BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Levengood SL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2014;2:3161-84. [PMID: 24999429 DOI: 10.1039/C4TB00027G] [Cited by in Crossref: 366] [Cited by in F6Publishing: 382] [Article Influence: 45.8] [Reference Citation Analysis]
Number Citing Articles
1 Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydrate Polymers 2023;300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Reference Citation Analysis]
2 Ressler A, Kamboj N, Ledinski M, Rogina A, Urlić I, Hussainova I, Ivanković H, Ivanković M. Macroporous silicon-wollastonite scaffold with Sr/Se/Zn/Mg-substituted hydroxyapatite/chitosan hydrogel. Open Ceramics 2022;12:100306. [DOI: 10.1016/j.oceram.2022.100306] [Reference Citation Analysis]
3 Sandomierski M, Adamska K, Ratajczak M, Voelkel A. Chitosan - zeolite scaffold as a potential biomaterial in the controlled release of drugs for osteoporosis. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.11.071] [Reference Citation Analysis]
4 Qiu D, Zhou P, Kang J, Chen Z, Xu Z, Yang H, Tao J, Ai F. ZnO nanoparticle modified chitosan/borosilicate bioglass composite scaffold for inhibiting bacterial infection and promoting bone regeneration. Biomed Mater 2022;17:065023. [DOI: 10.1088/1748-605x/ac99c5] [Reference Citation Analysis]
5 Al-rooqi MM, Hassan MM, Moussa Z, Obaid RJ, Suman NH, Wagner MH, Natto SS, Ahmed SA. Advancement of chitin and chitosan as promising biomaterials. Journal of Saudi Chemical Society 2022;26:101561. [DOI: 10.1016/j.jscs.2022.101561] [Reference Citation Analysis]
6 Azaman FA, Zhou K, Blanes-martínez MDM, Brennan Fournet M, Devine DM. Bioresorbable Chitosan-Based Bone Regeneration Scaffold Using Various Bioceramics and the Alteration of Photoinitiator Concentration in an Extended UV Photocrosslinking Reaction. Gels 2022;8:696. [DOI: 10.3390/gels8110696] [Reference Citation Analysis]
7 Stamer KS, Pigaleva MA, Pestrikova AA, Nikolaev AY, Naumkin AV, Abramchuk SS, Sadykova VS, Kuvarina AE, Talanova VN, Gallyamov MO. Water Saturated with Pressurized CO2 as a Tool to Create Various 3D Morphologies of Composites Based on Chitosan and Copper Nanoparticles. Molecules 2022;27:7261. [DOI: 10.3390/molecules27217261] [Reference Citation Analysis]
8 Revia RA, Wagner B, James M, Zhang M. High-Throughput Dispensing of Viscous Solutions for Biomedical Applications. Micromachines 2022;13:1730. [DOI: 10.3390/mi13101730] [Reference Citation Analysis]
9 Chinipardaz Z, Zhong JM, Yang S. Regulation of LL-37 in Bone and Periodontium Regeneration. Life (Basel) 2022;12:1533. [PMID: 36294968 DOI: 10.3390/life12101533] [Reference Citation Analysis]
10 Chen J, Li L, Song K, Wang Z. Application of Different Nanomaterials in Biomedical Field. HSET 2022;14:57-64. [DOI: 10.54097/hset.v14i.1593] [Reference Citation Analysis]
11 Bashir SM, Ahmed Rather G, Patrício A, Haq Z, Sheikh AA, Shah MZUH, Singh H, Khan AA, Imtiyaz S, Ahmad SB, Nabi S, Rakhshan R, Hassan S, Fonte P. Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. Materials 2022;15:6521. [DOI: 10.3390/ma15196521] [Reference Citation Analysis]
12 Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022;222:132-53. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Reference Citation Analysis]
13 Iqbal N, Braxton TM, Anastasiou A, Raif EM, Chung CKY, Kumar S, Giannoudis PV, Jha A. Dicalcium Phosphate Dihydrate Mineral Loaded Freeze-Dried Scaffolds for Potential Synthetic Bone Applications. Materials 2022;15:6245. [DOI: 10.3390/ma15186245] [Reference Citation Analysis]
14 Lee SS, Du X, Kim I, Ferguson SJ. Scaffolds for bone-tissue engineering. Matter 2022;5:2722-59. [DOI: 10.1016/j.matt.2022.06.003] [Reference Citation Analysis]
15 Ressler A. Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers (Basel) 2022;14:3430. [PMID: 36015686 DOI: 10.3390/polym14163430] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Zhao Y, Zhao S, Ma Z, Ding C, Chen J, Li J. Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation. Pharmaceuticals (Basel) 2022;15:1023. [PMID: 36015171 DOI: 10.3390/ph15081023] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Tuwalska A, Sionkowska A, Bryła A, Tylko G, Osyczka AM, Laus M, Vojtová L. A Biological Study of Composites Based on the Blends of Nanohydroxyapatite, Silk Fibroin and Chitosan. Materials (Basel) 2022;15:5444. [PMID: 35955380 DOI: 10.3390/ma15155444] [Reference Citation Analysis]
18 Bartolo P, Malshe A, Ferraris E, Koc B. 3D bioprinting: Materials, processes, and applications. CIRP Annals 2022. [DOI: 10.1016/j.cirp.2022.06.001] [Reference Citation Analysis]
19 Barakzai S, Salehiamin M, Shaban MO, Azami M, Heidari S, Sobhani A. Chitosan Scaffold Containing Periostin Can Accelerate Bone Defect Regeneration in Non-Weight-Bearing Conditions. Regen Eng Transl Med . [DOI: 10.1007/s40883-022-00268-9] [Reference Citation Analysis]
20 Grumezescu V, Grumezescu AM, Ficai A, Negut I, Vasile BȘ, Gălățeanu B, Hudiță A. Composite Coatings for Osteoblast Growth Attachment Fabricated by Matrix-Assisted Pulsed Laser Evaporation. Polymers 2022;14:2934. [DOI: 10.3390/polym14142934] [Reference Citation Analysis]
21 Kumar A, Kumar A, Pandey A, Sahu S, Kumar N, Singh RP. Analysing the compressive behaviour of different PLA scaffolds fabricated through FFF process. Advances in Materials and Processing Technologies 2022. [DOI: 10.1080/2374068x.2022.2093005] [Reference Citation Analysis]
22 Rahimi M, Mir SM, Baghban R, Charmi G, Plummer CM, Shafiei-Irannejad V, Soleymani J, Pietrasik J. Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022;215:346-67. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Rianti D, Kristanto W, Damayanti H, S. Putri T, Dinaryanti A, Syahrom A, Yuliati A. The Characteristics and Potency of Limestone-based carbonate hydroxyapatite to Viability and Proliferation of Human Umbilical Cord Mesenchymal Stem Cell. RJPT 2022. [DOI: 10.52711/0974-360x.2022.00380] [Reference Citation Analysis]
24 Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. International Materials Reviews. [DOI: 10.1080/09506608.2022.2069451] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Filipov E, Angelova L, Aceti D, Marinova V, Karashanova D, Trifonov A, Buchvarov I, Daskalova A. Altering the surface morphology and wettability of chitosan/graphene coatings by femtosecond and nanosecond laser processing. J Phys : Conf Ser 2022;2240:012041. [DOI: 10.1088/1742-6596/2240/1/012041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Örlygsson G, Laxdal EH, Kárason S, Dagbjartsson A, Gunnarsson E, Ng CH, Einarsson JM, Gíslason J, Jónsson H Jr. Mineralization in a Critical Size Bone-Gap in Sheep Tibia Improved by a Chitosan-Calcium Phosphate-Based Composite as Compared to Predicate Device. Materials (Basel) 2022;15:838. [PMID: 35160784 DOI: 10.3390/ma15030838] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Dimassi S, Tabary N, Chai F, Zobrist C, Hornez JC, Cazaux F, Blanchemain N, Martel B. Polydopamine treatment of chitosan nanofibers for the conception of osteoinductive scaffolds for bone reconstruction. Carbohydr Polym 2022;276:118774. [PMID: 34823790 DOI: 10.1016/j.carbpol.2021.118774] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Kruk A, Gadomska-gajadhur A, Dulnik J, Ruśkowski P. The influence of the molecular weight of polymer on the morphology, functional properties and L929 fibroblasts growth on polylactide membranes for tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials 2022;71:45-57. [DOI: 10.1080/00914037.2020.1798440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Kang MS, Jang HJ, Lee SH, Shin YC, Hong SW, Lee JH, Kim B, Han D. Functional Graphene Nanomaterials-Based Hybrid Scaffolds for Osteogenesis and Chondrogenesis. Multifaceted Biomedical Applications of Graphene 2022. [DOI: 10.1007/978-981-16-4923-3_4] [Reference Citation Analysis]
30 Khan MUA, Raza MA, Haider S, Shah SA, Arshed M, Razak SIA, Haider A. Medical applications of polymer/functionalized nanoparticle composite systems, renewable polymers, and polymer–metal oxide composites. Renewable Polymers and Polymer-Metal Oxide Composites 2022. [DOI: 10.1016/b978-0-323-85155-8.00006-6] [Reference Citation Analysis]
31 Balan L, Sanker J, Chandrasekaran S, Vallinayagam S. Enzyme-encapsulated nanoparticles for biodegradation of materials. Biodegradation and Biodeterioration At the Nanoscale 2022. [DOI: 10.1016/b978-0-12-823970-4.00007-5] [Reference Citation Analysis]
