BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Purbia R, Paria S. Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. Nanoscale 2015;7:19789-873. [DOI: 10.1039/c5nr04729c] [Cited by in Crossref: 192] [Cited by in F6Publishing: 193] [Article Influence: 27.4] [Reference Citation Analysis]
Number Citing Articles
1 Kuang D, Liu L, Mead JL, Deng L, Luo H, Wang S. Facile synthesis and excellent microwave absorption performance of ultra-small ZnO-doped onion-like carbon nanoparticles. Materials Research Bulletin 2023;157:112007. [DOI: 10.1016/j.materresbull.2022.112007] [Reference Citation Analysis]
2 Zhao T, Yang Y, Deng X, Ma S, Wu M, Zhang Y, Guan Y, Zhu Y, Yao T, Yang Q, Wu J. Preparation of double-yolk egg-like nanoreactor: Enhanced catalytic activity in Fenton-like reaction and insight on confinement effect. Journal of Colloid and Interface Science 2022;625:774-84. [DOI: 10.1016/j.jcis.2022.06.065] [Reference Citation Analysis]
3 Singh J, Lee S, Zulkifli, Kim J, Rai AK. Morphological dependent behaviour of CoMoO4 anode: Lithium vs. sodium ion batteries. Journal of Alloys and Compounds 2022;920:165925. [DOI: 10.1016/j.jallcom.2022.165925] [Reference Citation Analysis]
4 Dong L, Chu H, Pan Z, Li Y, Zhao S, Li D. Synthesis of core-shell polyhedron ZIF-8@ZIF-67 as saturable absorber for passive Q-switching operation in Tm:YAP laser at 3H4→3H5 transition. Optical Materials 2022;131:112724. [DOI: 10.1016/j.optmat.2022.112724] [Reference Citation Analysis]
5 Yeo SJ, Oh MJ, Kim Y, Weon BM, Kwon SJ, Yoo PJ. Controlled synthesis of solid-shelled non-spherical and faceted microbubbles. Nanoscale 2022. [PMID: 36039694 DOI: 10.1039/d2nr03741f] [Reference Citation Analysis]
6 Zheng Y, Tan J, Zhang G, Ma Y, Liu F, Liu M, Wang Y, Zou H, Huang H. Yolk‐Shell AuAgPt Alloy Nanostructures with Tunable Morphologies: Plasmon‐Enhanced Photothermal and Catalytic Properties. Adv Energy and Sustain Res 2022;3:2100222. [DOI: 10.1002/aesr.202100222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kuwahara Y, Yamashita H. Development of Multi-functional Catalysts for Capture and Catalytic Transformation of Carbon Dioxide Using Nanoporous Materials. J Jpn Petrol Inst 2022;65:125-33. [DOI: 10.1627/jpi.65.125] [Reference Citation Analysis]
8 Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle J, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coordination Chemistry Reviews 2022;461:214497. [DOI: 10.1016/j.ccr.2022.214497] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
9 Nobile C, Cozzoli PD. Synthetic Approaches to Colloidal Nanocrystal Heterostructures Based on Metal and Metal-Oxide Materials. Nanomaterials 2022;12:1729. [DOI: 10.3390/nano12101729] [Reference Citation Analysis]
10 Parkhomenko RG, Knez M. Facile Fabrication of Gold Nanorods@Polystyrenesulfonate Yolk-Shell Nanoparticles for Spaser Applications. ACS Appl Nano Mater 2022;5:4629-33. [PMID: 35492437 DOI: 10.1021/acsanm.2c00967] [Reference Citation Analysis]
11 Ngata MR, Yang B, Aminu MD, Emmanuely BL, Said AA, Kalibwami DC, Mwakipunda GC, Ochilov E, Nyakilla EE. Minireview of Formation Damage Control through Nanotechnology Utilization at Fieldwork Conditions. Energy Fuels 2022;36:4174-85. [DOI: 10.1021/acs.energyfuels.2c00210] [Reference Citation Analysis]
