BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ilgu M, Nilsen-Hamilton M. Aptamers in analytics. Analyst 2016;141:1551-68. [PMID: 26864075 DOI: 10.1039/c5an01824b] [Cited by in Crossref: 126] [Cited by in F6Publishing: 34] [Article Influence: 25.2] [Reference Citation Analysis]
Number Citing Articles
1 Cardoso RM, Pereira TS, Facure MH, dos Santos DM, Mercante LA, Mattoso LH, Correa DS. Current progress in plant pathogen detection enabled by nanomaterials-based (bio)sensors. Sensors and Actuators Reports 2022;4:100068. [DOI: 10.1016/j.snr.2021.100068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Laumier S, Farrow T, van Zalinge H, Seravalli L, Bosi M, Sandall I. Selection and Functionalization of Germanium Nanowires for Bio-Sensing. ACS Omega. [DOI: 10.1021/acsomega.2c04775] [Reference Citation Analysis]
3 Akgönüllü S, Özgür E, Denizli A. Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis. Micromachines 2022;13:1441. [DOI: 10.3390/mi13091441] [Reference Citation Analysis]
4 Mukherjee S, Suleman S, Pilloton R, Narang J, Rani K. State of the Art in Smart Portable, Wearable, Ingestible and Implantable Devices for Health Status Monitoring and Disease Management. Sensors (Basel) 2022;22:4228. [PMID: 35684847 DOI: 10.3390/s22114228] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Mei C, Zhang Y, Pan L, Dong B, Chen X, Gao Q, Xu H, Xu W, Fang H, Liu S, Mcalinden C, Paschalis EI, Wang Q, Yang M, Huang J, Yu A. A One-Step Electrochemical Aptasensor Based on Signal Amplification of Metallo Nanoenzyme Particles for Vascular Endothelial Growth Factor. Front Bioeng Biotechnol 2022;10:850412. [DOI: 10.3389/fbioe.2022.850412] [Reference Citation Analysis]
6 Tang T, Liu Y, Jiang Y. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors. Chem Res Chin Univ . [DOI: 10.1007/s40242-022-2084-z] [Reference Citation Analysis]
7 Chen T, Li Y, Meng S, Liu C, Liu D, Dong D, You T. Temperature and pH tolerance ratiometric aptasensor: Efficiently self-calibrating electrochemical detection of aflatoxin B1. Talanta 2022;242:123280. [DOI: 10.1016/j.talanta.2022.123280] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Murtaza G, Rizvi AS, Qiu L, Xue M, Meng Z. Aptamer empowered hydrogels: Fabrication and bio‐sensing applications. J of Applied Polymer Sci 2022;139. [DOI: 10.1002/app.52441] [Reference Citation Analysis]
9 Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, Prince MEP, Lobanova L, Chen X, Papagerakis P. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.107961] [Reference Citation Analysis]
10 Atapour A, Khajehzadeh H, Shafie M, Abbasi M, Mosleh-shirazi S, Kasaee SR, Amani AM. Gold nanoparticle-based aptasensors: A promising perspective for early-stage detection of cancer biomarkers. Materials Today Communications 2022;30:103181. [DOI: 10.1016/j.mtcomm.2022.103181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
11 Schmidt C, Kammel A, Tanner JA, Kinghorn AB, Khan MM, Lehmann W, Menger M, Schedler U, Schierack P, Rödiger S. A multiparametric fluorescence assay for screening aptamer-protein interactions based on microbeads. Sci Rep 2022;12:2961. [PMID: 35194086 DOI: 10.1038/s41598-022-06817-0] [Reference Citation Analysis]
12 Negahdary M, Angnes L. Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer's disease: A review. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112689] [Reference Citation Analysis]
13 Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021;64:17601-26. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Reference Citation Analysis]
14 Ozturk M, Nilsen-Hamilton M, Ilgu M. Aptamer Applications in Neuroscience. Pharmaceuticals (Basel) 2021;14:1260. [PMID: 34959661 DOI: 10.3390/ph14121260] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
15 Aayanifard Z, Alebrahim T, Pourmadadi M, Yazdian F, Dinani HS, Rashedi H, Omidi M. Ultra pH-sensitive detection of total and free prostate-specific antigen using electrochemical aptasensor based on reduced graphene oxide/gold nanoparticles emphasis on TiO2/carbon quantum dots as a redox probe. Eng Life Sci 2021;21:739-52. [PMID: 34764826 DOI: 10.1002/elsc.202000118] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