32 Chauhan N, Singh Y. Engineered Polymeric Materials/Nanomaterials for Growth Factor/Drug Delivery in Bone Tissue Engineering Applications. Nanoscale Engineering of Biomaterials: Properties and Applications 2022. [DOI: 10.1007/978-981-16-3667-7_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Vijayan S, Gulati S, Sahu T, Meenakshi, Kumar S. Chitosan-Based Nanocomposites as Remarkably Effectual Wound Healing Agents. Chitosan-Based Nanocomposite Materials 2022. [DOI: 10.1007/978-981-19-5338-5_9] [Reference Citation Analysis]
34 Ali YH, El-shazly M, Taha A, Ali T, Bakri S. Tissue Engineering Strategies in Cleft Palate. Surgical Atlas of Cleft Palate and Palatal Fistulae 2022. [DOI: 10.1007/978-981-15-8124-3_127] [Reference Citation Analysis]
35 Ali YH, El-shazly M, Taha A, Ali T, Bakri S. Tissue Engineering Strategies in Cleft Palate. Surgical Atlas of Cleft Palate and Palatal Fistulae 2022. [DOI: 10.1007/978-981-15-3889-6_127-1] [Reference Citation Analysis]
36 Patra R, Ghosal K, Saha R, Sarkar P, Chattopadhyay S, Sarkar K. Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with respect to their synthesis procedures, degradation properties, toxicity, stability and applications. Encyclopedia of Materials: Plastics and Polymers 2022. [DOI: 10.1016/b978-0-12-820352-1.00252-2] [Reference Citation Analysis]
37 Mukherjee P, Roy S, Kundu B, Nandi SK. Marine Biomaterials as Carrier of Drugs/Biomolecules for Management of Bone Disorders. Marine Biomaterials 2022. [DOI: 10.1007/978-981-16-5374-2_9] [Reference Citation Analysis]
38 Singh T, Pant P, Kaushik S. Modifications and Applications of Chitosan-Based Nanocomposites in Orthopaedics and Dentistry. Chitosan-Based Nanocomposite Materials 2022. [DOI: 10.1007/978-981-19-5338-5_13] [Reference Citation Analysis]
39 Hasan S, Boddu VM, Viswanath DS, Ghosh TK. Application of Chitosan in the Medical and Biomedical Field. Engineering Materials and Processes 2022. [DOI: 10.1007/978-3-031-01229-7_8] [Reference Citation Analysis]
40 Pandya A, Upadhaya P, Lohakare S, Srivastava T, Mhatre S, Pulakkat S, Patravale VB. Nanobiomaterials for regenerative medicine. Nanotechnology in Medicine and Biology 2022. [DOI: 10.1016/b978-0-12-819469-0.00007-1] [Reference Citation Analysis]
41 Murugan SS, Dalavi PA, Devi G.v. Y, Chatterjee K, Venkatesan J. Natural and Synthetic Biopolymeric Biomaterials for Bone Tissue Engineering Applications. Encyclopedia of Materials: Plastics and Polymers 2022. [DOI: 10.1016/b978-0-12-820352-1.00246-7] [Reference Citation Analysis]
42 Shi C, Hou X, Zhao D, Wang H, Guo R, Zhou Y. Preparation of the bioglass/chitosan-alginate composite scaffolds with high bioactivity and mechanical properties as bone graft materials. J Mech Behav Biomed Mater 2021;126:105062. [PMID: 34963101 DOI: 10.1016/j.jmbbm.2021.105062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
43 Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021;7:5397-431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
44 Xia H, Dong L, Hao M, Wei Y, Duan J, Chen X, Yu L, Li H, Sang Y, Liu H. Osteogenic Property Regulation of Stem Cells by a Hydroxyapatite 3D-Hybrid Scaffold With Cancellous Bone Structure. Front Chem 2021;9:798299. [PMID: 34869241 DOI: 10.3389/fchem.2021.798299] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Xu L, Ma F, Leung FKL, Qin C, Lu WW, Tang B. Chitosan-strontium chondroitin sulfate scaffolds for reconstruction of bone defects in aged rats. Carbohydr Polym 2021;273:118532. [PMID: 34560945 DOI: 10.1016/j.carbpol.2021.118532] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, Salehi E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr Polym 2021;273:118631. [PMID: 34561021 DOI: 10.1016/j.carbpol.2021.118631] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 26.0] [Reference Citation Analysis]
47 Divband B, Aghazadeh M, Al-Qaim ZH, Samiei M, Hussein FH, Shaabani A, Shahi S, Sedghi R. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells. Carbohydr Polym 2021;273:118589. [PMID: 34560990 DOI: 10.1016/j.carbpol.2021.118589] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
48 Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (2020) 2021;2:145-74. [PMID: 34766140 DOI: 10.1002/mco2.51] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
49 Javdani M, Barzegar A, Khosravian P, Hashemnia M. Evaluation of Inflammatory Response Due to Use of Controlled Release Drug Delivery System of Chitosan Hydrogel Loaded with Buprenorphine and Ketorolac in Rat with Experimental Proximal Tibial Epiphysis Defect. J Invest Surg 2021;:1-16. [PMID: 34666588 DOI: 10.1080/08941939.2021.1989728] [Reference Citation Analysis]
50 Venkatesan J, Dalavi PA, Seong GH. Biocomposites Containing Silver Nanoparticles for Biomedical Applications. J Clust Sci. [DOI: 10.1007/s10876-021-02180-8] [Reference Citation Analysis]
51 Fraile-Martínez O, García-Montero C, Coca A, Álvarez-Mon MA, Monserrat J, Gómez-Lahoz AM, Coca S, Álvarez-Mon M, Acero J, Bujan J, García-Honduvilla N, Asúnsolo Á, Ortega MA. Applications of Polymeric Composites in Bone Tissue Engineering and Jawbone Regeneration. Polymers (Basel) 2021;13:3429. [PMID: 34641243 DOI: 10.3390/polym13193429] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
52 Farazin A, Mohammadimehr M, Ghasemi AH, Naeimi H. Design, preparation, and characterization of CS/PVA/SA hydrogels modified with mesoporous Ag2O/SiO2 and curcumin nanoparticles for green, biocompatible, and antibacterial biopolymer film. RSC Adv 2021;11:32775-91. [PMID: 35493577 DOI: 10.1039/d1ra05153a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
53 Fourie J, Taute F, du Preez L, de Beer D. Novel chitosan-poly(vinyl acetate) biomaterial suitable for additive manufacturing and bone tissue engineering applications. Journal of Bioactive and Compatible Polymers 2021;36:394-413. [DOI: 10.1177/08839115211043279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental Implant Nano-Engineering: Advances, Limitations and Future Directions. Nanomaterials (Basel) 2021;11:2489. [PMID: 34684930 DOI: 10.3390/nano11102489] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
55 Pérez Sayans M, Rivas Mundiña B, Chamorro Petronacci CM, García García A, Gómez García FJ, Crecente Campo J, Yañez Vilar S, Piñeiro Redondo Y, Rivas J, López Jornet P. Effect of mesoporous silica and its combination with hydroxyapatite on the regeneration of rabbit's bone defects: A pilot study. Biomed Mater Eng 2021;32:281-94. [PMID: 33780356 DOI: 10.3233/BME-201144] [Reference Citation Analysis]
56 Liu X, Wu Y, Zhao X, Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr Polym 2021;267:118179. [PMID: 34119147 DOI: 10.1016/j.carbpol.2021.118179] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 17.0] [Reference Citation Analysis]
57 Ping J, Zhou C, Dong Y, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. Modulating immune microenvironment during bone repair using biomaterials: Focusing on the role of macrophages. Mol Immunol 2021;138:110-20. [PMID: 34392109 DOI: 10.1016/j.molimm.2021.08.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
58 Sánchez LF, Cánepa J, Kim S, Nakamatsu J. A Simple Approach to Produce Tailor-Made Chitosans with Specific Degrees of Acetylation and Molecular Weights. Polymers (Basel) 2021;13:2415. [PMID: 34372018 DOI: 10.3390/polym13152415] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Sivanesan I, Gopal J, Muthu M, Shin J, Oh JW. Reviewing Chitin/Chitosan Nanofibers and Associated Nanocomposites and Their Attained Medical Milestones. Polymers (Basel) 2021;13:2330. [PMID: 34301087 DOI: 10.3390/polym13142330] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
60 Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021;9:661802. [PMID: 34327197 DOI: 10.3389/fcell.2021.661802] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
61 Samadian H, Khastar H, Ehterami A, Salehi M. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Sci Rep 2021;11:13877. [PMID: 34230542 DOI: 10.1038/s41598-021-93367-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
62 Verma NK, Kar AK, Singh A, Jagdale P, Satija NK, Ghosh D, Patnaik S. Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG-g-NOCC/Collagen Composite Scaffold toward Guided Bone Regeneration in a Critical-Sized Calvarial Defect. Biomacromolecules 2021;22:3069-83. [PMID: 34152738 DOI: 10.1021/acs.biomac.1c00513] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