12 Yin J, Xu Z, Xiao Z, Shao H, Wang J. Photo/electrochemical synthesis of Si@Sn microsphere composites with excellent electrochemical lithium storage. Journal of Alloys and Compounds 2022;900:163438. [DOI: 10.1016/j.jallcom.2021.163438] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wang H, Lu S, Wang X, Xia S, Beng Chew H. A review of the multiscale mechanics of silicon electrodes in high-capacity lithium-ion batteries. J Phys D: Appl Phys 2022;55:063001. [DOI: 10.1088/1361-6463/ac2d64] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Oh KH, Lee H, Kang SW, Yang J, Nam G, Lim T, Lee SH, Hong CS, Park JC. Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts. Journal of Industrial and Engineering Chemistry 2022;106:449-59. [DOI: 10.1016/j.jiec.2021.11.018] [Reference Citation Analysis]
15 Shawky S, El-hafiz DR, Shalaby NH, Said S, Helal MH, Mohamed SK. Vanadia nanoparticles encapsulated in mesoporous silica as a rattle-like structure for oxidation of dibenzothiophene: A kinetic study. Materials Chemistry and Physics 2022;278:125625. [DOI: 10.1016/j.matchemphys.2021.125625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Li D, Guo F, Qi L. Gold Nanoarrow-Based Core–Shell and Yolk–Shell Nanoparticles for Surface-Enhanced Raman Scattering. ACS Appl Nano Mater 2022;5:126-32. [DOI: 10.1021/acsanm.1c04203] [Reference Citation Analysis]
17 Mollazehi F. Catalytic nanoparticles and magnetic nanocatalysts in organic reactions: A mini review. MGC 2022. [DOI: 10.3233/mgc-210170] [Reference Citation Analysis]
18 Sun C, Wang W, Sun X, Chu W, Yang J, Dai J, Ju Y. An intrinsically thermogenic nanozyme for synergistic antibacterial therapy. Biomater Sci 2021;9:8323-34. [PMID: 34783326 DOI: 10.1039/d1bm01390d] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Fang Y, Yang Y, Yang Z, Li H, Roesky HW. Advances in design of metal-organic frameworks activating persulfate for water decontamination. Journal of Organometallic Chemistry 2021;954-955:122070. [DOI: 10.1016/j.jorganchem.2021.122070] [Reference Citation Analysis]
20 Mirbagheri R, Elhamifar D, Shaker M. Yolk-shell structured magnetic mesoporous silica: a novel and highly efficient adsorbent for removal of methylene blue. Sci Rep 2021;11:23259. [PMID: 34853407 DOI: 10.1038/s41598-021-02699-w] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
21 Abdellatif AAH, Alsowinea AF. Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnology Reviews 2021;10:1941-77. [DOI: 10.1515/ntrev-2021-0115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
22 Choe HS, Shin MJ, Kwon SG, Lee H, Kim DK, Choi KU, Kim JH, Kim JH. Yolk-Shell-Type Gold Nanoaggregates for Chemo- and Photothermal Combination Therapy for Drug-Resistant Cancers. ACS Appl Mater Interfaces 2021;13:53519-29. [PMID: 34730926 DOI: 10.1021/acsami.1c10036] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
23 Wu Y, Wang Y, Zhang S, Wu S. Artificial Chameleon Skin with Super-Sensitive Thermal and Mechanochromic Response. ACS Nano 2021;15:15720-9. [PMID: 34517702 DOI: 10.1021/acsnano.1c05612] [Cited by in Crossref: 14] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
24 Zhou S, Maeda M, Kubo M, Shimada M. One-step Synthesis of Gold@Silica Yolk-shell Nanoparticles with Catalytic Activity. Chem Lett 2021;50:1475-8. [DOI: 10.1246/cl.210266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Zhang G, Dong L, Zhang S, Liu B, Yang J. One-pot synthesis of Au@mSiO2 yolk-shell nanoparticles with enhanced catalytic and surface-enhanced Raman scattering (SERS) properties. Journal of Alloys and Compounds 2021;871:159631. [DOI: 10.1016/j.jallcom.2021.159631] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front Chem 2021;9:629054. [PMID: 34327190 DOI: 10.3389/fchem.2021.629054] [Cited by in F6Publishing: 35] [Reference Citation Analysis]
