BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gregory GL, López-vidal EM, Buchard A. Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. Chem Commun 2017;53:2198-217. [DOI: 10.1039/c6cc09578j] [Cited by in Crossref: 73] [Cited by in F6Publishing: 71] [Article Influence: 14.6] [Reference Citation Analysis]
Number Citing Articles
1 Bikmurzin R, Bandzevičiūtė R, Maršalka A, Maneikis A, Kalėdienė L. FT-IR Method Limitations for β-Glucan Analysis. Molecules 2022;27:4616. [DOI: 10.3390/molecules27144616] [Reference Citation Analysis]
2 Hardy C, Kociok-Köhn G, Buchard A. UV degradation of poly(lactic acid) materials through copolymerisation with a sugar-derived cyclic xanthate. Chem Commun (Camb) 2022. [PMID: 35416817 DOI: 10.1039/d2cc01322c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 London JA, Taylor SL, Barsukov I, Cartmell A, Yates EA. Exploration of expanded carbohydrate chemical space to access biological activity using microwave-induced acid condensation of simple sugars. RSC Adv 2022;12:11075-83. [PMID: 35425031 DOI: 10.1039/d2ra01463g] [Reference Citation Analysis]
4 Vidal JL, Yavitt BM, Wheeler MD, Kolwich JL, Donovan LN, Sit CS, Hatzikiriakos SG, Jalsa NK, Macquarrie SL, Kerton FM. Biochar as a sustainable and renewable additive for the production of Poly(ε-caprolactone) composites. Sustainable Chemistry and Pharmacy 2022;25:100586. [DOI: 10.1016/j.scp.2021.100586] [Reference Citation Analysis]
5 Scholten PBV, Figueirêdo MB. Back to the Future with Biorefineries: Bottom‐Up and Top‐Down Approaches toward Polymers and Monomers. Macro Chemistry & Physics. [DOI: 10.1002/macp.202200017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Bomfim ASCD, Oliveira DMD, Voorwald HJC, Benini KCCDC, Dumont M, Rodrigue D. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers 2022;14:437. [DOI: 10.3390/polym14030437] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
7 Brege A, Grignard B, Méreau R, Detrembleur C, Jerome C, Tassaing T. En Route to CO2-Based (a)Cyclic Carbonates and Polycarbonates from Alcohols Substrates by Direct and Indirect Approaches. Catalysts 2022;12:124. [DOI: 10.3390/catal12020124] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lu JF, Gao JH, Tang B, Sun M, Ge HG. A Novel 3D Na(I) Coordination Polymer Constructed by 3,5-Bis(4'-Carboxy-Phenyl)-1,2,4-Triazole: Synthesis, Crystal Structure, and Photocatalytic Property. Crystallogr Rep 2021;66:1295-9. [DOI: 10.1134/s1063774521070269] [Reference Citation Analysis]
9 Derosa CA, Luke AM, Anderson K, Reineke TM, Tolman WB, Bates FS, Hillmyer MA. Regioregular Polymers from Biobased ( R )-1,3-Butylene Carbonate. Macromolecules 2021;54:5974-84. [DOI: 10.1021/acs.macromol.1c00828] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
10 Mcguire TM, Clark EF, Buchard A. Polymers from Sugars and Cyclic Anhydrides: Ring-Opening Copolymerization of a d -Xylose Anhydrosugar Oxetane. Macromolecules 2021;54:5094-105. [DOI: 10.1021/acs.macromol.1c00365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
11 Choe S, Lee H, Nayab S. Diverse coordination geometry of cobalt (II), zinc (II), and cadmium (II) complexes comprising N , N ‐bis(1H‐pyrazol‐1‐yl)methyl)amines derivatives: Synthesis, structures, and ring opening polymerization of rac ‐lactide. Appl Organomet Chem 2021;35. [DOI: 10.1002/aoc.6204] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Souleymanou MY, El‐ouahabi F, Masdeu‐bultó AM, Godard C. Cooperative NHC‐based Catalytic System Immobilised onto Carbon Materials for the Cycloaddition of CO 2 to Epoxides. ChemCatChem 2021;13:1706-10. [DOI: 10.1002/cctc.202001816] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Saxon DJ, Gormong EA, Shah VM, Reineke TM. Rapid Synthesis of Chemically Recyclable Polycarbonates from Renewable Feedstocks. ACS Macro Lett 2021;10:98-103. [PMID: 35548994 DOI: 10.1021/acsmacrolett.0c00747] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