16 Daems E, Moro G, Campos R, De Wael K. Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions. TrAC Trends in Analytical Chemistry 2021;142:116311. [DOI: 10.1016/j.trac.2021.116311] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
17 Schilling-Loeffler K, Rodriguez R, Williams-Woods J. Target Affinity and Structural Analysis for a Selection of Norovirus Aptamers. Int J Mol Sci 2021;22:8868. [PMID: 34445583 DOI: 10.3390/ijms22168868] [Reference Citation Analysis]
18 Evtugyn G, Porfireva A, Kulikova T, Hianik T. Recent Achievements in Electrochemical and Surface Plasmon Resonance Aptasensors for Mycotoxins Detection. Chemosensors 2021;9:180. [DOI: 10.3390/chemosensors9070180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Torregrosa D, Grindlay G, Gras L, Mora J. Immunoassays based on inductively coupled plasma mass spectrometry detection: So far so good, so what? Microchemical Journal 2021;166:106200. [DOI: 10.1016/j.microc.2021.106200] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
20 Armenta S, Esteve-turrillas FA, Garrigues S, Guardia MDL. Smart materials for sample preparation in bioanalysis: A green overview. Sustainable Chemistry and Pharmacy 2021;21:100411. [DOI: 10.1016/j.scp.2021.100411] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Byun J. Recent Progress and Opportunities for Nucleic Acid Aptamers. Life (Basel) 2021;11:193. [PMID: 33671039 DOI: 10.3390/life11030193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
22 Alam MA, Hasan MR, Anzar N, Suleman S, Narang J. Diagnostic approaches for the rapid detection of Zika virus–A review. Process Biochemistry 2021;101:156-68. [DOI: 10.1016/j.procbio.2020.11.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
23 Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence Polarization-Based Bioassays: New Horizons. Sensors (Basel) 2020;20:E7132. [PMID: 33322750 DOI: 10.3390/s20247132] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
24 Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Res. 2020;48:e101. [PMID: 32797156 DOI: 10.1093/nar/gkaa673] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
25 Nur Topkaya S, Cetin AE. Electrochemical Aptasensors for Biological and Chemical Analyte Detection. Electroanalysis 2021;33:277-91. [DOI: 10.1002/elan.202060388] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
26 Ray J, Kruse A, Ozer A, Kajitani T, Johnson R, MacCoss M, Heck M, Lis JT. RNA aptamer capture of macromolecular complexes for mass spectrometry analysis. Nucleic Acids Res 2020;48:e90. [PMID: 32609809 DOI: 10.1093/nar/gkaa542] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Evtugyn G, Porfireva A, Shamagsumova R, Hianik T. Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials. Chemosensors 2020;8:96. [DOI: 10.3390/chemosensors8040096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
28 Cesarini V, Scopa C, Silvestris DA, Scafidi A, Petrera V, Del Baldo G, Gallo A. Aptamer-Based In Vivo Therapeutic Targeting of Glioblastoma. Molecules 2020;25:E4267. [PMID: 32957732 DOI: 10.3390/molecules25184267] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
29 Bor G, Man E, Ugurlu O, Ceylan AE, Balaban S, Durmus C, Pinar Gumus Z, Evran S, Timur S. in vitro Selection of Aptamer for Imidacloprid Recognition as Model Analyte and Construction of a Water Analysis Platform. Electroanalysis 2020;32:1922-9. [DOI: 10.1002/elan.202000075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Lim ES, Lim MC, Park K, Lee G, Lim JA, Woo MA, Lee N, Choi SW, Chang HJ. Selective Binding and Elution of Aptamers for Pesticides Based on Sol-Gel-Coated Nanoporous Anodized Aluminum Oxide Membrane. Nanomaterials (Basel) 2020;10:E1533. [PMID: 32764256 DOI: 10.3390/nano10081533] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
31 Kim SH, Choi JW, Kim AR, Lee SC, Yoon MY. Development of ssDNA Aptamers for Diagnosis and Inhibition of the Highly Pathogenic Avian Influenza Virus Subtype H5N1. Biomolecules 2020;10:E1116. [PMID: 32731467 DOI: 10.3390/biom10081116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
