuf C, Klok H. Mechanical Acceleration of Ester Bond Hydrolysis in Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01789] [Reference Citation Analysis]
3 Jodra A, García-Iriepa C, Frutos LM. Mechanical Activation of Forbidden Photoreactivity in Oxa-di-π-methane Rearrangement. J Org Chem 2022. [PMID: 36166757 DOI: 10.1021/acs.joc.2c00720] [Reference Citation Analysis]
4 Farr NTH. Revealing Localised Mechanochemistry of Biomaterials Using In Situ Multiscale Chemical Analysis. Materials (Basel) 2022;15:3462. [PMID: 35629492 DOI: 10.3390/ma15103462] [Reference Citation Analysis]
5 Ma W, Cheng T, Liu FZ, Liu Y, Yan K. Allosteric Binding-Induced Intramolecular Mechanical-Strain Engineering. Angew Chem Int Ed Engl 2022;61:e202202213. [PMID: 35212101 DOI: 10.1002/anie.202202213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ma W, Cheng T, Liu F, Liu Y, Yan K. Allosteric Binding‐Induced Intramolecular Mechanical‐Strain Engineering. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202202213] [Reference Citation Analysis]
7 Kotani R, Yokoyama S, Nobusue S, Yamaguchi S, Osuka A, Yabu H, Saito S. Bridging pico-to-nanonewtons with a ratiometric force probe for monitoring nanoscale polymer physics before damage. Nat Commun 2022;13:303. [PMID: 35027559 DOI: 10.1038/s41467-022-27972-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
8 Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound‐controlled drug release and drug activation for cancer therapy. Exploration 2021;1:20210023. [DOI: 10.1002/exp.20210023] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 22.0] [Reference Citation Analysis]
9 Gauthier M, Coutrot F. Weinreb Amide, Ketone and Amine as Potential and Competitive Secondary Molecular Stations for Dibenzo-[24]Crown-8 in [2]Rotaxane Molecular Shuttles. Chemistry 2021;27:17576-80. [PMID: 34738683 DOI: 10.1002/chem.202103805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Kim M, Hong SY, Bang J, Lee S. Highly sustainable polyphenylene sulfide membrane of tailored porous architecture for high-performance lithium-ion battery applications. Materials Today Advances 2021;12:100186. [DOI: 10.1016/j.mtadv.2021.100186] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Williams MTJ, Morrill LC, Browne DL. Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect? ChemSusChem 2021. [PMID: 34767693 DOI: 10.1002/cssc.202102157] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
12 Qi Q, Sekhon G, Chandradat R, Ofodum NM, Shen T, Scrimgeour J, Joy M, Wriedt M, Jayathirtha M, Darie CC, Shipp DA, Liu X, Lu X. Force-Induced Near-Infrared Chromism of Mechanophore-Linked Polymers. J Am Chem Soc 2021;143:17337-43. [PMID: 34586805 DOI: 10.1021/jacs.1c05923] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
13 Che J, Zhang W, Xia L, Chen J, Wen P, Ma B, Wang C. A Facile and Environmentally Friendly Approach for Lead Recovery from Lead Sulfate Residue via Mechanochemical Reduction: Phase Transformation and Reaction Mechanism. ACS Sustainable Chem Eng 2021;9:10227-39. [DOI: 10.1021/acssuschemeng.1c02587] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Zhao P, Huo S, Fan J, Chen J, Kiessling F, Boersma AJ, Göstl R, Herrmann A. Aktivierung der katalytischen Aktivität von Thrombin für die Bildung von Fibrin durch Ultraschall. Angew Chem 2021;133:14829-14836. [DOI: 10.1002/ange.202105404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Michalchuk AAL, Boldyreva EV, Belenguer AM, Emmerling F, Boldyrev VV. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name? Front Chem 2021;9:685789. [PMID: 34164379 DOI: 10.3389/fchem.2021.685789] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 43.0] [Reference Citation Analysis]
16 Zhao P, Huo S, Fan J, Chen J, Kiessling F, Boersma AJ, Göstl R, Herrmann A. Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound. Angew Chem Int Ed Engl 2021;60:14707-14. [PMID: 33939872 DOI: 10.1002/anie.202105404] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
17 Bettens T, Hoffmann M, Alonso M, Geerlings P, Dreuw A, De Proft F. Mechanochemically Triggered Topology Changes in Expanded Porphyrins. Chemistry 2021;27:3397-406. [PMID: 33170967 DOI: 10.1002/chem.202003869] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
18 De Chavez D, Kobayashi H, Fukuoka A, Hasegawa JY. On the Electronic Structure Origin of Mechanochemically Induced Selectivity in Acid-Catalyzed Chitin Hydrolysis. J Phys Chem A 2021;125:187-97. [PMID: 33382273 DOI: 10.1021/acs.jpca.0c09030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Kumar S, Stauch T. The activation efficiency of mechanophores can be modulated by adjacent polymer composition. RSC Adv 2021;11:7391-7396. [DOI: 10.1039/d0ra09834e] [Reference Citation Analysis]
20 Wu M, Guo Z, He W, Yuan W, Chen Y. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range. Chem Sci 2020;12:1245-50. [PMID: 34163886 DOI: 10.1039/d0sc06140a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
21 Wu Q, Yuan Y, Chen F, Sun C, Xu H, Chen Y. Diselenide-Linked Polymers under Sonication. ACS Macro Lett 2020;9:1547-51. [PMID: 35617081 DOI: 10.1021/acsmacrolett.0c00585] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