27 Welling TAJ, Watanabe K, Grau-Carbonell A, de Graaf J, Nagao D, Imhof A, van Huis MA, van Blaaderen A. Tunability of Interactions between the Core and Shell in Rattle-Type Particles Studied with Liquid-Cell Electron Microscopy. ACS Nano 2021. [PMID: 34132535 DOI: 10.1021/acsnano.1c03140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Wieszczycka K, Staszak K, Woźniak-budych MJ, Litowczenko J, Maciejewska BM, Jurga S. Surface functionalization – The way for advanced applications of smart materials. Coordination Chemistry Reviews 2021;436:213846. [DOI: 10.1016/j.ccr.2021.213846] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
29 Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Adv Sci (Weinh) 2021;8:2004951. [PMID: 34194936 DOI: 10.1002/advs.202004951] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
30 Feng Y, Liao J, Chen X, Wang H, Guo B, Li H, Zhou L, Huang J, Li H. Synthesis of rattle-structured CuCo2O4 nanospheres with tunable sizes based on heterogeneous contraction and their ultrahigh performance toward ammonia borane hydrolysis. Journal of Alloys and Compounds 2021;863:158089. [DOI: 10.1016/j.jallcom.2020.158089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
31 Perfecto TM, Zito CA, Volanti DP. Effect of NiS nanosheets on the butanone sensing performance of ZnO hollow spheres under humidity conditions. Sensors and Actuators B: Chemical 2021;334:129684. [DOI: 10.1016/j.snb.2021.129684] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
32 Taitt R, Urbain M, Behel Z, Pablo-Sainz-Ezquerra AM, Kandybka I, Millet E, Martinez-Rodriguez N, Yeromonahos C, Beauquis S, Le Dantec R, Mugnier Y, Brevet PF, Chevolot Y, Monnier V. Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties. Nanomaterials (Basel) 2021;11:950. [PMID: 33917921 DOI: 10.3390/nano11040950] [Reference Citation Analysis]
33 Shaker M, Elhamifar D. Cu-containing magnetic yolk-shell structured ionic liquid-based organosilica nanocomposite: A powerful catalyst with improved activity. Composites Communications 2021;24:100608. [DOI: 10.1016/j.coco.2020.100608] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
34 Dhiman S, Yadav A, Debnath N, Das S. Application of Core/Shell Nanoparticles in Smart Farming: A Paradigm Shift for Making the Agriculture Sector More Sustainable. J Agric Food Chem 2021;69:3267-83. [PMID: 33719438 DOI: 10.1021/acs.jafc.0c05403] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
35 Chen YA, Wang YT, Moon HS, Yong K, Hsu YJ. Yolk-shell nanostructures: synthesis, photocatalysis and interfacial charge dynamics. RSC Adv 2021;11:12288-305. [PMID: 35423745 DOI: 10.1039/d1ra00803j] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 17.0] [Reference Citation Analysis]
36 Gao X, Lu W, Xu J. Unlocking multiphysics design guidelines on Si/C composite nanostructures for high-energy-density and robust lithium-ion battery anode. Nano Energy 2021;81:105591. [DOI: 10.1016/j.nanoen.2020.105591] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
37 Demin AM, Vakhrushev AV, Mekhaev AV, Uimin MA, Krasnov VP. Modification of Fe3O4 magnetic nanoparticles with a GRGD peptide. Russ Chem Bull 2021;70:449-56. [DOI: 10.1007/s11172-021-3107-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
