BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Goor OJGM, Hendrikse SIS, Dankers PYW, Meijer EW. From supramolecular polymers to multi-component biomaterials. Chem Soc Rev 2017;46:6621-37. [PMID: 28991958 DOI: 10.1039/c7cs00564d] [Cited by in Crossref: 178] [Cited by in F6Publishing: 46] [Article Influence: 44.5] [Reference Citation Analysis]
Number Citing Articles
1 Iseki T, Mabesoone MFJ, Koenis MAJ, Lamers BAG, Weyandt E, de Windt LNJ, Buma WJ, Palmans ARA, Meijer EW. Temperature-dependent modulation by biaryl-based monomers of the chain length and morphology of biphenyl-based supramolecular polymers. Chem Sci 2021;12:13001-12. [PMID: 34745531 DOI: 10.1039/d1sc03974a] [Reference Citation Analysis]
2 Mabesoone MFJ, Palmans ARA, Meijer EW. Solute-Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse. J Am Chem Soc 2020;142:19781-98. [PMID: 33174741 DOI: 10.1021/jacs.0c09293] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 9.5] [Reference Citation Analysis]
3 Schoenmakers SMC, Spiering AJH, Herziger S, Böttcher C, Haag R, Palmans ARA, Meijer EW. Structure and Dynamics of Supramolecular Polymers: Wait and See. ACS Macro Lett 2022;11:711-5. [PMID: 35570802 DOI: 10.1021/acsmacrolett.2c00223] [Reference Citation Analysis]
4 Wang K, Shao YG, Yan FZ, Zhang Z, Li S. Construction of Supramolecular Polymers with Different Topologies by Orthogonal Self-Assembly of Cryptand-Paraquat Recognition and Metal Coordination. Molecules 2021;26:952. [PMID: 33670156 DOI: 10.3390/molecules26040952] [Reference Citation Analysis]
5 Saez Talens V, Davis J, Wu CH, Wen Z, Lauria F, Gupta KBSS, Rudge R, Boraghi M, Hagemeijer A, Trinh TT, Englebienne P, Voets IK, Wu JI, Kieltyka RE. Thiosquaramide-Based Supramolecular Polymers: Aromaticity Gain in a Switched Mode of Self-Assembly. J Am Chem Soc 2020;142:19907-16. [PMID: 33191746 DOI: 10.1021/jacs.0c02081] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
6 Ippel BD, Arts B, Keizer HM, Dankers PYW. Combinatorial functionalization with bisurea-peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial. J Polym Sci B Polym Phys 2019;57:1725-35. [PMID: 32025088 DOI: 10.1002/polb.24907] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Baker MB, Bosman T, Cox MAJ, Dankers P, Dias A, Jonkheijm P, Kieltyka R. Supramolecular Biomaterials in the Netherlands. Tissue Eng Part A 2022. [PMID: 35316128 DOI: 10.1089/ten.TEA.2022.0010] [Reference Citation Analysis]
8 Hafeez S, Ooi HW, Suylen D, Duimel H, Hackeng TM, van Blitterswijk C, Baker MB. Desymmetrization via Activated Esters Enables Rapid Synthesis of Multifunctional Benzene-1,3,5-tricarboxamides and Creation of Supramolecular Hydrogelators. J Am Chem Soc 2022. [PMID: 35196454 DOI: 10.1021/jacs.1c12685] [Reference Citation Analysis]
9 Coste M, Suárez-picado E, Ulrich S. Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chem Sci . [DOI: 10.1039/d1sc05589e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Oka S, Ozawa H, Yoshikawa K, Ikeda T, Haga MA. Hydrogen-bonded metallo-supramolecular polymers based on ruthenium or iron complexes for the selective extraction of single-walled carbon nanotubes. Dalton Trans 2018;47:14195-203. [PMID: 29850741 DOI: 10.1039/c8dt01573b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jangizehi A, Ahmadi M, Seiffert S. Emergence, evidence, and effect of junction clustering in supramolecular polymer materials. Mater Adv 2021;2:1425-53. [DOI: 10.1039/d0ma00795a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
12 Shang Y, Lv L, Du J, Yang Q, Yin J, Liu D, Wang R, Sun D, Jiang J. A spirobifluorene-based supramolecular polymer: Solvent-induced SCSC transformation and fluorescent sensing. Inorganic Chemistry Communications 2020;112:107703. [DOI: 10.1016/j.inoche.2019.107703] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Roy S, Maji TK. Self-assembled organic and hybrid materials derived from oligo-(p-phenyleneethynylenes). Chem Commun (Camb) 2022;58:4149-67. [PMID: 35274120 DOI: 10.1039/d2cc00186a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Schoenmakers SMC, van den Bersselaar BWL, Dhiman S, Su L, Palmans ARA. Facilitating functionalization of benzene-1,3,5-tricarboxamides by switching amide connectivity. Org Biomol Chem 2021;19:8281-94. [PMID: 34518862 DOI: 10.1039/d1ob01587g] [Reference Citation Analysis]