14 McGuire TM, Bowles J, Deane E, Farrar EHE, Grayson MN, Buchard A. Control of Crystallinity and Stereocomplexation of Synthetic Carbohydrate Polymers from d- and l-Xylose. Angew Chem Int Ed Engl 2021;60:4524-8. [PMID: 33225519 DOI: 10.1002/anie.202013562] [Cited by in Crossref: 4] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
15 Diaz C, Mehrkhodavandi P. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polym Chem 2021;12:783-806. [DOI: 10.1039/d0py01534b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
16 Mcguire TM, Buchard A. Polymers from sugars and CS 2 : ring opening copolymerisation of a d -xylose anhydrosugar oxetane. Polym Chem 2021;12:4253-61. [DOI: 10.1039/d1py00753j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Martínez CR, Pérez JM, Arrabal-campos FM, Batuecas M, Ortuño MA, Fernández I. Cyclic polylactide synthesis initiated by a lithium anthraquinoid: understanding the selectivity through DFT and diffusion NMR. Polym Chem 2021;12:4083-92. [DOI: 10.1039/d1py00547b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Wang J, Tao Y. Synthesis of Sustainable Polyesters via Organocatalytic Ring-Opening Polymerization of O-carboxyanhydrides: Advances and Perspectives. Macromol Rapid Commun 2021;42:e2000535. [PMID: 33241601 DOI: 10.1002/marc.202000535] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
19 Limwanich W, Meepowpan P, Sriyai M, Chaiwon T, Punyodom W. Eco-friendly synthesis of biodegradable poly(ε-caprolactone) using L-lactic and glycolic acids as organic initiator. Polym Bull 2021;78:7089-101. [DOI: 10.1007/s00289-020-03401-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Hermann A, Hill S, Metz A, Heck J, Hoffmann A, Hartmann L, Herres-Pawlis S. Next Generation of Zinc Bisguanidine Polymerization Catalysts towards Highly Crystalline, Biodegradable Polyesters. Angew Chem Int Ed Engl 2020;59:21778-84. [PMID: 32954634 DOI: 10.1002/anie.202008473] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 7.5] [Reference Citation Analysis]
21 Hermann A, Hill S, Metz A, Heck J, Hoffmann A, Hartmann L, Herres‐pawlis S. Mit der nächsten Generation von Zink‐Bisguanidin‐Polymerisationskatalysatoren zu hochkristallinen, biologisch abbaubaren Polyestern. Angew Chem 2020;132:21962-8. [DOI: 10.1002/ange.202008473] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
22 Slavko E, Taylor MS. Site-Selective, Organoboron-Catalyzed Polymerization of Pyranosides: Access to Sugar-Derived Polyesters with Tunable Properties. Macromolecules 2020;53:8192-201. [DOI: 10.1021/acs.macromol.0c01686] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Isono T, Nakahira S, Hsieh H, Katsuhara S, Mamiya H, Yamamoto T, Chen W, Borsali R, Tajima K, Satoh T. Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio-Based Block Copolymers. Macromolecules 2020;53:5408-17. [DOI: 10.1021/acs.macromol.0c00611] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
24 Hatton FL. Recent advances in RAFT polymerization of monomers derived from renewable resources. Polym Chem 2020;11:220-9. [DOI: 10.1039/c9py01128e] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
25 Piccini M, Leak DJ, Chuck CJ, Buchard A. Polymers from sugars and unsaturated fatty acids: ADMET polymerisation of monomers derived from d -xylose, d -mannose and castor oil. Polym Chem 2020;11:2681-91. [DOI: 10.1039/c9py01809c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