38 Zhao S, Shen Y, Hao F, Kang C, Cui B, Wei D, Meng F. P-n junctions based on CuO-decorated ZnO nanowires for ethanol sensing application. Applied Surface Science 2021;538:148140. [DOI: 10.1016/j.apsusc.2020.148140] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
39 Lin Z, Lan X, Xiong X, Hu R. Recent development of Sn–Fe-based materials as a substitute for Sn–Co–C anodes in Li-ion batteries: a review. Mater Chem Front 2021;5:1185-204. [DOI: 10.1039/d0qm00582g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Lim YV, Li XL, Yang HY. Recent Tactics and Advances in the Application of Metal Sulfides as High‐Performance Anode Materials for Rechargeable Sodium‐Ion Batteries. Adv Funct Mater 2021;31:2006761. [DOI: 10.1002/adfm.202006761] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
41 Ruiz-Garcia H, Alvarado-Estrada K, Krishnan S, Quinones-Hinojosa A, Trifiletti DM. Nanoparticles for Stem Cell Therapy Bioengineering in Glioma. Front Bioeng Biotechnol 2020;8:558375. [PMID: 33365304 DOI: 10.3389/fbioe.2020.558375] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
42 Wu P, Chen S, Liu A. The influence of contact engineering on silicon‐based anode for li‐ion batteries. Nano Select 2021;2:468-91. [DOI: 10.1002/nano.202000174] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
43 Barzkar A, Beni AS. In situ synthesis of SO3H supported Fe3O4@resorcinol-formaldehyde resin core/shell and its catalytic evaluation towards the synthesis of hexahydroquinoline derivatives in green conditions. RSC Adv 2020;10:41703-12. [PMID: 35516541 DOI: 10.1039/d0ra06972h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
44 Boccalon E, Gorrasi G, Nocchetti M. Layered double hydroxides are still out in the bloom: Syntheses, applications and advantages of three-dimensional flower-like structures. Adv Colloid Interface Sci 2020;285:102284. [PMID: 33164779 DOI: 10.1016/j.cis.2020.102284] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
45 Gundanna SK, Mitra A, Bhatta LK, Bhatta UM. Temperature-dependent interfacial behaviour of Au@SiO2 core shell nanoparticles on Si3N4 support film. Solid State Sciences 2020;109:106401. [DOI: 10.1016/j.solidstatesciences.2020.106401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Nnadozie EC, Ajibade PA. Multifunctional Magnetic Oxide Nanoparticle (MNP) Core-Shell: Review of Synthesis, Structural Studies and Application for Wastewater Treatment. Molecules 2020;25:E4110. [PMID: 32916776 DOI: 10.3390/molecules25184110] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
47 Tian K, Wang J, Guo W, Li R, Cao L, Xu Z, Wang H. Yolk-Shell Fe3 O4 @Void@N-Carbon Nanostructures Based on One-Step Deposition of SiO2 and Resorcinol-3-Aminophenol-Formaldehyde (R-APF) Cocondensed Resin Dual Layers onto Fe3 O4 Nanoclusters. Macromol Rapid Commun 2020;41:e2000307. [PMID: 32767468 DOI: 10.1002/marc.202000307] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
48 Shaik F. Ligand‐Free Yolk‐Shell Nanoparticles: Synthesis and Catalytic Applications. ChemNanoMat 2020;6:1449-73. [DOI: 10.1002/cnma.202000354] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
49 Bhatia P, Verma S, Sinha M. Magneto-plasmonic Co@M (M = Au/Ag/Au-Ag) core-shell nanoparticles for biological imaging and therapeutics. Journal of Quantitative Spectroscopy and Radiative Transfer 2020;251:107095. [DOI: 10.1016/j.jqsrt.2020.107095] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