63 Jing C, Li B, Tan H, Zhang C, Liang H, Na H, Chen S, Liu C, Zhao L. Alendronate-Decorated Nanoparticles as Bone-Targeted Alendronate Carriers for Potential Osteoporosis Treatment. ACS Appl Bio Mater 2021;4:4907-16. [PMID: 35007039 DOI: 10.1021/acsabm.1c00199] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
64 Du M, Chen J, Liu K, Xing H, Song C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Composites Part B: Engineering 2021;215:108790. [DOI: 10.1016/j.compositesb.2021.108790] [Cited by in Crossref: 49] [Cited by in F6Publishing: 29] [Article Influence: 49.0] [Reference Citation Analysis]
65 Rezaei FS, Khorshidian A, Beram FM, Derakhshani A, Esmaeili J, Barati A. 3D printed chitosan/polycaprolactone scaffold for lung tissue engineering: hope to be useful for COVID-19 studies. RSC Adv 2021;11:19508-20. [PMID: 35479204 DOI: 10.1039/d1ra03410c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
66 Shirzaei Sani I, Rezaei M, Baradar Khoshfetrat A, Razzaghi D. Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 2021;182:1638-49. [PMID: 34052267 DOI: 10.1016/j.ijbiomac.2021.05.163] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
67 Mathew GM, Ulaeto SB, Reshmy R, Sukumaran RK, Binod P, Pandey A, Sindhu R. Chitosan Derivatives: Properties and Applications. In: Inamuddin, Ahamed MI, Boddula R, Altalhi T, editors. Polysaccharides. Wiley; 2021. pp. 135-61. [DOI: 10.1002/9781119711414.ch7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Applications of nanomaterials in tissue engineering. RSC Adv 2021;11:19041-58. [PMID: 35478636 DOI: 10.1039/d1ra01849c] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
69 Oh Y, Ahn CB, Marasinghe MPCK, Je JY. Insertion of gallic acid onto chitosan promotes the differentiation of osteoblasts from murine bone marrow-derived mesenchymal stem cells. Int J Biol Macromol 2021;183:1410-8. [PMID: 34022306 DOI: 10.1016/j.ijbiomac.2021.05.122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
70 Tien ND, Lyngstadaas SP, Mano JF, Blaker JJ, Haugen HJ. Recent Developments in Chitosan-Based Micro/Nanofibers for Sustainable Food Packaging, Smart Textiles, Cosmeceuticals, and Biomedical Applications. Molecules 2021;26:2683. [PMID: 34063713 DOI: 10.3390/molecules26092683] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
71 Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemie der Chitosan‐Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angew Chem 2021;133:9913-9938. [DOI: 10.1002/ange.202003053] [Reference Citation Analysis]
72 Feiz E, Mahyari M, Ghaieni HR, Tavangar S. Copper on chitosan-modified cellulose filter paper as an efficient dip catalyst for ATRP of MMA. Sci Rep 2021;11:8257. [PMID: 33859302 DOI: 10.1038/s41598-021-87755-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
73 Dresvyanina EN, Rosova EY, Smirnova NV, Ivan’kova EM, Moskalyuk OA, Dobrovolskaya IP, Aleshin AN, Yudin VE. Electroactive composites based on chitosan fibers coated with polypyrrole. Textile Research Journal. [DOI: 10.1177/00405175211006217] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Jayash SN, Hashim NM, Misran M, Ibrahim N, Al-namnam NM, Baharuddin NA. Analysis on Efficacy of Chitosan-Based Gel on Bone Quality and Quantity. Front Mater 2021;8:640950. [DOI: 10.3389/fmats.2021.640950] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
75 Jarrar H, Çetin Altındal D, Gümüşderelioğlu M. Scaffold-based osteogenic dual delivery system with melatonin and BMP-2 releasing PLGA microparticles. Int J Pharm 2021;600:120489. [PMID: 33744449 DOI: 10.1016/j.ijpharm.2021.120489] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
76 Choi E, Kim D, Kang D, Yang GH, Jung B, Yeo M, Park MJ, An S, Lee K, Kim JS, Kim JC, Jeong W, Yoo HH, Jeon H. 3D-printed gelatin methacrylate (GelMA)/silanated silica scaffold assisted by two-stage cooling system for hard tissue regeneration. Regen Biomater 2021;8:rbab001. [PMID: 33738115 DOI: 10.1093/rb/rbab001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
77 Zamri MFMA, Bahru R, Amin R, Aslam Khan MU, Razak SIA, Hassan SA, Kadir MRA, Nayan NHM. Waste to health: A review of waste derived materials for tissue engineering. Journal of Cleaner Production 2021;290:125792. [DOI: 10.1016/j.jclepro.2021.125792] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 16.0] [Reference Citation Analysis]
78 Grabska-Zielińska S, Sionkowska A, Carvalho Â, Monteiro FJ. Biomaterials with Potential Use in Bone Tissue Regeneration-Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS. Materials (Basel) 2021;14:1105. [PMID: 33652959 DOI: 10.3390/ma14051105] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
79 Xue X, Hu Y, Deng Y, Su J. Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Adv Funct Mater 2021;31:2009432. [DOI: 10.1002/adfm.202009432] [Cited by in Crossref: 61] [Cited by in F6Publishing: 72] [Article Influence: 61.0] [Reference Citation Analysis]
80 Saska S, Pilatti L, Blay A, Shibli JA. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers (Basel) 2021;13:563. [PMID: 33668617 DOI: 10.3390/polym13040563] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 33.0] [Reference Citation Analysis]
81 Said MM, Rehan M, El-Sheikh SM, Zahran MK, Abdel-Aziz MS, Bechelany M, Barhoum A. Multifunctional Hydroxyapatite/Silver Nanoparticles/Cotton Gauze for Antimicrobial and Biomedical Applications. Nanomaterials (Basel) 2021;11:429. [PMID: 33567743 DOI: 10.3390/nano11020429] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 25.0] [Reference Citation Analysis]
82 Figueiredo L, Gregório AVL, Rodrigues A, Rosa PAR. Influence of strain rate on the mechanical behavior of dry and hydrated chitosan-based dense materials for bioabsorbable implant applications. J Mech Behav Biomed Mater 2021;116:104337. [PMID: 33516130 DOI: 10.1016/j.jmbbm.2021.104337] [Reference Citation Analysis]
83 Anggani OF, Setiya Budiatin A, Sulmartiwi L, Rahmad Royan M. In Vitro Cytotoxicity Test Reveals Non-toxic of Waste-based Scaffold on Human Hepatocyte Cells. JAFH 2021;10:109. [DOI: 10.20473/jafh.v10i1.23424] [Reference Citation Analysis]
84 Maity S, Naskar N, Jana B, Lahiri S, Ganguly J. Fabrication of thiophene-chitosan hydrogel-trap for efficient immobilization of mercury (II) from aqueous environs. Carbohydr Polym 2021;251:116999. [PMID: 33142568 DOI: 10.1016/j.carbpol.2020.116999] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
85 Lee CC, Kim KD. Biologics: Inherent Challenges. Handbook of Spine Technology 2021. [DOI: 10.1007/978-3-319-44424-6_137] [Reference Citation Analysis]
86 Badar R, Zahid AA, Yar M. Chitin-based nanomaterials. Biopolymeric Nanomaterials 2021. [DOI: 10.1016/b978-0-12-824364-0.00013-7] [Reference Citation Analysis]
87 Dalavi PA, Anil S, Venkatesan J. Bioceramics-Based Biomaterials for Bone Tissue Engineering. Engineering Materials for Stem Cell Regeneration 2021. [DOI: 10.1007/978-981-16-4420-7_20] [Reference Citation Analysis]
88 Anil S, Pandarathodiyil AK, Venkatesan J. Chitosan-based bionanocomposites in dental applications. Bionanocomposites in Tissue Engineering and Regenerative Medicine 2021. [DOI: 10.1016/b978-0-12-821280-6.00005-2] [Reference Citation Analysis]
89 Másson M. Chitin and chitosan. Handbook of Hydrocolloids 2021. [DOI: 10.1016/b978-0-12-820104-6.00013-9] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
90 Gritsch L, Boccaccini AR. Bioactive and Biodegradable Polymer-Based Composites. Encyclopedia of Materials: Technical Ceramics and Glasses 2021. [DOI: 10.1016/b978-0-12-803581-8.12120-4] [Reference Citation Analysis]
91 Roy BK, Tahmid I, Rashid TU. Chitosan-Based Hydrogels for Tissue Engineering. Engineering Materials for Stem Cell Regeneration 2021. [DOI: 10.1007/978-981-16-4420-7_19] [Reference Citation Analysis]
92 Chawla R, Dutta PK. Chitosan for Wound Healing in the Light of Skin Tissue Engineering and Stem Cell Research. Engineering Materials for Stem Cell Regeneration 2021. [DOI: 10.1007/978-981-16-4420-7_14] [Reference Citation Analysis]
93 Biswal T. Biopolymers for tissue engineering applications: A review. Materials Today: Proceedings 2021;41:397-402. [DOI: 10.1016/j.matpr.2020.09.628] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 24.0] [Reference Citation Analysis]