15 Tan Y, Zhang Y, Ge Z, Zheng J, Liang S, Ma Y, Wen M, Li J, Sun Z, Liu C, Xu S, Zhang Y. Physical Cross-Linkage Constructed Supramolecular Conductive Hydrogel as Sustainable and Remolded Epidermal Electronics. ACS Appl Polym Mater 2022;4:2585-94. [DOI: 10.1021/acsapm.1c01885] [Reference Citation Analysis]
16 Shariati K, Ling AS, Fuchs S, Dillenburger B, Liu W, Ma M. Hylozoic by Design: Converging Material and Biological Complexities for Cell‐Driven Living Materials with 4D Behaviors. Adv Funct Materials 2022;32:2108057. [DOI: 10.1002/adfm.202108057] [Reference Citation Analysis]
17 Bondarenko AS, Patmanidis I, Alessandri R, Souza PCT, Jansen TLC, de Vries AH, Marrink SJ, Knoester J. Multiscale modeling of molecular structure and optical properties of complex supramolecular aggregates. Chem Sci 2020;11:11514-24. [PMID: 34094396 DOI: 10.1039/d0sc03110k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
18 Putti M, de Jong SMJ, Stassen OMJA, Sahlgren CM, Dankers PYW. A Supramolecular Platform for the Introduction of Fc-Fusion Bioactive Proteins on Biomaterial Surfaces. ACS Appl Polym Mater 2019;1:2044-54. [PMID: 31423488 DOI: 10.1021/acsapm.9b00334] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
19 Vybornyi O, Liu SX, Häner R. Stimuli-Responsive Supramolecular Polymers from Amphiphilic Phosphodiester-Linked Azobenzene Trimers. Angew Chem Int Ed Engl 2021;60:25872-7. [PMID: 34529324 DOI: 10.1002/anie.202108745] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Goldmann AS, Boase NRB, Michalek L, Blinco JP, Welle A, Barner-Kowollik C. Adaptable and Reprogrammable Surfaces. Adv Mater 2019;31:e1902665. [PMID: 31414512 DOI: 10.1002/adma.201902665] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
21 Ganie AA, Vishnoi P, Dar AA. Utility of Bis-4-pyridines as Supramolecular Linkers for 5-Sulfosalicylic Acid Centers: Structural and Optical Investigations. Crystal Growth & Design 2019;19:2289-97. [DOI: 10.1021/acs.cgd.8b01914] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
22 Zhao X, Liu X, Zhang P, Liu Y, Ran W, Cai Y, Wang J, Zhai Y, Wang G, Ding Y, Li Y. Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma. Acta Pharm Sin B 2019;9:1050-60. [PMID: 31649853 DOI: 10.1016/j.apsb.2019.06.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
23 Morgese G, de Waal BFM, Varela-Aramburu S, Palmans ARA, Albertazzi L, Meijer EW. Anchoring Supramolecular Polymers to Human Red Blood Cells by Combining Dynamic Covalent and Non-Covalent Chemistries. Angew Chem Int Ed Engl 2020;59:17229-33. [PMID: 32584462 DOI: 10.1002/anie.202006381] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Oldenhuis NJ, Qin KP, Wang S, Ye HZ, Alt EA, Willard AP, Van Voorhis T, Craig SL, Johnson JA. Photoswitchable Sol-Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarin-Decorated Cu24 L24 Metal-Organic Cages as Junctions. Angew Chem Int Ed Engl 2020;59:2784-92. [PMID: 31742840 DOI: 10.1002/anie.201913297] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 10.5] [Reference Citation Analysis]
25 Raphael E, Derry MJ, Hippler M, Armes SP. Tuning the properties of hydrogen-bonded block copolymer worm gels prepared via polymerization-induced self-assembly. Chem Sci 2021;12:12082-91. [PMID: 34667573 DOI: 10.1039/d1sc03156b] [Reference Citation Analysis]
26 Varela-Aramburu S, Morgese G, Su L, Schoenmakers SMC, Perrone M, Leanza L, Perego C, Pavan GM, Palmans ARA, Meijer EW. Exploring the Potential of Benzene-1,3,5-tricarboxamide Supramolecular Polymers as Biomaterials. Biomacromolecules 2020;21:4105-15. [PMID: 32991162 DOI: 10.1021/acs.biomac.0c00904] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
27 Koçer G, Jonkheijm P. About Chemical Strategies to Fabricate Cell-Instructive Biointerfaces with Static and Dynamic Complexity. Adv Healthc Mater 2018;7:e1701192. [PMID: 29717821 DOI: 10.1002/adhm.201701192] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