50 Huynh KH, Pham XH, Kim J, Lee SH, Chang H, Rho WY, Jun BH. Synthesis, Properties, and Biological Applications of Metallic Alloy Nanoparticles. Int J Mol Sci 2020;21:E5174. [PMID: 32708351 DOI: 10.3390/ijms21145174] [Cited by in Crossref: 11] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
51 Kuwahara Y, Fujie Y, Mihogi T, Yamashita H. Hollow Mesoporous Organosilica Spheres Encapsulating PdAg Nanoparticles and Poly(Ethyleneimine) as Reusable Catalysts for CO 2 Hydrogenation to Formate. ACS Catal 2020;10:6356-66. [DOI: 10.1021/acscatal.0c01505] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 13.0] [Reference Citation Analysis]
52 Cai R, Jin H, Yang D, Lin K, Chan K, Sun J, Chen Z, Zhang X, Tan W. Generalized preparation of Au NP @ Ni(OH)2 yolk-shell NPs and their enhanced catalytic activity. Nano Energy 2020;71:104542. [DOI: 10.1016/j.nanoen.2020.104542] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
53 Zhao Y, Guo Y, Wang X, Zhang X. An integrated and robust yolk–shell nanoreactor based on wrinkly silica microspheres loaded with Au nanoparticles and nested in a silica inverse opal. J Mater Sci 2020;55:2006-17. [DOI: 10.1007/s10853-019-04093-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
54 Sun Z, Liu F, Yang X, Huang X, Zhang M, Bian G, Qi Y, Yang X, Zhang W. Physically mixed catalytic system of amino and sulfo-functional porous organic polymers as efficiently synergistic co-catalysts for one-pot cascade reactions. New J Chem 2020;44:9546-56. [DOI: 10.1039/d0nj01357a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Wang P, Yang T, Sun S, Su P, Tang X, Liu J. Nanoengineering of yolk-shell structured silicas for click chemistry. Microporous and Mesoporous Materials 2020;291:109691. [DOI: 10.1016/j.micromeso.2019.109691] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
56 Gui X, Hao G, Jiang W. A comprehensive review of Cr, Ti-based anode materials for Li-ion batteries. Ionics 2020;26:1081-99. [DOI: 10.1007/s11581-019-03375-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
57 Ding H, Wang G, Qi Y, Bao J, Lian J, Qiu J, Li S, Yuan S, Li H. Rambutan‐Inspired Yolk‐Shell Silica@Carbon Frameworks from Biomass for Long‐Life Anode Materials. ChemistrySelect 2019;4:14075-81. [DOI: 10.1002/slct.201904302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
58 Niu D, Jiang Y, He J, Jia X, Qin L, Hao J, Zhao W, Dai B, Li Y. Extraction-Induced Fabrication of Yolk-Shell-Structured Nanoparticles with Deformable Micellar Cores and Mesoporous Silica Shells for Multidrug Delivery. ACS Appl Bio Mater 2019;2:5707-16. [PMID: 35021564 DOI: 10.1021/acsabm.9b00759] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Wang Y, Qian J, Xing J, Xu J, Liu L, Ma K. Fabrication of core–shell structured TiO2@Sb–SnO2 with improved electroconductivity. J Mater Sci 2020;55:3871-83. [DOI: 10.1007/s10853-019-04229-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
60 Li B, Zeng HC. Architecture and Preparation of Hollow Catalytic Devices. Adv Mater 2019;31:e1801104. [PMID: 30160321 DOI: 10.1002/adma.201801104] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 25.7] [Reference Citation Analysis]
61 Guo X, González KS, Lynn DM. Templated Synthesis of Polymer-Based Yolk/Shell Particles with Tunable Morphologies. Chem Mater 2019;31:7443-52. [DOI: 10.1021/acs.chemmater.9b02107] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