94 Chan JX, Wong JF, Hassan A, Zakaria Z. Bioplastics from agricultural waste. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications 2021. [DOI: 10.1016/b978-0-12-819953-4.00005-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
95 Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. Materials (Basel) 2020;13:E5560. [PMID: 33291305 DOI: 10.3390/ma13235560] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 21.0] [Reference Citation Analysis]
96 Ogay V, Mun EA, Kudaibergen G, Baidarbekov M, Kassymbek K, Zharkinbekov Z, Saparov A. Progress and Prospects of Polymer-Based Drug Delivery Systems for Bone Tissue Regeneration. Polymers (Basel) 2020;12:E2881. [PMID: 33271770 DOI: 10.3390/polym12122881] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
97 Nazeer MA, Onder OC, Sevgili I, Yilgor E, Kavakli IH, Yilgor I. 3D printed poly(lactic acid) scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Materials Today Communications 2020;25:101515. [DOI: 10.1016/j.mtcomm.2020.101515] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
98 Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemistry of Chitosan Aerogels: Three‐Dimensional Pore Control for Tailored Applications. Angew Chem Int Ed 2021;60:9828-51. [DOI: 10.1002/anie.202003053] [Cited by in Crossref: 34] [Cited by in F6Publishing: 42] [Article Influence: 17.0] [Reference Citation Analysis]
99 Perez-Moreno A, Reyes-Peces MLV, de Los Santos DM, Pinaglia-Tobaruela G, de la Orden E, Vilches-Pérez JI, Salido M, Piñero M, de la Rosa-Fox N. Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior. Polymers (Basel) 2020;12:E2802. [PMID: 33256226 DOI: 10.3390/polym12122802] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
100 Fourie J, Taute F, du Preez L, de Beer D. Chitosan Composite Biomaterials for Bone Tissue Engineering—a Review. Regen Eng Transl Med . [DOI: 10.1007/s40883-020-00187-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
101 Li L, Yu M, Li Y, Li Q, Yang H, Zheng M, Han Y, Lu D, Lu S, Gui L. Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioact Mater 2021;6:1255-66. [PMID: 33210023 DOI: 10.1016/j.bioactmat.2020.10.018] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 20.0] [Reference Citation Analysis]
102 Nájera-romero GV, Yar M, Rehman IU. Heparinized chitosan/hydroxyapatite scaffolds stimulate angiogenesis. Functional Composite Mater 2020;1. [DOI: 10.1186/s42252-020-00012-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
103 Bangun K, Sukasah CL, Dilogo IH, Indrani DJ, Siregar NC, Pandelaki J, Iskandriati D, Kekalih A, Halim J. Bone Growth Capacity of Human Umbilical Cord Mesenchymal Stem Cells and BMP-2 Seeded Into Hydroxyapatite/Chitosan/Gelatin Scaffold in Alveolar Cleft Defects: An Experimental Study in Goat. Cleft Palate Craniofac J 2021;58:707-17. [PMID: 34047209 DOI: 10.1177/1055665620962360] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
104 Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. Nanomaterials (Basel) 2020;10:E2019. [PMID: 33066127 DOI: 10.3390/nano10102019] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
105 Peng L, Abbasi N, Xiao Y, Xie Z. Black Phosphorus: Degradation Mechanism, Passivation Method, and Application for In Situ Tissue Regeneration. Adv Mater Interfaces 2020;7:2001538. [DOI: 10.1002/admi.202001538] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
106 He J, Hu X, Cao J, Zhang Y, Xiao J, Peng L, Chen D, Xiong C, Zhang L. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration. Carbohydr Polym 2021;253:117198. [PMID: 33278972 DOI: 10.1016/j.carbpol.2020.117198] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 14.5] [Reference Citation Analysis]
107 Dresvyanina E, Grebennikov S, Elokhovskii V, Dobrovolskaya I, Ivan’kova E, Yudin V, Heppe K, Morganti P. Thermodynamics of interaction between water and the composite films based on chitosan and chitin nanofibrils. Carbohydrate Polymers 2020;245:116552. [DOI: 10.1016/j.carbpol.2020.116552] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
108 Ramesh S, Kovelakuntla V, Meyer AS, Rivero IV. Three-dimensional printing of stimuli-responsive hydrogel with antibacterial activity. Bioprinting 2020. [DOI: 10.1016/j.bprint.2020.e00106] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
109 Inphonlek S, Niamsiri N, Sunintaboon P, Sirisinha C. Chitosan/xanthan gum porous scaffolds incorporated with in-situ-formed poly(lactic acid) particles: Their fabrication and ability to adsorb anionic compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;603:125263. [DOI: 10.1016/j.colsurfa.2020.125263] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
110 Oliver JD, Jia S, Halpern LR, Graham EM, Turner EC, Colombo JS, Grainger DW, D'Souza RN. Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering. Tissue Eng Part B Rev 2021;27:215-37. [PMID: 32873216 DOI: 10.1089/ten.TEB.2020.0181] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
111 Takeshita S, Zhao S, Malfait WJ. Transparent, Aldehyde-Free Chitosan Aerogel. Carbohydr Polym 2021;251:117089. [PMID: 33142630 DOI: 10.1016/j.carbpol.2020.117089] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
112 Păun IA, Mustăciosu CC, Popescu RC, Călin BŞ, Mihăilescu M. Collagen/Chitosan Functionalization of Complex 3D Structures Fabricated by Laser Direct Writing via Two-Photon Polymerization for Enhanced Osteogenesis. Int J Mol Sci 2020;21:E6426. [PMID: 32899318 DOI: 10.3390/ijms21176426] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
113 Tenório FS, Amaral Montanheiro TL, dos Santos AMI, Silva M, Lemes AP, Tada DB. Chitosan hydrogel covalently crosslinked by gold nanoparticle: Eliminating the use of toxic crosslinkers. J Appl Polym Sci 2021;138:49819. [DOI: 10.1002/app.49819] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
114 Huang Y, Seitz D, Chevalier Y, Müller PE, Jansson V, Klar RM. Synergistic interaction of hTGF-β3 with hBMP-6 promotes articular cartilage formation in chitosan scaffolds with hADSCs: implications for regenerative medicine. BMC Biotechnol 2020;20:48. [PMID: 32854680 DOI: 10.1186/s12896-020-00641-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
115 Oggu GS, Velidandla S, Ealla KKR, Venkatesan J, Asthana A, Kim S, Bhatnagar I. Marine Biomaterial Treasure and Biomedical Sciences. Encyclopedia of Marine Biotechnology 2020. [DOI: 10.1002/9781119143802.ch50] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Mallakpour S, Hatami M. Highly capable and cost-effective chitosan nanocomposite films containing folic acid-functionalized layered double hydroxide and their in vitro bioactivity performance. Materials Chemistry and Physics 2020;250:123044. [DOI: 10.1016/j.matchemphys.2020.123044] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
117 Gough CR, Rivera-Galletti A, Cowan DA, Salas-de la Cruz D, Hu X. Protein and Polysaccharide-Based Fiber Materials Generated from Ionic Liquids: A Review. Molecules 2020;25:E3362. [PMID: 32722182 DOI: 10.3390/molecules25153362] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
118 Wardhana AS, Nirwana I, Budi HS, Surboyo MDC. Role of Hydroxyapatite and Ellagic Acid in the Osteogenesis. Eur J Dent 2021;15:8-12. [PMID: 32688409 DOI: 10.1055/s-0040-1714039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
119 Dimida S, Santin M, Verri T, Barca A, Demitri C. Assessment of Cytocompatibility and Anti-Inflammatory (Inter)Actions of Genipin-Crosslinked Chitosan Powders. Biology (Basel) 2020;9:E159. [PMID: 32650623 DOI: 10.3390/biology9070159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
120 Hu X, He J, Yong X, Lu J, Xiao J, Liao Y, Li Q, Xiong C. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering. Colloids Surf B Biointerfaces 2020;195:111218. [PMID: 32650218 DOI: 10.1016/j.colsurfb.2020.111218] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
121 Pahlevanzadeh F, Emadi R, Valiani A, Kharaziha M, Poursamar SA, Bakhsheshi-Rad HR, Ismail AF, RamaKrishna S, Berto F. Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. Materials (Basel) 2020;13:E2663. [PMID: 32545256 DOI: 10.3390/ma13112663] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
122 Dresvyanina EN, Grebennikov SF, Dobrovol’skaya IP, Maslennikova TP, Ivan’kova EM, Yudin VE. Effect of Chitin Nanofibrils on the Sorption Behavior of Chitosan-Based Composite Films. Polym Sci Ser A 2020;62:205-12. [DOI: 10.1134/s0965545x20030050] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