28 Aoki T, Ueda M, Aida T, Itoh Y. Supramolecular Polymerization of a Photo-Fluttering Chiral Monomer: A Temporarily Suspendable Chain Growth by Light. J Am Chem Soc 2022. [PMID: 35385273 DOI: 10.1021/jacs.2c02176] [Reference Citation Analysis]
29 Chong H, Xu Y, Han Y, Yan C, Su D, Wang C. Pillar[5]arene‐based “Three‐components” Supramolecular Assembly and the Performance of Nitrobenzene‐based Explosive Fluorescence Sensing. ChemistrySelect 2021;6:9363-7. [DOI: 10.1002/slct.202102725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Wang Y, Meng HM, Li Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. Nanoscale 2021;13:8751-72. [PMID: 33973616 DOI: 10.1039/d1nr00323b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
31 Liu L, Qin X, Duan W, Huang H, Zhang W, Zhou Q, Huang Y. Aggregation-induced near-infrared absorption of a pillar[5]arene trimer by charge transfer interaction. Dyes and Pigments 2018;158:390-5. [DOI: 10.1016/j.dyepig.2018.05.074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
32 Choi J, Kim S, Yoo J, Choi S, Char K. Self-Healable Antifreeze Hydrogel Based on Dense Quadruple Hydrogen Bonding. Macromolecules 2021;54:6389-99. [DOI: 10.1021/acs.macromol.1c00295] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
33 Hendrikse SIS, Spaans S, Meijer EW, Dankers PYW. Supramolecular Platform Stabilizing Growth Factors. Biomacromolecules 2018;19:2610-7. [PMID: 29677449 DOI: 10.1021/acs.biomac.8b00219] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
34 Vereroudakis E, Vlassopoulos D. Tunable dynamic properties of hydrogen-bonded supramolecular assemblies in solution. Progress in Polymer Science 2021;112:101321. [DOI: 10.1016/j.progpolymsci.2020.101321] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
35 Balkenende DWR, Winkler SM, Li Y, Messersmith PB. Supramolecular Cross-Links in Mussel-Inspired Tissue Adhesives. ACS Macro Lett 2020;9:1439-45. [PMID: 35653660 DOI: 10.1021/acsmacrolett.0c00520] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
36 Kumar S, Hause G, Binder WH. Bifunctional Peptide-Polymer Conjugate-Based Fibers via a One-Pot Tandem Disulfide Reduction Coupled to a Thio-Bromo "Click" Reaction. ACS Omega 2020;5:19020-8. [PMID: 32775904 DOI: 10.1021/acsomega.0c02326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Zhao L, Liu Y, Chang R, Xing R, Yan X. Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy. Adv Funct Mater 2019;29:1806877. [DOI: 10.1002/adfm.201806877] [Cited by in Crossref: 132] [Cited by in F6Publishing: 111] [Article Influence: 33.0] [Reference Citation Analysis]
38 Fu J, Zheng B, Zhang H, Zhao Y, Zhang D, Zhang W, Yang X, Wu B. Chirality transcription in the anion-coordination-driven assembly of tetrahedral cages. Chem Commun 2020;56:2475-8. [DOI: 10.1039/c9cc09752j] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
39 Neves R, Stephens K, Smith-Carpenter JE. Synthesis and Characterization of 1,2-Dithiolane Modified Self-Assembling Peptides. J Vis Exp 2018. [PMID: 30176010 DOI: 10.3791/58135] [Reference Citation Analysis]
40 Huang J, Li C, Gao Y, Cai Y, Guo X, Cohen Stuart MA, Wang J. Dendrimer-Based Polyion Complex Vesicles: Loops Make Loose. Macromol Rapid Commun 2021;:e2100594. [PMID: 34699665 DOI: 10.1002/marc.202100594] [Reference Citation Analysis]
41 Chen S, Costil R, Leung FK, Feringa BL. Self‐Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem 2021;133:11708-31. [DOI: 10.1002/ange.202007693] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
42 Hoque J, Sangaj N, Varghese S. Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 2019;19:e1800259. [PMID: 30295012 DOI: 10.1002/mabi.201800259] [Cited by in Crossref: 68] [Cited by in F6Publishing: 50] [Article Influence: 17.0] [Reference Citation Analysis]
43 Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021;10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
44 Foster DA, Hwang DK. Microfluidic flow assembly system with magnetic clamp for unlimited geometry in millimetric hydrogel film patterning. Applied Materials Today 2022;26:101330. [DOI: 10.1016/j.apmt.2021.101330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Yin H, Zhang X, Wei J, Lu S, Bardelang D, Wang R. Recent advances in supramolecular antidotes. Theranostics 2021;11:1513-26. [PMID: 33391548 DOI: 10.7150/thno.53459] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 22.0] [Reference Citation Analysis]