62 Tan SF, Chee SW, Baraissov Z, Jin H, Tan TL, Mirsaidov U. Real‐Time Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles. Adv Funct Mater 2019;29:1903242. [DOI: 10.1002/adfm.201903242] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
63 Bhatia P, Verma S, Sinha M. Tuning the optical properties of Fe-Au core-shell nanoparticles with spherical and spheroidal nanostructures. Physics Letters A 2019;383:2542-50. [DOI: 10.1016/j.physleta.2019.05.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
64 Li B, Zeng HC. Synthetic Chemistry and Multifunctionality of an Amorphous Ni-MOF-74 Shell on a Ni/SiO 2 Hollow Catalyst for Efficient Tandem Reactions. Chem Mater 2019;31:5320-30. [DOI: 10.1021/acs.chemmater.9b02070] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
65 Mahajan J, Jeevanandam P. Novel thermal decomposition approach for the synthesis of TiO2@Ag core-shell nanocomposites and their application for catalytic reduction of 4-nitrophenol. J Nanopart Res 2019;21. [DOI: 10.1007/s11051-019-4500-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
66 Zhang C, Li Y, Hu Y, Peng Y, Ahmad Z, Li J, Chang M. Porous Yolk–Shell Particle Engineering via Nonsolvent-Assisted Trineedle Coaxial Electrospraying for Burn-Related Wound Healing. ACS Appl Mater Interfaces 2019;11:7823-35. [DOI: 10.1021/acsami.8b22112] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
67 Feng L, Li W, Bao J, Zheng Y, Li Y, Ma Y, Yang K, Qiao Y, Wu A. Synthesis and Luminescence Properties of Core-Shell-Shell Composites: SiO₂@PMDA-Si-Tb@SiO₂ and SiO₂@PMDA-Si-Tb-phen@SiO₂. Nanomaterials (Basel) 2019;9:E189. [PMID: 30717359 DOI: 10.3390/nano9020189] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
68 Kuwahara Y, Kango H, Yamashita H. Pd Nanoparticles and Aminopolymers Confined in Hollow Silica Spheres as Efficient and Reusable Heterogeneous Catalysts for Semihydrogenation of Alkynes. ACS Catal 2019;9:1993-2006. [DOI: 10.1021/acscatal.8b04653] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 21.7] [Reference Citation Analysis]
69 Ziarati A, Badiei A, Grillo R, Burgi T. 3D Yolk@Shell TiO 2– x /LDH Architecture: Tailored Structure for Visible Light CO 2 Conversion. ACS Appl Mater Interfaces 2019;11:5903-10. [DOI: 10.1021/acsami.8b17232] [Cited by in Crossref: 35] [Cited by in F6Publishing: 43] [Article Influence: 11.7] [Reference Citation Analysis]
70 Wei J, Zou L, Li Y, Zhang X. Synthesis of core–shell-structured mesoporous silica nanospheres with dual-pores for biphasic catalysis. New J Chem 2019;43:5833-8. [DOI: 10.1039/c9nj00310j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
71 Chen Y, Lu W, Guo Y, Zhu Y, Lu H, Song Y. Synthesis, Characterization and Photocatalytic Activity of Nanocrystalline First Transition-Metal (Ti, Mn, Co, Ni and Zn) Oxisde Nanofibers by Electrospinning. Applied Sciences 2019;9:8. [DOI: 10.3390/app9010008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
72 Wang P, Zhou C, Zheng B, Liu H, Sun S, Guo D. Synthesis of yolk–shell MoS2 microspheres with enhanced supercapacitance. Materials Letters 2018;233:286-9. [DOI: 10.1016/j.matlet.2018.09.033] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
73 Yang Z, Wu HH, Zheng Z, Cheng Y, Li P, Zhang Q, Wang MS. Tin Nanoparticles Encapsulated Carbon Nanoboxes as High-Performance Anode for Lithium-Ion Batteries. Front Chem 2018;6:533. [PMID: 30430108 DOI: 10.3389/fchem.2018.00533] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