32 Douaki A, Demelash Abera B, Cantarella G, Shkodra B, Mushtaq A, Ibba P, Inam AS, Petti L, Lugli P. Flexible Screen Printed Aptasensor for Rapid Detection of Furaneol: A Comparison of CNTs and AgNPs Effect on Aptasensor Performance. Nanomaterials (Basel) 2020;10:E1167. [PMID: 32549348 DOI: 10.3390/nano10061167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
33 Shatila F, Yaşa İ, Yalçın HT. Inhibition of Salmonella enteritidis biofilms by Salmonella invasion protein-targeting aptamer. Biotechnol Lett 2020;42:1963-74. [PMID: 32451800 DOI: 10.1007/s10529-020-02920-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Moutsiopoulou A, Broyles D, Joda H, Dikici E, Kaur A, Kaifer A, Daunert S, Deo SK. Bioluminescent Protein-Inhibitor Pair in the Design of a Molecular Aptamer Beacon Biosensing System. Anal Chem 2020;92:7393-8. [PMID: 32410446 DOI: 10.1021/acs.analchem.0c00518] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci 2020;15:107-22. [PMID: 32582351 DOI: 10.4103/1735-5362.283811] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
36 Minagawa H, Kataoka Y, Fujita H, Kuwahara M, Horii K, Shiratori I, Waga I. Modified DNA Aptamers for C-Reactive Protein and Lactate Dehydrogenase-5 with Sub-Nanomolar Affinities. Int J Mol Sci 2020;21:E2683. [PMID: 32294882 DOI: 10.3390/ijms21082683] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Hurot C, Scaramozzino N, Buhot A, Hou Y. Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. Sensors (Basel) 2020;20:E1803. [PMID: 32214038 DOI: 10.3390/s20061803] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
38 Miyagawa A, Okada Y, Okada T. Aptamer-Based Sensing of Small Organic Molecules by Measuring Levitation Coordinate of Single Microsphere in Combined Acoustic-Gravitational Field. ACS Omega 2020;5:3542-9. [PMID: 32118169 DOI: 10.1021/acsomega.9b03860] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
39 Zhao Y, Gosai A, Shrotriya P. Effect of receptor attachment on sensitivity of label free microcantilever based biosensor using malachite green aptamer. Sensors and Actuators B: Chemical 2019;300:126963. [DOI: 10.1016/j.snb.2019.126963] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
40 Eissa S, Siddiqua A, Chinnappan R, Zourob M. Electrochemical selection of a DNA aptamer, and an impedimetric method for determination of the dedicator of cytokinesis 8 by self-assembly of a thiolated aptamer on a gold electrode. Mikrochim Acta 2019;186:828. [PMID: 31754797 DOI: 10.1007/s00604-019-3817-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
41 Tejavibulya N, Colburn DAM, Marcogliese FA, Yang KA, Guo V, Chowdhury S, Stojanovic MN, Sia SK. Hydrogel Microfilaments toward Intradermal Health Monitoring. iScience 2019;21:328-40. [PMID: 31698247 DOI: 10.1016/j.isci.2019.10.036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
42 Acquah C, Chan YW, Pan S, Yon LS, Ongkudon CM, Guo H, Danquah MK. Characterisation of aptamer-anchored poly(EDMA-co-GMA) monolith for high throughput affinity binding. Sci Rep 2019;9:14501. [PMID: 31601836 DOI: 10.1038/s41598-019-50862-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
43 Komarova N, Kuznetsov A. Inside the Black Box: What Makes SELEX Better? Molecules 2019;24:E3598. [PMID: 31591283 DOI: 10.3390/molecules24193598] [Cited by in Crossref: 27] [Cited by in F6Publishing: 47] [Article Influence: 9.0] [Reference Citation Analysis]
44 Frohnmeyer E, Tuschel N, Sitz T, Hermann C, Dahl GT, Schulz F, Baeumner AJ, Fischer M. Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst 2019;144:1840-9. [PMID: 30681077 DOI: 10.1039/c8an01616j] [Cited by in Crossref: 29] [Cited by in F6Publishing: 12] [Article Influence: 9.7] [Reference Citation Analysis]
45 Macdonald H, Bonnet H, Van der Heyden A, Defrancq E, Spinelli N, Coche-guérente L, Dejeu J. Influence of Aptamer Surface Coverage on Small Target Recognition: A SPR and QCM-D Comparative Study. J Phys Chem C 2019;123:13561-8. [DOI: 10.1021/acs.jpcc.9b00845] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