46 Shankar V, van Blitterswijk C, Vrij E, Giselbrecht S. From Snapshots to Development: Identifying the Gaps in the Development of Stem Cell-based Embryo Models along the Embryonic Timeline. Adv Sci (Weinh) 2021;8:2004250. [PMID: 33898195 DOI: 10.1002/advs.202004250] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Feliciano AJ, van Blitterswijk C, Moroni L, Baker MB. Realizing tissue integration with supramolecular hydrogels. Acta Biomater 2021;124:1-14. [PMID: 33508507 DOI: 10.1016/j.actbio.2021.01.034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
48 Chen Y, Gao Z, Wang L, Li J, Tang Y, Liu C. Living Supramolecular Polymerization of Ultrastable Kinetic Species of Ir(III) Complexes in Aqueous Media. ACS Appl Polym Mater 2022;4:1055-64. [DOI: 10.1021/acsapm.1c01495] [Reference Citation Analysis]
49 Varela-Aramburu S, Su L, Mosquera J, Morgese G, Schoenmakers SMC, Cardinaels R, Palmans ARA, Meijer EW. Introducing Hyaluronic Acid into Supramolecular Polymers and Hydrogels. Biomacromolecules 2021;22:4633-41. [PMID: 34662095 DOI: 10.1021/acs.biomac.1c00927] [Reference Citation Analysis]
50 Gupta N, Singh A, Dey N, Chattopadhyay S, Joseph JP, Gupta D, Ganguli M, Pal A. Pathway-Driven Peptide–Bioglass Nanocomposites as the Dynamic and Self-Healable Matrix. Chem Mater 2021;33:589-99. [DOI: 10.1021/acs.chemmater.0c03757] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
51 Wang H, Zhang Y, Chen Y, Pan H, Ren X, Chen Z. Living Supramolecular Polymerization of an Aza‐BODIPY Dye Controlled by a Hydrogen‐Bond‐Accepting Triazole Unit Introduced by Click Chemistry. Angew Chem 2020;132:5223-30. [DOI: 10.1002/ange.201914966] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
52 Magdalena Estirado E, Rosier BJHM, de Greef TFA, Brunsveld L. Dynamic modulation of proximity-induced enzyme activity using supramolecular polymers. Chem Commun (Camb) 2020;56:5747-50. [PMID: 32319466 DOI: 10.1039/d0cc02120b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
53 Arrabito G, Aleeva Y, Ferrara V, Prestopino G, Chiappara C, Pignataro B. On the Interaction between 1D Materials and Living Cells. J Funct Biomater 2020;11:E40. [PMID: 32531950 DOI: 10.3390/jfb11020040] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
54 Sultankulov B, Berillo D, Kauanova S, Mikhalovsky S, Mikhalovska L, Saparov A. Composite Cryogel with Polyelectrolyte Complexes for Growth Factor Delivery. Pharmaceutics 2019;11:E650. [PMID: 31817064 DOI: 10.3390/pharmaceutics11120650] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
55 Thangavel G, Tan MWM, Lee PS. Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg 2019;6:29. [PMID: 31414249 DOI: 10.1186/s40580-019-0199-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
56 Zhang G, Luo M, Lei J, Zhong T, Wei Y, Xie L, Huang W. Substituent effects on fluorene-based linear supramolecular polymerizsation. Supramolecular Chemistry 2019;31:391-401. [DOI: 10.1080/10610278.2019.1609679] [Reference Citation Analysis]
57 Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020;25:E4090. [PMID: 32906772 DOI: 10.3390/molecules25184090] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
58 De Kort BJ, Marzi J, Brauchle EM, Lichauco AM, Bauer HS, Serrero A, Dekker S, Cox MAJ, Schoen FJ, Schenke-Layland K, Bouten CVC, Smits AIPM. Inflammatory and regenerative processes in bioresorbable synthetic pulmonary valves up to two years in sheep-Spatiotemporal insights augmented by Raman microspectroscopy. Acta Biomater 2021;135:243-59. [PMID: 34509697 DOI: 10.1016/j.actbio.2021.09.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
59 Xiao T, Wang J, Shen Y, Bao C, Li Z, Sun X, Wang L. Preparation of a fixed-tetraphenylethylene motif bridged ditopic benzo-21-crown-7 and its application for constructing AIE supramolecular polymers. Chinese Chemical Letters 2021;32:1377-80. [DOI: 10.1016/j.cclet.2020.10.037] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