123 Siavashani AZ, Mohammadi J, Rottmar M, Senturk B, Nourmohammadi J, Sadeghi B, Huber L, Maniura-weber K. Silk fibroin/sericin 3D sponges: The effect of sericin on structural and biological properties of fibroin. International Journal of Biological Macromolecules 2020;153:317-26. [DOI: 10.1016/j.ijbiomac.2020.02.316] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
124 Filippi M, Born G, Chaaban M, Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front Bioeng Biotechnol 2020;8:474. [PMID: 32509754 DOI: 10.3389/fbioe.2020.00474] [Cited by in Crossref: 91] [Cited by in F6Publishing: 98] [Article Influence: 45.5] [Reference Citation Analysis]
125 Nie L, Deng Y, Li P, Hou R, Shavandi A, Yang S. Hydroxyethyl Chitosan-Reinforced Polyvinyl Alcohol/Biphasic Calcium Phosphate Hydrogels for Bone Regeneration. ACS Omega 2020;5:10948-57. [PMID: 32455215 DOI: 10.1021/acsomega.0c00727] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
126 Qin T, Li X, Long H, Bin S, Xu Y. Bioactive Tetracalcium Phosphate Scaffolds Fabricated by Selective Laser Sintering for Bone Regeneration Applications. Materials (Basel) 2020;13:E2268. [PMID: 32423078 DOI: 10.3390/ma13102268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
127 Mu Q, Lin G, Stephen ZR, Chung S, Wang H, Patton VK, Gebhart RN, Zhang M. In vivo Serum Enabled Production of Ultrafine Nanotherapeutics for Cancer Treatment. Mater Today (Kidlington) 2020;38:10-23. [PMID: 33716549 DOI: 10.1016/j.mattod.2020.03.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
128 Kirichuk OP, Mayevskaya EN, Burkova NV, Dresvyanina EN, Kuznetsov SI, Dobrovolskaya IP, Yudin VE. Comparative Characteristics of the Reaction of Cellular Elements of Human Venous Blood on Contact with Carbon Hemosorbent and Chitosan Fibers in vitro. Cell Tiss Biol 2020;14:202-208. [DOI: 10.1134/s1990519x20030049] [Reference Citation Analysis]
129 Shapourzadeh A, Atyabi S, Irani S, Bakhshi H. Osteoinductivity of polycaprolactone nanofibers grafted functionalized with carboxymethyl chitosan: Synergic effect of β-carotene and electromagnetic field. International Journal of Biological Macromolecules 2020;150:152-60. [DOI: 10.1016/j.ijbiomac.2020.02.036] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
130 Sangkert S, Kamolmatyakul S, Meesane J. The bone-mimicking effect of calcium phosphate on composite chitosan scaffolds in maxillofacial bone tissue engineering. J Appl Biomater Funct Mater 2020;18:2280800019893204. [PMID: 32297820 DOI: 10.1177/2280800019893204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
131 Molavi AM, Sadeghi-Avalshahr A, Nokhasteh S, Naderi-Meshkin H. Enhanced biological properties of collagen/chitosan-coated poly(ε-caprolactone) scaffold by surface modification with GHK-Cu peptide and 58S bioglass. Prog Biomater 2020;9:25-34. [PMID: 32248401 DOI: 10.1007/s40204-020-00129-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
132 Lim SS, Oon CJ, Chew KW, Yap JY, Lim MT, Su D, Lee LY, Loh H. Improved physical properties and in vitro biocompatibility of chitosan composite scaffolds incorporated with a green filler on bone cells. Clean Techn Environ Policy 2020;22:701-712. [DOI: 10.1007/s10098-020-01815-0] [Reference Citation Analysis]
133 Zhou X, Liu P, Nie W, Peng C, Li T, Qiang L, He C, Wang J. Incorporation of dexamethasone-loaded mesoporous silica nanoparticles into mineralized porous biocomposite scaffolds for improving osteogenic activity. International Journal of Biological Macromolecules 2020;149:116-26. [DOI: 10.1016/j.ijbiomac.2020.01.237] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
134 Pinto RV, Gomes PS, Fernandes MH, Costa ME, Almeida MM. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. Materials Science and Engineering: C 2020;109:110557. [DOI: 10.1016/j.msec.2019.110557] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 16.0] [Reference Citation Analysis]
135 Belluzo MS, Medina LF, Molinuevo MS, Cortizo MS, Cortizo AM. Nanobiocomposite based on natural polyelectrolytes for bone regeneration. J Biomed Mater Res A 2020;108:1467-78. [PMID: 32170892 DOI: 10.1002/jbm.a.36917] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
136 Kyriacou H, Kamaraj A, Khan WS. Developments in Antibiotic-Eluting Scaffolds for the Treatment of Osteomyelitis. Applied Sciences 2020;10:2244. [DOI: 10.3390/app10072244] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
137 Lauritano D, Limongelli L, Moreo G, Favia G, Carinci F. Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review. Nanomaterials (Basel) 2020;10:E605. [PMID: 32218206 DOI: 10.3390/nano10040605] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
138 Lin H, Chiou W, Shiue S, Cheng J. Non-RGD peptide H-ckrwwkwirw-NH 2 grafting accentuates antibacterial and osteoinductive properties of biopolymer coating. Soft Materials 2020;18:487-98. [DOI: 10.1080/1539445x.2020.1737116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
139 Tarrahi R, Fathi Z, Seydibeyoğlu MÖ, Doustkhah E, Khataee A. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. International Journal of Biological Macromolecules 2020;146:596-619. [DOI: 10.1016/j.ijbiomac.2019.12.181] [Cited by in Crossref: 62] [Cited by in F6Publishing: 68] [Article Influence: 31.0] [Reference Citation Analysis]
140 Alam F, Shukla VR, Varadarajan K, Kumar S. Microarchitected 3D printed polylactic acid (PLA) nanocomposite scaffolds for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials 2020;103:103576. [DOI: 10.1016/j.jmbbm.2019.103576] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 26.0] [Reference Citation Analysis]
141 Ding X, Li A, Yang F, Sun K, Sun X. β-tricalcium phosphate and octacalcium phosphate composite bioceramic material for bone tissue engineering. J Biomater Appl 2020;34:1294-9. [PMID: 32028822 DOI: 10.1177/0885328220903989] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
142 Kaliva M, Georgopoulou A, Dragatogiannis DA, Charitidis CA, Chatzinikolaidou M, Vamvakaki M. Biodegradable Chitosan-graft-Poly(l-lactide) Copolymers For Bone Tissue Engineering. Polymers (Basel) 2020;12:E316. [PMID: 32033024 DOI: 10.3390/polym12020316] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
143 Lee SK, Wang M, Lee JH, Suhr J. Development of reversibly compressible feather-like lightweight Chitosan/GO composite foams and their mechanical and viscoelastic properties. Carbon 2020;157:191-200. [DOI: 10.1016/j.carbon.2019.10.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
144 Suneetha M, Rao KM, Han SS. Mechanically improved porous hydrogels with polysaccharides via polyelectrolyte complexation for bone tissue engineering. International Journal of Biological Macromolecules 2020;144:160-9. [DOI: 10.1016/j.ijbiomac.2019.12.096] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
145 Smotrina Т, Dresvyanina Е, Grebennikov S, Kazakov М, Maslennikova Т, Dobrovolskaya I, Yudin V. Interaction between water and the composite materials based on chitosan and chitin nanofibrils. Polymer 2020;189:122166. [DOI: 10.1016/j.polymer.2020.122166] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
146 Huang X, Chen M, Wu H, Jiao Y, Zhou C. Macrophage Polarization Mediated by Chitooligosaccharide (COS) and Associated Osteogenic and Angiogenic Activities. ACS Biomater Sci Eng 2020;6:1614-29. [DOI: 10.1021/acsbiomaterials.9b01550] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
147 Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. Nanomaterials (Basel) 2020;10:E124. [PMID: 31936581 DOI: 10.3390/nano10010124] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 34.5] [Reference Citation Analysis]
148 Bai W, Shu L, Sun R, Xu J, Silberschmidt VV, Sugita N. Mechanism of material removal in orthogonal cutting of cortical bone. J Mech Behav Biomed Mater 2020;104:103618. [PMID: 31929098 DOI: 10.1016/j.jmbbm.2020.103618] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
149 Moy J, Limaye A, Arinzeh TL. Fibrous scaffolds for bone tissue engineering. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00015-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
150 Zakeri Siavashani A, Mohammadi J, Maniura-weber K, Senturk B, Nourmohammadi J, Sadeghi B, Huber L, Rottmar M. Silk based scaffolds with immunomodulatory capacity: anti-inflammatory effects of nicotinic acid. Biomater Sci 2020;8:148-62. [DOI: 10.1039/c9bm00814d] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