22 Mier LJ, Adam G, Kumar S, Stauch T. The Mechanism of Flex-Activation in Mechanophores Revealed By Quantum Chemistry. Chemphyschem 2020;21:2402-6. [PMID: 32964598 DOI: 10.1002/cphc.202000739] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Sandoval-Torrientes R, Carr T, De Bo G. A Mechanochromic Hydrogen-Bonded Rotaxane. Macromol Rapid Commun 2021;42:e2000447. [PMID: 33043523 DOI: 10.1002/marc.202000447] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
24 Yamamoto K, Nameki R, Sogawa H, Takata T. Macrocyclic Dinuclear Palladium Complex as a Novel Doubly Threaded [3]Rotaxane Scaffold and Its Application as a Rotaxane Cross‐Linker. Angew Chem 2020;132:18179-18184. [DOI: 10.1002/ange.202007866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Wang Y, Saitow K. Mechanochemical Synthesis of Red-Light-Active Green TiO 2 Photocatalysts with Disorder: Defect-Rich, with Polymorphs, and No Metal Loading. Chem Mater 2020;32:9190-200. [DOI: 10.1021/acs.chemmater.0c02676] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
26 Aragonès AC, Martín‐rodríguez A, Aravena D, Puigmartí‐luis J, Amabilino DB, Aliaga‐alcalde N, González‐campo A, Ruiz E, Díez‐pérez I. Tuning Single‐Molecule Conductance in Metalloporphyrin‐Based Wires via Supramolecular Interactions. Angew Chem 2020;132:19355-63. [DOI: 10.1002/ange.202007237] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Aragonès AC, Martín-Rodríguez A, Aravena D, Puigmartí-Luis J, Amabilino DB, Aliaga-Alcalde N, González-Campo A, Ruiz E, Díez-Pérez I. Tuning Single-Molecule Conductance in Metalloporphyrin-Based Wires via Supramolecular Interactions. Angew Chem Int Ed Engl 2020;59:19193-201. [PMID: 33448538 DOI: 10.1002/anie.202007237] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
28 Jensen M, Kristensen R, Andersen SS, Bendixen D, Jeppesen JO. Probing the Electrostatic Barrier of Tetrathiafulvalene Dications using a Tetra-stable Donor-Acceptor [2]Rotaxane. Chemistry 2020;26:6165-75. [PMID: 32049376 DOI: 10.1002/chem.202000302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Akae Y, Iijima K, Tanaka M, Tarao T, Takata T. Main Chain-Type Polyrotaxanes Derived from Cyclodextrin-Based Pseudo[3]rotaxane Diamine and Macromolecular Diisocyanate: Synthesis, Modification, and Characterization. Macromolecules 2020;53:2169-76. [DOI: 10.1021/acs.macromol.0c00215] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
30 Peterson GI, Noh J, Bang K, Ma H, Kim KT, Choi T. Mechanochemical Degradation of Brush Polymers: Kinetics of Ultrasound-Induced Backbone and Arm Scission. Macromolecules 2020;53:1623-8. [DOI: 10.1021/acs.macromol.9b02721] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
31 Stevenson R, Zhang M, De Bo G. Mechanical activation of polymers containing two adjacent mechanophores. Polym Chem 2020;11:2864-8. [DOI: 10.1039/d0py00279h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
32 Lu Y, Aoki D, Sawada J, Kosuge T, Sogawa H, Otsuka H, Takata T. Visualization of the slide-ring effect: a study on movable cross-linking points using mechanochromism. Chem Commun 2020;56:3361-4. [DOI: 10.1039/c9cc09452k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
33 Peterson GI, Lee J, Choi T. Multimechanophore Graft Polymers: Mechanochemical Reactions at Backbone–Arm Junctions. Macromolecules 2019;52:9561-8. [DOI: 10.1021/acs.macromol.9b01996] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
34 Wang J, Guo G, Han Y, Hou Q, Geng M, Zhang Z. Mechanolysis mechanisms of the fused aromatic rings of anthracite coal under shear stress. Fuel 2019;253:1247-55. [DOI: 10.1016/j.fuel.2019.05.117] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
35 Barbee MH, Wang J, Kouznetsova T, Lu M, Craig SL. Mechanochemical Ring-Opening of Allylic Epoxides. Macromolecules 2019;52:6234-40. [DOI: 10.1021/acs.macromol.9b01190] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
36 Sha Y, Zhang Y, Xu E, McAlister CW, Zhu T, Craig SL, Tang C. Generalizing metallocene mechanochemistry to ruthenocene mechanophores. Chem Sci 2019;10:4959-65. [PMID: 31183044 DOI: 10.1039/c9sc01347d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
37 Sha Y, Zhang Y, Xu E, Wang Z, Zhu T, Craig SL, Tang C. Quantitative and Mechanistic Mechanochemistry in Ferrocene Dissociation. ACS Macro Lett 2018;7:1174-9. [PMID: 31098336 DOI: 10.1021/acsmacrolett.8b00625] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 16.3] [Reference Citation Analysis]
38 Quapp W, Bofill JM, Ribas-ariño J. Toward a theory of mechanochemistry: Simple models from the very beginnings. Int J Quantum Chem 2018;118:e25775. [DOI: 10.1002/qua.25775] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
39 Akae Y, Sogawa H, Takata T. Synthesis of a Structure‐Definite α‐Cyclodextrin‐Based Macromolecular [3]Rotaxane Using a Size‐Complementary Method. Angew Chem Int Ed 2018;57:11742-6. [DOI: 10.1002/anie.201807261] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
40 Akae Y, Sogawa H, Takata T. Synthesis of a Structure-Definite α-Cyclodextrin-Based Macromolecular [3]Rotaxane Using a Size-Complementary Method. Angew Chem 2018;130:11916-20. [DOI: 10.1002/ange.201807261] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]