60 Tharmalingam B, Mathivanan M, Anitha O, Kaminsky W, Murugesapandian B. Nitrogen rich triaminoguanidine-pyrrole conjugate as supramolecular synthon for the construction of charge-assisted hydrogen bonded network with various carboxylic acids. Journal of Solid State Chemistry 2022;305:122637. [DOI: 10.1016/j.jssc.2021.122637] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Zuccaccia D, Pinalli R, De Zorzi R, Semeraro M, Credi A, Zuccaccia C, Macchioni A, Geremia S, Dalcanale E. Hierarchical self-assembly and controlled disassembly of a cavitand-based host–guest supramolecular polymer. Polym Chem 2021;12:389-401. [DOI: 10.1039/d0py01483d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Li M, Zajaczkowski W, Velpula G, Jänsch D, Graf R, Marszalek T, Parekh SH, Zagranyarski Y, Mali K, Wagner M, De Feyter S, Li C, Müllen K, Pisula W. Transformation from helical to layered supramolecular organization of asymmetric perylene diimides via multiple intermolecular hydrogen bonding. Chem Sci 2020;11:4960-8. [DOI: 10.1039/d0sc01911a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
63 Bäumer N, Kartha KK, Buss S, Palakkal JP, Strassert CA, Fernández G. Exploiting coordination geometry to tune the dimensions and processability of metallosupramolecular polymers. Org Chem Front 2021;8:4138-43. [PMID: 34354839 DOI: 10.1039/d1qo00644d] [Reference Citation Analysis]
64 Takeuchi M, Gnanasekaran K, Friedrich H, Imai H, Sommerdijk NAJM, Oaki Y. Tunable Stimuli-Responsive Color-Change Properties of Layered Organic Composites. Adv Funct Mater 2018;28:1804906. [DOI: 10.1002/adfm.201804906] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
65 Xie B, Ding YF, Shui M, Yue L, Gao C, Wyman IW, Wang R. Supramolecular biomaterials for bio-imaging and imaging-guided therapy. Eur J Nucl Med Mol Imaging 2021. [PMID: 34816296 DOI: 10.1007/s00259-021-05622-7] [Reference Citation Analysis]
66 Xiu F, Knežević A, Kwangmettatam S, Di Iorio D, Huskens J, Kudernac T. Multivalent Noncovalent Interfacing and Cross-Linking of Supramolecular Tubes. Adv Mater 2022;34:e2105926. [PMID: 34821422 DOI: 10.1002/adma.202105926] [Reference Citation Analysis]
67 Cheng J, Amin D, Latona J, Heber-Katz E, Messersmith PB. Supramolecular Polymer Hydrogels for Drug-Induced Tissue Regeneration. ACS Nano 2019;13:5493-501. [PMID: 31067407 DOI: 10.1021/acsnano.9b00281] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 9.7] [Reference Citation Analysis]
68 Wu S, Cai C, Li F, Tan Z, Dong S. Deep Eutectic Supramolecular Polymers: Bulk Supramolecular Materials. Angew Chem 2020;132:11969-73. [DOI: 10.1002/ange.202004104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Chen S, Costil R, Leung FK, Feringa BL. Self-Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew Chem Int Ed Engl 2021;60:11604-27. [PMID: 32936521 DOI: 10.1002/anie.202007693] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
70 Mes T, Serrero A, Bauer HS, Cox MA, Bosman AW, Dankers PY, Meijer E. Supramolecular polymer materials bring restorative heart valve therapy to patients. Materials Today 2021. [DOI: 10.1016/j.mattod.2021.12.003] [Reference Citation Analysis]
71 Wang Y, Li J, Li Y, Yang B. Biomimetic bioinks of nanofibrillar polymeric hydrogels for 3D bioprinting. Nano Today 2021;39:101180. [DOI: 10.1016/j.nantod.2021.101180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
72 Hendrikse SIS, Gras SL, Ellis AV. Opportunities and Challenges in DNA-Hybrid Nanomaterials. ACS Nano 2019;13:8512-6. [PMID: 31415144 DOI: 10.1021/acsnano.9b06186] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
73 Golkaram M, Loos K. A Critical Approach to Polymer Dynamics in Supramolecular Polymers. Macromolecules 2019;52:9427-44. [PMID: 31894159 DOI: 10.1021/acs.macromol.9b02085] [Cited by in Crossref: 25] [Cited by in F6Publishing: 7] [Article Influence: 8.3] [Reference Citation Analysis]
74 Columbus I, Eren N, Elitsur R, Davidovich-pinhas M, Shenhar R. Branched Supramolecular Copolymers: Inducing Branching in Bisurea-Based Monomers Using Multi-Sulfonate Molecules. Macromolecules. [DOI: 10.1021/acs.macromol.1c01837] [Reference Citation Analysis]