151 Lee CC, Kim KD. Biologics: Inherent Challenges. Handbook of Spine Technology 2020. [DOI: 10.1007/978-3-319-33037-2_137-1] [Reference Citation Analysis]
152 Hossain MR, Mallik AK, Rahman MM. Fundamentals of chitosan for biomedical applications. Handbook of Chitin and Chitosan. Elsevier; 2020. pp. 199-230. [DOI: 10.1016/b978-0-12-817966-6.00007-8] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
153 Viana VR, Ferreira WH, Azero EG, Dias ML, Andrade CT. Optimization of the Electrospinning Conditions by Box-Behnken Design to Prepare Poly(Vinyl Alcohol)/Chitosan Crosslinked Nanofibers. MSCE 2020;08:13-31. [DOI: 10.4236/msce.2020.84002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 Akpan E, Gbenebor O, Adeosun S, Cletus O. Chitin and chitosan composites for bone tissue regeneration. Handbook of Chitin and Chitosan 2020. [DOI: 10.1016/b978-0-12-817966-6.00016-9] [Reference Citation Analysis]
155 Hasan MM, Habib ML, Anwaruzzaman M, Kamruzzaman M, Khan MN, Rahman MM. Processing techniques of chitosan-based interpenetrating polymer networks, gels, blends, composites and nanocomposites. Handbook of Chitin and Chitosan 2020. [DOI: 10.1016/b978-0-12-817968-0.00003-2] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
156 Li J, Liu X, Crook J, Wallace G. 3D graphene-containing structures for tissue engineering. Materials Today Chemistry 2019;14:100199. [DOI: 10.1016/j.mtchem.2019.100199] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
157 Ghosh M, Halperin-Sternfeld M, Adler-Abramovich L. Bio Mimicking of Extracellular Matrix. Adv Exp Med Biol 2019;1174:371-99. [PMID: 31713206 DOI: 10.1007/978-981-13-9791-2_12] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
158 Wang Y, Lee BH, Zhao AZ, Li H. Biomaterials in Bone Tissue Engineering. Materials Science and Technology 2019. [DOI: 10.1002/9783527603978.mst0481] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
159 Mahmoud NS, Ahmed HH, Mohamed MR, Amr KS, Aglan HA, Ali MAM, Tantawy MA. Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells. Cytotechnology 2020;72:1-22. [PMID: 31722051 DOI: 10.1007/s10616-019-00353-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
160 Yılmaz P, öztürk Er E, Bakırdere S, ülgen K, özbek B. Application of supercritical gel drying method on fabrication of mechanically improved and biologically safe three-component scaffold composed of graphene oxide/chitosan/hydroxyapatite and characterization studies. Journal of Materials Research and Technology 2019;8:5201-16. [DOI: 10.1016/j.jmrt.2019.08.043] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
161 Popryadukhin PV, Yukina GY, Dobrovolskaya IP, Ivankova EM, Yudin VE. Cellular Mechanisms of Bioresorption of a Porous 3D Matrix Based on Chitosan. Cell Tiss Biol 2019;13:463-469. [DOI: 10.1134/s1990519x19060087] [Reference Citation Analysis]
162 Liang H, Jin C, Ma L, Feng X, Deng X, Wu S, Liu X, Yang C. Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation. ACS Appl Mater Interfaces 2019;11:41758-69. [PMID: 31610117 DOI: 10.1021/acsami.9b16848] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
163 Parkatzidis K, Chatzinikolaidou M, Kaliva M, Bakopoulou A, Farsari M, Vamvakaki M. Multiphoton 3D Printing of Biopolymer-Based Hydrogels. ACS Biomater Sci Eng 2019;5:6161-70. [DOI: 10.1021/acsbiomaterials.9b01300] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
164 Liang K, Zhou Y, Ji Y. Full biodegradable elastomeric nanocomposites fabricated by chitin nanocrystal and poly(caprolactone-diol citrate) elastomer. Journal of Bioactive and Compatible Polymers 2019;34:453-63. [DOI: 10.1177/0883911519881728] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
165 Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today 2020;18:100479. [PMID: 32775607 DOI: 10.1016/j.apmt.2019.100479] [Cited by in Crossref: 141] [Cited by in F6Publishing: 150] [Article Influence: 47.0] [Reference Citation Analysis]
166 Fujita S, Wakuda Y, Matsumura M, Suye SI. Geometrically customizable alginate hydrogel nanofibers for cell culture platforms. J Mater Chem B 2019;7:6556-63. [PMID: 31588949 DOI: 10.1039/c9tb01353a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
167 Perez-Puyana V, Rubio-Valle JF, Jiménez-Rosado M, Guerrero A, Romero A. Alternative processing methods of hybrid porous scaffolds based on gelatin and chitosan. J Mech Behav Biomed Mater 2020;102:103472. [PMID: 31605930 DOI: 10.1016/j.jmbbm.2019.103472] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
168 Zhang H, Yang B, Wang ZM, Xie C, Tang P, Bian L, Dong F, Tang Y. Porous graphene oxide/chitosan nanocomposites based on interfacial chemical interactions. European Polymer Journal 2019;119:114-9. [DOI: 10.1016/j.eurpolymj.2019.07.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
169 Kafi MA, Aktar K, Todo M, Dahiya R. Engineered chitosan for improved 3D tissue growth through Paxillin-FAK-ERK activation. Regen Biomater 2020;7:141-51. [PMID: 32296533 DOI: 10.1093/rb/rbz034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
170 Abinaya B, Prasith TP, Ashwin B, Viji Chandran S, Selvamurugan N. Chitosan in Surface Modification for Bone Tissue Engineering Applications. Biotechnol J 2019;14:1900171. [DOI: 10.1002/biot.201900171] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
171 Zhao R, Xu Z, Li B, Chen T, Mei N, Wang C, Zhou Z, You L, Wu C, Wang X, Tang S. A comparative study on agarose acetate and PDLLA scaffold for rabbit femur defect regeneration. Biomed Mater 2019;14:065007. [PMID: 31422950 DOI: 10.1088/1748-605X/ab3c1b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
172 Nie L, Wu Q, Long H, Hu K, Li P, Wang C, Sun M, Dong J, Wei X, Suo J, Hua D, Liu S, Yuan H, Yang S. Development of chitosan/gelatin hydrogels incorporation of biphasic calcium phosphate nanoparticles for bone tissue engineering. J Biomater Sci Polym Ed 2019;30:1636-57. [PMID: 31393229 DOI: 10.1080/09205063.2019.1654210] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 10.7] [Reference Citation Analysis]
173 Li Z, Chu D, Gao Y, Jin L, Zhang X, Cui W, Li J. Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite scaffold. Materials Today Advances 2019;3:100014. [DOI: 10.1016/j.mtadv.2019.100014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
174 Huang K, Hou J, Gu Z, Wu J. Egg-White-/Eggshell-Based Biomimetic Hybrid Hydrogels for Bone Regeneration. ACS Biomater Sci Eng 2019;5:5384-91. [DOI: 10.1021/acsbiomaterials.9b00990] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 9.7] [Reference Citation Analysis]
175 Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, Hasany M, Nikkhah M, Akbari M, Orive G, Dolatshahi-Pirouz A. Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering? Adv Sci (Weinh) 2019;6:1801664. [PMID: 31453048 DOI: 10.1002/advs.201801664] [Cited by in Crossref: 166] [Cited by in F6Publishing: 175] [Article Influence: 55.3] [Reference Citation Analysis]
176 Manferdini C, Gabusi E, Sartore L, Dey K, Agnelli S, Almici C, Bianchetti A, Zini N, Russo D, Re F, Mariani E, Lisignoli G. Chitosan-based scaffold counteracts hypertrophic and fibrotic markers in chondrogenic differentiated mesenchymal stromal cells. J Tissue Eng Regen Med 2019;13:1896-911. [PMID: 31348588 DOI: 10.1002/term.2941] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
177 Satpathy A, Pal A, Sengupta S, Das A, Hasan MM, Ratha I, Barui A, Bodhak S. Bioactive Nano-Hydroxyapatite Doped Electrospun PVA-Chitosan Composite Nanofibers for Bone Tissue Engineering Applications. J Indian Inst Sci 2019;99:289-302. [DOI: 10.1007/s41745-019-00118-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
178 Faqhiri H, Hannula M, Kellomäki M, Calejo MT, Massera J. Effect of Melt-Derived Bioactive Glass Particles on the Properties of Chitosan Scaffolds. J Funct Biomater 2019;10:E38. [PMID: 31412615 DOI: 10.3390/jfb10030038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
179 Lee CC, Hirasawa N, Garcia KG, Ramanathan D, Kim KD. Stem and progenitor cell microenvironment for bone regeneration and repair. Regen Med 2019;14:693-702. [PMID: 31393221 DOI: 10.2217/rme-2018-0044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
180 Rusdiputra S, Wibowo A, Tresna Wulan Asri LA, Purwasasmita BS. Fabrication of Chitosan based-Scaffold as Potential Cornea Implant. IOP Conf Ser : Mater Sci Eng 2019;547:012062. [DOI: 10.1088/1757-899x/547/1/012062] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