26 Fuchs M, Schmitz S, Schäfer PM, Secker T, Metz A, Ksiazkiewicz AN, Pich A, Kögerler P, Monakhov KY, Herres-pawlis S. Mononuclear zinc(II) Schiff base complexes as catalysts for the ring-opening polymerization of lactide. European Polymer Journal 2020;122:109302. [DOI: 10.1016/j.eurpolymj.2019.109302] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
27 Xu Z, Zhang S, Ren W. Chiral β-diketiminate-supported magnesium alkyl complexes: Synthesis and their application in the polymerization of rac-lactide. Inorganica Chimica Acta 2019;495:118970. [DOI: 10.1016/j.ica.2019.118970] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
28 Kundu A, De GC, Ghosh S. Green Synthesis of Novel Polyesterurethane Materials from Epoxides and Carbon Dioxide by New Set of One-Dimensional Coordination Polymer Catalyst. ACS Omega 2019;4:14074-84. [PMID: 31497726 DOI: 10.1021/acsomega.9b01922] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
29 Schäfer PM, Dankhoff K, Rothemund M, Ksiazkiewicz AN, Pich A, Schobert R, Weber B, Herres-Pawlis S. Towards New Robust Zn(II) Complexes for the Ring-Opening Polymerization of Lactide Under Industrially Relevant Conditions. ChemistryOpen 2019;8:1020-6. [PMID: 31384524 DOI: 10.1002/open.201900199] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
30 Stadler BM, Wulf C, Werner T, Tin S, de Vries JG. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal 2019;9:8012-67. [DOI: 10.1021/acscatal.9b01665] [Cited by in Crossref: 72] [Cited by in F6Publishing: 55] [Article Influence: 24.0] [Reference Citation Analysis]
31 Chen X, Wang B, Pan L, Li Y. Homoleptic, bis-ligated magnesium complexes for ring-opening polymerization of lactide and lactones: Synthesis, structure, polymerization behavior and mechanism studies: Bis-ligated Magnesium Complexes. Appl Organometal Chem 2019;33:e4770. [DOI: 10.1002/aoc.4770] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
32 Zhong Y, Tong R. Living Ring-Opening Polymerization of O-Carboxyanhydrides: The Search for Catalysts. Front Chem 2018;6:641. [PMID: 30622943 DOI: 10.3389/fchem.2018.00641] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
33 Kang M, Cho J, Nayab S, Jeong JH. Synthesis and characterization of Zn(II) and Cu(II) complexes bearing (chiral substituent)(diethyl)-ethanediamine derivatives as precatalysts for rac-lactide polymerisation. Polyhedron 2019;158:135-43. [DOI: 10.1016/j.poly.2018.10.068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Aguiar VO, de Fatima V Marques M. Mechanical and Morphological Evaluation of the Reinforcement of Polycaprolactone With Different Cellulose Fibers. Macromol Symp 2018;381:1800122. [DOI: 10.1002/masy.201800122] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Marszałek-Harych A, Jędrzkiewicz D, Ejfler J. Bio- and chemocatalysis cascades as a bridge between biology and chemistry for green polymer synthesis. Cell Mol Biol Lett 2017;22:28. [PMID: 29225630 DOI: 10.1186/s11658-017-0061-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
36 Zhang J, Wang B, Wang L, Sun J, Zhang Y, Cao Z, Wu Z. Versatile cobalt complexes for initiating immortal ring‐opening polymerization (ROP) of lactide (LA), mediating living radical polymerization of t ‐butyl acrylate ( t BA) and catalyzing copolymerization of LA and t BA by combination of ROP and organometallic‐mediated radical polymerization. Appl Organometal Chem 2018;32. [DOI: 10.1002/aoc.4077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]