75 Thomas J, Gupta N, Joseph JP, Chopra V, Pal A, Ghosh D. Mechanical Integrity in a Dynamic Interpenetrating Hydrogel Network of Supramolecular Peptide-Polysaccharide Supports Enhanced Chondrogenesis. ACS Biomater Sci Eng 2021. [PMID: 34761897 DOI: 10.1021/acsbiomaterials.1c01120] [Reference Citation Analysis]
76 Vidal F, Lin H, Morales C, Jäkle F. Polysiloxane/Polystyrene Thermo-Responsive and Self-Healing Polymer Network via Lewis Acid-Lewis Base Pair Formation. Molecules 2018;23:E405. [PMID: 29438313 DOI: 10.3390/molecules23020405] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
77 Liu J, Schotman MJG, Hendrix MMRM, Lou X, Marín San Román PP, Voets IK, Sijbesma RP. Effects of structural variation on the self‐assembly of bis‐urea based bolaamphiphiles. Journal of Polymer Science 2021;59:1162-70. [DOI: 10.1002/pol.20200888] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
78 Diao K, Whitaker DJ, Huang Z, Qian H, Ren D, Zhang L, Li ZY, Sun XQ, Xiao T, Wang L. An ultralow-acceptor-content supramolecular light-harvesting system for white-light emission. Chem Commun (Camb) 2022;58:2343-6. [PMID: 35080216 DOI: 10.1039/d1cc06647a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
79 Zong Y, Xu SM, Shi W, Lu C. Oriented arrangement of simple monomers enabled by confinement: towards living supramolecular polymerization. Nat Commun 2021;12:2596. [PMID: 33972542 DOI: 10.1038/s41467-021-22827-4] [Reference Citation Analysis]
80 Kartha KK, Wendler F, Rudolph T, Biehl P, Fernández G, Schacher FH. pH-Responsive Side Chains as a Tool to Control Aqueous Self-Assembly Mechanisms. Chemistry 2020;26:606-10. [PMID: 31713917 DOI: 10.1002/chem.201904284] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
81 Spaans S, Fransen PKH, Schotman MJG, van der Wulp R, Lafleur RPM, Kluijtmans SGJM, Dankers PYW. Supramolecular Modification of a Sequence-Controlled Collagen-Mimicking Polymer. Biomacromolecules 2019;20:2360-71. [PMID: 31050892 DOI: 10.1021/acs.biomac.9b00353] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
82 Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021;127:56-79. [PMID: 33831569 DOI: 10.1016/j.actbio.2021.03.067] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 22.0] [Reference Citation Analysis]
83 Guan T, Li J, Chen C, Liu Y. Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair. Adv Sci (Weinh) 2022;9:e2104165. [PMID: 35142093 DOI: 10.1002/advs.202104165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
84 Hendrikse SIS, Su L, Hogervorst TP, Lafleur RPM, Lou X, van der Marel GA, Codee JDC, Meijer EW. Elucidating the Ordering in Self-Assembled Glycocalyx Mimicking Supramolecular Copolymers in Water. J Am Chem Soc 2019;141:13877-86. [PMID: 31387351 DOI: 10.1021/jacs.9b06607] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
85 Wu H, Chen Z, Qi S, Bai B, Ye J, Wu D, Shen J, Kang F, Yu G. Evaluation of the stability of cucurbit[8]uril-based ternary host-guest complexation in physiological environment and the fabrication of a supramolecular theranostic nanomedicine. J Nanobiotechnology 2021;19:330. [PMID: 34670552 DOI: 10.1186/s12951-021-01076-z] [Reference Citation Analysis]
86 Chen S, Yang L, Leung FK, Kajitani T, Stuart MCA, Fukushima T, van Rijn P, Feringa BL. Photoactuating Artificial Muscles of Motor Amphiphiles as an Extracellular Matrix Mimetic Scaffold for Mesenchymal Stem Cells. J Am Chem Soc 2022. [PMID: 35171583 DOI: 10.1021/jacs.1c12318] [Reference Citation Analysis]
87 Samperi M, Pérez-García L, Amabilino DB. Quantification of energy of activation to supramolecular nanofibre formation reveals enthalpic and entropic effects and morphological consequence. Chem Sci 2019;10:10256-66. [PMID: 32015821 DOI: 10.1039/c9sc03280k] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
88 Zhang Q, Qu D, Tian H. Photo‐Regulated Supramolecular Polymers: Shining Beyond Disassembly and Reassembly. Adv Optical Mater 2019;7:1900033. [DOI: 10.1002/adom.201900033] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