181 Köse S, Kankilic B, Gizer M, Ciftci Dede E, Bayramli E, Korkusuz P, Korkusuz F. Stem Cell and Advanced Nano Bioceramic Interactions. Adv Exp Med Biol 2018;1077:317-42. [PMID: 30357696 DOI: 10.1007/978-981-13-0947-2_17] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
182 Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. Journal of Biomaterials Science, Polymer Edition 2019;30:1308-55. [DOI: 10.1080/09205063.2019.1630699] [Cited by in Crossref: 63] [Cited by in F6Publishing: 53] [Article Influence: 21.0] [Reference Citation Analysis]
183 Şenel S, Aksoy EA, Akca G. Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry. In: Choi AH, Ben-nissan B, editors. Marine-Derived Biomaterials for Tissue Engineering Applications. Singapore: Springer; 2019. pp. 157-78. [DOI: 10.1007/978-981-13-8855-2_8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
184 Milazzo M, Contessi Negrini N, Scialla S, Marelli B, Farè S, Danti S, Buehler MJ. Additive Manufacturing Approaches for Hydroxyapatite‐Reinforced Composites. Adv Funct Mater 2019;29:1903055. [DOI: 10.1002/adfm.201903055] [Cited by in Crossref: 77] [Cited by in F6Publishing: 79] [Article Influence: 25.7] [Reference Citation Analysis]
185 Vargas Villanueva JG, Sarmiento Huertas PA, Galan FS, Esteban Rueda RJ, Briceño Triana JC, Casas Rodriguez JP. Bio-adhesion evaluation of a chitosan-based bone bio-adhesive. International Journal of Adhesion and Adhesives 2019;92:80-8. [DOI: 10.1016/j.ijadhadh.2019.04.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
186 Ranganathan S, Balagangadharan K, Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering. International Journal of Biological Macromolecules 2019;133:354-64. [DOI: 10.1016/j.ijbiomac.2019.04.115] [Cited by in Crossref: 115] [Cited by in F6Publishing: 96] [Article Influence: 38.3] [Reference Citation Analysis]
187 Bi Y, Lin Z, Deng S. Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Materials Science and Engineering: C 2019;100:576-83. [DOI: 10.1016/j.msec.2019.03.040] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 25.0] [Reference Citation Analysis]
188 Ghavimi SAA, Lungren ES, Faulkner TJ, Josselet MA, Wu Y, Sun Y, Pfeiffer FM, Goldstein CL, Wan C, Ulery BD. Inductive co-crosslinking of cellulose nanocrystal/chitosan hydrogels for the treatment of vertebral compression fractures. International Journal of Biological Macromolecules 2019;130:88-98. [DOI: 10.1016/j.ijbiomac.2019.02.086] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
189 Toloue EB, Karbasi S, Salehi H, Rafienia M. Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Materials Science and Engineering: C 2019;99:1075-91. [DOI: 10.1016/j.msec.2019.02.062] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 19.0] [Reference Citation Analysis]
190 Zabihi E, Babaei A, Shahrampour D, Arab-bafrani Z, Mirshahidi KS, Majidi HJ. Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. International Journal of Biological Macromolecules 2019;131:107-16. [DOI: 10.1016/j.ijbiomac.2019.01.224] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 13.3] [Reference Citation Analysis]
191 Kanokpreechawut P, Pitakchatwong C, Matsumoto M, Sereemaspun A, Honsawek S, Chirachanchai S. Incorporation of chitosan whisker and hydroxyapatite: A synergistic approach to reinforce chitosan/ Poly(ethylene glycol) gel. Polymer Degradation and Stability 2019;164:198-205. [DOI: 10.1016/j.polymdegradstab.2019.02.029] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
192 Rahman MS, Rana MM, Spitzhorn LS, Akhtar N, Hasan MZ, Choudhury N, Fehm T, Czernuszka JT, Adjaye J, Asaduzzaman SM. Fabrication of biocompatible porous scaffolds based on hydroxyapatite/collagen/chitosan composite for restoration of defected maxillofacial mandible bone. Prog Biomater 2019;8:137-54. [PMID: 31144260 DOI: 10.1007/s40204-019-0113-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
193 Nezafati N, Faridi‐majidi R, Pazouki M, Hesaraki S. Synthesis and characterization of a novel freeze‐dried silanated chitosan bone tissue engineering scaffold reinforced with electrospun hydroxyapatite nanofiber. Polym Int 2019;68:1420-9. [DOI: 10.1002/pi.5833] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
194 Re F, Sartore L, Moulisova V, Cantini M, Almici C, Bianchetti A, Chinello C, Dey K, Agnelli S, Manferdini C, Bernardi S, Lopomo NF, Sardini E, Borsani E, Rodella LF, Savoldi F, Paganelli C, Guizzi P, Lisignoli G, Magni F, Salmeron-Sanchez M, Russo D. 3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. J Tissue Eng 2019;10:2041731419845852. [PMID: 31105928 DOI: 10.1177/2041731419845852] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 14.0] [Reference Citation Analysis]
195 Rogina A, Lončarević A, Antunović M, Marijanović I, Ivanković M, Ivanković H. Tuning physicochemical and biological properties of chitosan through complexation with transition metal ions. International Journal of Biological Macromolecules 2019;129:645-52. [DOI: 10.1016/j.ijbiomac.2019.02.075] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
196 Singh BN, Veeresh V, Mallick SP, Jain Y, Sinha S, Rastogi A, Srivastava P. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int J Biol Macromol 2019;133:817-30. [PMID: 31002908 DOI: 10.1016/j.ijbiomac.2019.04.107] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 19.3] [Reference Citation Analysis]
197 Shi D, Shen J, Zhang Z, Shi C, Chen M, Gu Y, Liu Y. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J Biomed Mater Res A 2019;107:1615-27. [PMID: 30920134 DOI: 10.1002/jbm.a.36678] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
198 Tian T, Xie W, Gao W, Wang G, Zeng L, Miao G, Lei B, Lin Z, Chen X. Micro-Nano Bioactive Glass Particles Incorporated Porous Scaffold for Promoting Osteogenesis and Angiogenesis in vitro. Front Chem 2019;7:186. [PMID: 30984748 DOI: 10.3389/fchem.2019.00186] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
199 Erickson AE, Sun J, Lan Levengood SK, Swanson S, Chang FC, Tsao CT, Zhang M. Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model. Biomed Microdevices 2019;21:34. [PMID: 30906951 DOI: 10.1007/s10544-019-0373-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
200 Xiao H, Huang W, Xiong K, Ruan S, Yuan C, Mo G, Tian R, Zhou S, She R, Ye P, Liu B, Deng J. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Int J Nanomedicine 2019;14:2011-27. [PMID: 30962685 DOI: 10.2147/IJN.S191627] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
201 Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019;58:6163-94. [DOI: 10.1021/acs.iecr.8b05334] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 28.7] [Reference Citation Analysis]
202 Ghalayani Esfahani A, Soleimanzade M, Campiglio CE, Federici A, Altomare L, Draghi L, Boccaccini AR, De Nardo L. Hierarchical microchannel architecture in chitosan/bioactive glass scaffolds via electrophoretic deposition positive-replica. J Biomed Mater Res A 2019;107:1455-65. [PMID: 30786159 DOI: 10.1002/jbm.a.36660] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
203 Vargas-osorio Z, Luzardo-álvarez A, Piñeiro Y, Vázquez-vázquez C, Gómez-amoza JL, Blanco-méndez J, Otero Espinar FJ, Rivas J. Three-Dimensional Hybrid Mesoporous Scaffolds for Simvastatin Sustained Delivery with in Vitro Cell Compatibility. ACS Omega 2019;4:5496-508. [DOI: 10.1021/acsomega.8b03676] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
204 Kjalarsdóttir L, Dýrfjörd A, Dagbjartsson A, Laxdal EH, Örlygsson G, Gíslason J, Einarsson JM, Ng CH, Jónsson H Jr. Bone remodeling effect of a chitosan and calcium phosphate-based composite. Regen Biomater 2019;6:241-7. [PMID: 31402983 DOI: 10.1093/rb/rbz009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
205 Ghavimi SAA, Lungren ES, Stromsdorfer JL, Darkow BT, Nguyen JA, Sun Y, Pfieffer FM, Goldstein CL, Wan C, Ulery BD. Effect of Dibasic Calcium Phosphate Incorporation on Cellulose Nanocrystal/Chitosan Hydrogel Properties for the Treatment of Vertebral Compression Fractures. AAPS J 2019;21. [DOI: 10.1208/s12248-019-0311-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
206 Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Progress in Polymer Science 2019;90:1-34. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Cited by in Crossref: 332] [Cited by in F6Publishing: 217] [Article Influence: 110.7] [Reference Citation Analysis]