74 Zhao H, Yao S, Zhang M, Huang F, Fan Q, Zhang S, Liu H, Ma D, Gao C. Ultra-Small Platinum Nanoparticles Encapsulated in Sub-50 nm Hollow Titania Nanospheres for Low-Temperature Water–Gas Shift Reaction. ACS Appl Mater Interfaces 2018;10:36954-60. [DOI: 10.1021/acsami.8b12192] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
75 Yang J, Zhang J, Zhou X, Ren Y, Jiang M, Tang J. Sn–Co Nanoalloys Encapsulated in N-Doped Carbon Hollow Cubes as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Appl Mater Interfaces 2018;10:35216-23. [DOI: 10.1021/acsami.8b12242] [Cited by in Crossref: 36] [Cited by in F6Publishing: 42] [Article Influence: 9.0] [Reference Citation Analysis]
76 Pal N, Banerjee S, Choi E, Cho E. Facile One-Pot Synthesis of Yolk-Shell Structured Ni Doped Mesoporous Silica and Its Application in Enzyme-Free Glucose Sensor. ChemistrySelect 2018;3:6029-34. [DOI: 10.1002/slct.201800583] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
77 Kushnerova OA, Akimochkina GV, Fomenko EV, Rabchevskii EV, Anshits AG. Single-Stage Aerodynamic Separation of Fly Ash Produced after Pulverized Combustion of Coal from the Ekibastuz Basin. Solid Fuel Chem 2018;52:188-200. [DOI: 10.3103/s0361521918030059] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
78 Byoun W, Jung S, Tran NM, Yoo H. Synthesis and Application of Dendritic Fibrous Nanosilica/Gold Hybrid Nanomaterials. ChemistryOpen 2018;7:349-55. [PMID: 29872610 DOI: 10.1002/open.201800040] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
79 Chen F, Goel S, Shi S, Barnhart TE, Lan X, Cai W. General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Res 2018;11:4890-904. [PMID: 30410684 DOI: 10.1007/s12274-018-2078-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
80 Wang T, Jing Y, Sun Y, Ma Y, Li K, Liu Y, Zhang L, Huo Q, Qiao Z. Controlled Synthesis of Noble Metal@Mesoporous Carbon Colloids as Highly Active Nanocatalysts. ACS Appl Nano Mater 2018;1:1563-8. [DOI: 10.1021/acsanm.8b00049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
81 Lin LS, Song J, Yang HH, Chen X. Yolk-Shell Nanostructures: Design, Synthesis, and Biomedical Applications. Adv Mater 2018;30. [PMID: 29280201 DOI: 10.1002/adma.201704639] [Cited by in Crossref: 108] [Cited by in F6Publishing: 110] [Article Influence: 27.0] [Reference Citation Analysis]
82 Lee H, Choi J, Myung Y, Lee SM, Kim HJ, Ko YJ, Yang M, Son SU. Yolk-Shell Polystyrene@Microporous Organic Network: A Smart Template with Thermally Disassemblable Yolk To Engineer Hollow MoS2/C Composites for High-Performance Supercapacitors. ACS Omega 2017;2:7658-65. [PMID: 31457323 DOI: 10.1021/acsomega.7b01426] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
83 Ying H, Han WQ. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries. Adv Sci (Weinh) 2017;4:1700298. [PMID: 29201624 DOI: 10.1002/advs.201700298] [Cited by in Crossref: 218] [Cited by in F6Publishing: 208] [Article Influence: 43.6] [Reference Citation Analysis]
84 Wang Q, Zhang W, Guo C, Liu Y, Wang C, Guo Z. In Situ Construction of 3D Interconnected FeS@Fe 3 C@Graphitic Carbon Networks for High‐Performance Sodium‐Ion Batteries. Adv Funct Mater 2017;27:1703390. [DOI: 10.1002/adfm.201703390] [Cited by in Crossref: 191] [Cited by in F6Publishing: 176] [Article Influence: 38.2] [Reference Citation Analysis]