89 Sikder A, Sarkar J, Barman R, Ghosh S. Directional Supramolecular Assembly of π-Amphiphiles with Tunable Surface Functionality and Impact on the Antimicrobial Activity. J Phys Chem B 2019;123:7169-77. [DOI: 10.1021/acs.jpcb.9b05193] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
90 Rajdev P, Dey P, Ghosh I, Khamrui R, Kar J, Jana SS, Ghosh S. Shape-Dependent Cellular Uptake of Nanostructures Produced from Supramolecular Structure-Directing Unit-Appended Hydrophilic Polymers. ACS Macro Lett 2021;10:1467-73. [PMID: 35549136 DOI: 10.1021/acsmacrolett.1c00588] [Reference Citation Analysis]
91 Liu B, Yang T, Mu X, Mai Z, Li H, Wang Y, Zhou G. Smart Supramolecular Self-Assembled Nanosystem: Stimulus-Responsive Hydrogen-Bonded Liquid Crystals. Nanomaterials (Basel) 2021;11:448. [PMID: 33578814 DOI: 10.3390/nano11020448] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019;11:032002. [PMID: 30759423 DOI: 10.1088/1758-5090/ab06ea] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
93 Dhakal NP, Jiang J, Guo Y, Peng C. Self-Assembly of Aqueous Soft Matter Patterned by Liquid-Crystal Polymer Networks for Controlling the Dynamics of Bacteria. ACS Appl Mater Interfaces 2020;12:13680-5. [DOI: 10.1021/acsami.0c00746] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
94 Morgese G, Waal BFM, Varela‐aramburu S, Palmans ARA, Albertazzi L, Meijer EW. Anchoring Supramolecular Polymers to Human Red Blood Cells by Combining Dynamic Covalent and Non‐Covalent Chemistries. Angew Chem 2020;132:17382-6. [DOI: 10.1002/ange.202006381] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
95 Gruschwitz FV, Hausig F, Schüler P, Kimmig J, Hoeppener S, Pretzel D, Schubert US, Catrouillet S, Brendel JC. Shear-Thinning and Rapidly Recovering Hydrogels of Polymeric Nanofibers Formed by Supramolecular Self-Assembly. Chem Mater . [DOI: 10.1021/acs.chemmater.1c03931] [Reference Citation Analysis]
96 Sikder A, Chakraborty S, Rajdev P, Dey P, Ghosh S. Molecular Recognition Driven Bioinspired Directional Supramolecular Assembly of Amphiphilic (Macro)molecules and Proteins. Acc Chem Res 2021;54:2670-82. [PMID: 34014638 DOI: 10.1021/acs.accounts.1c00195] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
97 Jorba I, Mostert D, Hermans LHL, van der Pol A, Kurniawan NA, Bouten CVC. In Vitro Methods to Model Cardiac Mechanobiology in Health and Disease. Tissue Eng Part C Methods 2021;27:139-51. [PMID: 33514281 DOI: 10.1089/ten.TEC.2020.0342] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
98 Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers (Basel) 2021;13:4404. [PMID: 34960954 DOI: 10.3390/polym13244404] [Reference Citation Analysis]
99 Krieg E, Niazov-Elkan A, Cohen E, Tsarfati Y, Rybtchinski B. Noncovalent Aqua Materials Based on Perylene Diimides. Acc Chem Res 2019;52:2634-46. [PMID: 31478643 DOI: 10.1021/acs.accounts.9b00188] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
100 Jia Y, Wei Z, Zhang S, Yang B, Li Y. Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Adv Healthc Mater 2022;:e2102479. [PMID: 35182456 DOI: 10.1002/adhm.202102479] [Reference Citation Analysis]
101 van Sprang JF, de Jong SM, Dankers PY. Biomaterial-driven kidney organoid maturation. Current Opinion in Biomedical Engineering 2022;21:100355. [DOI: 10.1016/j.cobme.2021.100355] [Reference Citation Analysis]
102 Sarma P, Sharma P, Gomila RM, Frontera A, Barcelo-oliver M, Verma AK, Baruwa B, Bhattacharyya MK. Charge assisted hydrogen bonded assemblies and unconventional O···O dichalcogen bonding interactions in pyrazole-based isostructural Ni(II) and Mn(II) compounds involving anthraquinone disulfonate: Antiproliferative evaluation and theoretical studies. Journal of Molecular Structure 2022;1250:131883. [DOI: 10.1016/j.molstruc.2021.131883] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
103 Ippel BD, Keizer HM, Dankers PYW. Supramolecular Antifouling Additives for Robust and Efficient Functionalization of Elastomeric Materials: Molecular Design Matters. Adv Funct Mater 2019;29:1805375. [DOI: 10.1002/adfm.201805375] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