46 Xiang L, Wu H, Cui Z, Tang J. Indirect Competitive Aptamer-Based Enzyme-Linked Immunosorbent Assay (apt-ELISA) for the Specific and Sensitive Detection of Isocarbophos Residues. Analytical Letters 2019;52:1966-75. [DOI: 10.1080/00032719.2019.1587446] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
47 Toomjeen P, Phanchai W, Choodet C, Chompoosor A, Thanan R, Sakonsinsiri C, Puangmali T. Designing an Aptasensor Based on Cysteamine-Capped AuNPs for 8-Oxo-dG Detection: A Molecular Dynamics Approach and Experimental Validation. J Phys Chem B 2019;123:1129-38. [DOI: 10.1021/acs.jpcb.8b10436] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
48 Alipour M, Zeinoddini M, Saeeidinia A. Anti-Trinitrotoluene Aptamers: Design, Functional Assessment and Optimization. Appl Biochem Microbiol 2018;54:677-81. [DOI: 10.1134/s0003683818060030] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
49 Komarova N, Andrianova M, Glukhov S, Kuznetsov A. Selection, Characterization, and Application of ssDNA Aptamer against Furaneol. Molecules 2018;23:E3159. [PMID: 30513671 DOI: 10.3390/molecules23123159] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
50 Shubham S, Hoinka J, Banerjee S, Swanson E, Dillard JA, Lennemann NJ, Przytycka TM, Maury W, Nilsen-Hamilton M. A 2'FY-RNA Motif Defines an Aptamer for Ebolavirus Secreted Protein. Sci Rep 2018;8:12373. [PMID: 30120364 DOI: 10.1038/s41598-018-30590-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
51 Modh H, Scheper T, Walter JG. Aptamer-Modified Magnetic Beads in Biosensing. Sensors (Basel) 2018;18:E1041. [PMID: 29601533 DOI: 10.3390/s18041041] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
52 Stoltenburg R, Strehlitz B. Refining the Results of a Classical SELEX Experiment by Expanding the Sequence Data Set of an Aptamer Pool Selected for Protein A. Int J Mol Sci 2018;19:E642. [PMID: 29495282 DOI: 10.3390/ijms19020642] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
53 Vorobyeva MA, Davydova AS, Vorobjev PE, Venyaminova AG. Key Aspects of Nucleic Acid Library Design for in Vitro Selection. Int J Mol Sci 2018;19:E470. [PMID: 29401748 DOI: 10.3390/ijms19020470] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
54 Zhang X, Peng L, Liang Z, Kou Z, Chen Y, Shi G, Li X, Liang Y, Wang F, Shi Y. Effects of Aptamer to U87-EGFRvIII Cells on the Proliferation, Radiosensitivity, and Radiotherapy of Glioblastoma Cells. Mol Ther Nucleic Acids 2018;10:438-49. [PMID: 29499954 DOI: 10.1016/j.omtn.2018.01.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
55 Andrianova M, Komarova N, Grudtsov V, Kuznetsov E, Kuznetsov A. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase. Sensors (Basel) 2017;18:E49. [PMID: 29278396 DOI: 10.3390/s18010049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
56 Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem 2018;410:1453-62. [PMID: 29199352 DOI: 10.1007/s00216-017-0786-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
57 Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017;22:E2108. [PMID: 29189716 DOI: 10.3390/molecules22122108] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
58 Churcher ZR, Neves MAD, Hunter HN, Johnson PE. Comparison of the free and ligand-bound imino hydrogen exchange rates for the cocaine-binding aptamer. J Biomol NMR 2017;68:33-9. [PMID: 28477231 DOI: 10.1007/s10858-017-0112-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
59 Masson JF. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sens 2017;2:16-30. [PMID: 28722437 DOI: 10.1021/acssensors.6b00763] [Cited by in Crossref: 334] [Cited by in F6Publishing: 277] [Article Influence: 66.8] [Reference Citation Analysis]
60 Platella C, Riccardi C, Montesarchio D, Roviello GN, Musumeci D. G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochim Biophys Acta Gen Subj 2017;1861:1429-47. [PMID: 27865995 DOI: 10.1016/j.bbagen.2016.11.027] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 13.8] [Reference Citation Analysis]