85 Wang Y, Yu Y, Li G, Liu L, Zhang H, Wang G, Chen A. Sea urchin-like core/shell hierarchical porous carbon for supercapacitors. Journal of Alloys and Compounds 2017;719:438-45. [DOI: 10.1016/j.jallcom.2017.05.229] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
86 Kondo T, Morimura T, Tsujimoto T, Aikawa T, Yuasa M. Platinum Nanoparticle-embedded Porous Diamond Spherical Particles as an Active and Stable Heterogeneous Catalyst. Sci Rep 2017;7:8651. [PMID: 28819241 DOI: 10.1038/s41598-017-08949-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
87 Cheng L, Ruan W, Zou B, Liu Y, Wang Y. Chemical template-assisted synthesis of monodisperse rattle-type Fe3O4@C hollow microspheres as drug carrier. Acta Biomater 2017;58:432-41. [PMID: 28602854 DOI: 10.1016/j.actbio.2017.06.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
88 Byoun W, Yoo H. Peapod Assemblies of Au and Au/Pt Nanoparticles Encapsulated within Hollow Silica Nanotubes. ChemistrySelect 2017;2:2414-9. [DOI: 10.1002/slct.201700379] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
89 Raccichini R, Varzi A, Wei D, Passerini S. Critical Insight into the Relentless Progression Toward Graphene and Graphene-Containing Materials for Lithium-Ion Battery Anodes. Adv Mater 2017;29. [PMID: 28032920 DOI: 10.1002/adma.201603421] [Cited by in Crossref: 110] [Cited by in F6Publishing: 99] [Article Influence: 22.0] [Reference Citation Analysis]
90 Wang Q, Wang X, Liu J, Yang Y. Cu–Ni core–shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-016-3731-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
91 Zhang H, Huang X, Noonan O, Zhou L, Yu C. Tailored Yolk–Shell Sn@C Nanoboxes for High‐Performance Lithium Storage. Adv Funct Mater 2017;27:1606023. [DOI: 10.1002/adfm.201606023] [Cited by in Crossref: 157] [Cited by in F6Publishing: 145] [Article Influence: 31.4] [Reference Citation Analysis]
92 Zha R, Shi T, Zhang Z, Xu D, Jiang T, Zhang M. Quasi-reverse-emulsion-templated approach for a facile and sustainable environmental remediation for cadmium. RSC Adv 2017;7:6345-57. [DOI: 10.1039/c6ra26949d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
93 Nguyen OTK, Nguyen LT, Truong NK, Nguyen VD, Nguyen AT, Le NTH, Le DT, Phan NTS. Synthesis of triphenylamines via ligand-free selective ring-opening of benzoxazoles or benzothiazoles under superparamagnetic nanoparticle catalysis. RSC Adv 2017;7:40929-39. [DOI: 10.1039/c7ra06168d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
94 Scarfiello R, Nobile C, Cozzoli PD. Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms. Front Mater 2016;3. [DOI: 10.3389/fmats.2016.00056] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
95 Zhang L, Qian K, Wang X, Zhang F, Shi X, Jiang Y, Liu S, Jaroniec M, Liu J. Yolk-Shell-Structured Aluminum Phenylphosphonate Microspheres with Anionic Core and Cationic Shell. Adv Sci (Weinh) 2016;3:1500363. [PMID: 27812467 DOI: 10.1002/advs.201500363] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
96 Zhang H, Noonan O, Huang X, Yang Y, Xu C, Zhou L, Yu C. Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano 2016;10:4579-86. [PMID: 27050771 DOI: 10.1021/acsnano.6b00723] [Cited by in Crossref: 295] [Cited by in F6Publishing: 284] [Article Influence: 49.2] [Reference Citation Analysis]
97 Singh JP, Kim SH, Won SO, Lim WC, Lee I, Chae KH. Covalency, hybridization and valence state effects in nano- and micro-sized ZnFe 2 O 4. CrystEngComm 2016;18:2701-11. [DOI: 10.1039/c5ce02461g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]