104 Fernández B, Fernández Z, Quiñoá E, Freire F. From Oligo(Phenyleneethynylene) Monomers to Supramolecular Helices: The Role of Intermolecular Interactions in Aggregation. Molecules 2021;26:3530. [PMID: 34207858 DOI: 10.3390/molecules26123530] [Reference Citation Analysis]
105 Saunders L, Ma PX. Self-Healing Supramolecular Hydrogels for Tissue Engineering Applications. Macromol Biosci 2019;19:e1800313. [PMID: 30565872 DOI: 10.1002/mabi.201800313] [Cited by in Crossref: 88] [Cited by in F6Publishing: 65] [Article Influence: 22.0] [Reference Citation Analysis]
106 Cai Y, Yan X, Wang S, Zhu Z, Cen M, Ou C, Zhao Q, Yan Q, Wang J, Yao Y. Pillar[5]arene-Based 3D Hybrid Supramolecular Polymer for Green Catalysis in Water. Inorg Chem 2021;60:2883-7. [PMID: 33570384 DOI: 10.1021/acs.inorgchem.0c03645] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
107 Yao T, Baker MB, Moroni L. Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Nanomaterials (Basel) 2020;10:E887. [PMID: 32380699 DOI: 10.3390/nano10050887] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
108 Ruelas‐alvarez GY, Cárdenas‐valenzuela AJ, Cruz‐enríquez A, Höpfl H, Campos‐gaxiola JJ, Rodríguez‐rivera MA, Rodríguez‐molina B. Exploration of the Luminescence Properties of Organic Phosphate Salts of 3‐Quinoline‐ and 5‐Isoquinolineboronic Acid. Eur J Inorg Chem 2019;2019:2707-24. [DOI: 10.1002/ejic.201900244] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
109 Cheng C, Yang X, Fan W, Lee A, Lai J. Cytosine-Functionalized Supramolecular Polymer-Mediated Cellular Behavior and Wound Healing. Biomacromolecules 2020;21:3857-66. [DOI: 10.1021/acs.biomac.0c00938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
110 Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. Adv Sci (Weinh) 2022;9:e2105319. [PMID: 35043598 DOI: 10.1002/advs.202105319] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Wang C, Wang J, Zeng L, Qiao Z, Liu X, Liu H, Zhang J, Ding J. Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules 2019;24:E834. [PMID: 30813599 DOI: 10.3390/molecules24050834] [Cited by in Crossref: 93] [Cited by in F6Publishing: 61] [Article Influence: 31.0] [Reference Citation Analysis]
112 Diba M, Spaans S, Hendrikse SIS, Bastings MMC, Schotman MJG, van Sprang JF, Wu DJ, Hoeben FJM, Janssen HM, Dankers PYW. Engineering the Dynamics of Cell Adhesion Cues in Supramolecular Hydrogels for Facile Control over Cell Encapsulation and Behavior. Adv Mater 2021;33:e2008111. [PMID: 34337776 DOI: 10.1002/adma.202008111] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
113 Li T, Zhang Q, Li D, Dong S, Zhao W, Stang PJ. Rational Design and Bulk Synthesis of Water-Containing Supramolecular Polymers. ACS Appl Mater Interfaces 2020;12:38700-7. [PMID: 32803947 DOI: 10.1021/acsami.0c11546] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
114 Zhang Y, Pham CY, Yu R, Petit E, Li S, Barboiu M. Dynamic Hydrogels Based on Double Imine Connections and Application for Delivery of Fluorouracil. Front Chem 2020;8:739. [PMID: 33005607 DOI: 10.3389/fchem.2020.00739] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
115 Fernandes CSM, Rodrigues AL, Alves VD, Fernandes TG, Pina AS, Roque ACA. Natural Multimerization Rules the Performance of Affinity-Based Physical Hydrogels for Stem Cell Encapsulation and Differentiation. Biomacromolecules 2020;21:3081-91. [DOI: 10.1021/acs.biomac.0c00473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
116 van Dun S, Schill J, Milroy LG, Brunsveld L. Mutually Exclusive Cellular Uptake of Combinatorial Supramolecular Copolymers. Chemistry 2018;24:16445-51. [PMID: 30155918 DOI: 10.1002/chem.201804045] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
117 Morgan FLC, Moroni L, Baker MB. Dynamic Bioinks to Advance Bioprinting. Adv Healthc Mater 2020;9:e1901798. [PMID: 32100963 DOI: 10.1002/adhm.201901798] [Cited by in Crossref: 74] [Cited by in F6Publishing: 56] [Article Influence: 37.0] [Reference Citation Analysis]
118 Xiao T, Zhong W, Yang W, Qi L, Gao Y, Sue AC, Li Z, Sun X, Lin C, Wang L. Reversible hydrogen-bonded polymerization regulated by allosteric metal templation. Chem Commun 2020;56:14385-8. [DOI: 10.1039/d0cc06381a] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]