207 Huang G, Chen J. Preparation and applications of hyaluronic acid and its derivatives. International Journal of Biological Macromolecules 2019;125:478-84. [DOI: 10.1016/j.ijbiomac.2018.12.074] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
208 Zia I, Mirza S, Jolly R, Rehman A, Ullah R, Shakir M. Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: A ternary nanocomposite for bone tissue engineering. International Journal of Biological Macromolecules 2019;124:88-101. [DOI: 10.1016/j.ijbiomac.2018.11.059] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
209 Tithito T, Suntornsaratoon P, Charoenphandhu N, Thongbunchoo J, Krishnamra N, Tang IM, Pon-on W. Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly(methyl methacrylate) for bone tissue engineering. Biomed Mater 2019;14:025013. [DOI: 10.1088/1748-605x/ab025f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
210 Scialla S, Barca A, Palazzo B, D'amora U, Russo T, Gloria A, De Santis R, Verri T, Sannino A, Ambrosio L, Gervaso F. Bioactive chitosan‐based scaffolds with improved properties induced by dextran‐grafted nano‐maghemite and l ‐arginine amino acid. J Biomed Mater Res 2019;107:1244-52. [DOI: 10.1002/jbm.a.36633] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
211 Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V. Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess 2019;6. [DOI: 10.1186/s40643-019-0243-y] [Cited by in Crossref: 177] [Cited by in F6Publishing: 180] [Article Influence: 59.0] [Reference Citation Analysis]
212 Palomino-Durand C, Lopez M, Cazaux F, Martel B, Blanchemain N, Chai F. Influence of the Soluble⁻Insoluble Ratios of Cyclodextrins Polymers on the Viscoelastic Properties of Injectable Chitosan⁻Based Hydrogels for Biomedical Application. Polymers (Basel) 2019;11:E214. [PMID: 30960198 DOI: 10.3390/polym11020214] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
213 Bardakova KN, Akopova TA, Kurkov AV, Goncharuk GP, Butnaru DV, Burdukovskii VF, Antoshin AA, Farion IA, Zharikova TM, Shekhter AB, Yusupov VI, Timashev PS, Rochev YA. From Aggregates to Porous Three-Dimensional Scaffolds through a Mechanochemical Approach to Design Photosensitive Chitosan Derivatives. Mar Drugs 2019;17:E48. [PMID: 30634710 DOI: 10.3390/md17010048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
214 Kargozar S, Milan PB, Baino F, Mozafari M. Nanoengineered biomaterials for bone/dental regeneration. Nanoengineered Biomaterials for Regenerative Medicine. Elsevier; 2019. pp. 13-38. [DOI: 10.1016/b978-0-12-813355-2.00002-8] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
215 Tekade M, Maheshwari N, Youngren-ortiz SR, Pandey V, Chourasiya Y, Soni V, Deb PK, Sharma MC. Thiolated-Chitosan: A Novel Mucoadhesive Polymer for Better-Targeted Drug Delivery. Biomaterials and Bionanotechnology. Elsevier; 2019. pp. 459-93. [DOI: 10.1016/b978-0-12-814427-5.00013-5] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
216 Thomas MS, Koshy RR, Mary SK, Thomas S, A. Pothan L. Processing Techniques. SpringerBriefs in Molecular Science 2019. [DOI: 10.1007/978-3-030-03158-9_2] [Reference Citation Analysis]
217 Hasnain MS, Ahmad SA, Chaudhary N, Hoda MN, Nayak AK. Biodegradable polymer matrix nanocomposites for bone tissue engineering. Applications of Nanocomposite Materials in Orthopedics. Elsevier; 2019. pp. 1-37. [DOI: 10.1016/b978-0-12-813740-6.00001-6] [Cited by in Crossref: 21] [Article Influence: 7.0] [Reference Citation Analysis]
218 Thomas MS, Koshy RR, Mary SK, Thomas S, A. Pothan L. Introduction. SpringerBriefs in Molecular Science 2019. [DOI: 10.1007/978-3-030-03158-9_1] [Reference Citation Analysis]
219 Kumar M, Brar A, Vivekanand V, Pareek N. Possibilities and perspectives of chitosan scaffolds and composites for tissue engineering. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-816909-4.00007-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
220 Maheshwari N, Tekade M, Chourasiya Y, Sharma MC, Deb PK, Tekade RK. Nanotechnology in Tissue Engineering. Biomaterials and Bionanotechnology 2019. [DOI: 10.1016/b978-0-12-814427-5.00007-x] [Reference Citation Analysis]
221 Saravanan S, Vimalraj S, Thanikaivelan P, Banudevi S, Manivasagam G. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. International Journal of Biological Macromolecules 2019;121:38-54. [DOI: 10.1016/j.ijbiomac.2018.10.014] [Cited by in Crossref: 101] [Cited by in F6Publishing: 104] [Article Influence: 33.7] [Reference Citation Analysis]
222 Singh B, Agrawal AK, Kashyap YS, Shukla M, Pandey BN, Gadkari SC. X-ray synchrotron phase contrast imaging for structural analysis of soft tissues and biomaterials. DAE SOLID STATE PHYSICS SYMPOSIUM 2018 2019. [DOI: 10.1063/1.5112883] [Reference Citation Analysis]
223 Narayan S. Chitosan-Based Nanoformulation as Carriers of Small Molecules for Tissue Regeneration. Functional Chitosan 2019. [DOI: 10.1007/978-981-15-0263-7_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
224 Balagangadharan K, Rao H, Shadamarshan P, Balaji H, Selvamurugan N. Composites Containing Marine Biomaterials for Bone Tissue Repair. Springer Series in Biomaterials Science and Engineering 2019. [DOI: 10.1007/978-981-13-8855-2_16] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
225 Mulchandani N, Prasad A, Katiyar V. Resorbable polymers in bone repair and regeneration. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-818415-8.00004-8] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
226 Saravanan S, Vimalraj S, Lakshmanan G, Jindal A, Sundaramurthi D, Bhattacharya J. Chitosan-Based Biocomposite Scaffolds and Hydrogels for Bone Tissue Regeneration. Springer Series in Biomaterials Science and Engineering 2019. [DOI: 10.1007/978-981-13-8855-2_18] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
227 Anil S, Chalisserry EP, Nam SY, Venkatesan J. Biomaterials for craniofacial tissue engineering and regenerative dentistry. Advanced Dental Biomaterials 2019. [DOI: 10.1016/b978-0-08-102476-8.00025-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
228 Nalini Ranganathan, Mugeshwaran A, Joseph Bensingh R, Abdul Kader M, Nayak SK. Biopolymeric Scaffolds for Tissue Engineering Application. In: Paul S, editor. Biomedical Engineering and its Applications in Healthcare. Singapore: Springer; 2019. pp. 249-74. [DOI: 10.1007/978-981-13-3705-5_11] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
229 Ruphuy G, Lopes JC, Dias MM, Barreiro MF. New insights into nanohydroxyapatite/chitosan nanocomposites for bone tissue regeneration. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-816909-4.00011-7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
230 Mazlam M, Kamalaldin N, Ong Q, Yahya B, Nurazreena A. Effect of alginate on the properties of hydroxyapatite scaffold and cell migration assay study. Materials Today: Proceedings 2019;17:820-8. [DOI: 10.1016/j.matpr.2019.06.368] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
231 Vladescu A, Badea M, Padmanabhan SC, Paraschiv G, Floroian L, Gaman L, Morris MA, Marty J, Cotrut CM. Nanomaterials for medical applications and their antimicrobial advantages. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-818435-6.00015-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
232 Dennaoui H, Chouery E, Rammal H, Abdel-Razzak Z, Harmouch C. Chitosan/hyaluronic acid multilayer films are biocompatible substrate for Wharton's jelly derived stem cells. Stem Cell Investig 2018;5:47. [PMID: 30701182 DOI: 10.21037/sci.2018.12.02] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
233 Kozusko SD, Riccio C, Goulart M, Bumgardner J, Jing XL, Konofaos P. Chitosan as a Bone Scaffold Biomaterial. J Craniofac Surg 2018;29:1788-93. [PMID: 30157141 DOI: 10.1097/SCS.0000000000004909] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
234 Cojocaru FD, Balan V, Popa MI, Lobiuc A, Antoniac A, Antoniac IV, Verestiuc L. Biopolymers - Calcium phosphates composites with inclusions of magnetic nanoparticles for bone tissue engineering. Int J Biol Macromol 2019;125:612-20. [PMID: 30537500 DOI: 10.1016/j.ijbiomac.2018.12.083] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 8.8] [Reference Citation Analysis]
235 Rani D, Singla P, Agarwal J. ‘Chitosan in water’ as an eco-friendly and efficient catalytic system for Knoevenagel condensation reaction. Carbohydrate Polymers 2018;202:355-64. [DOI: 10.1016/j.carbpol.2018.09.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
236 Yan J, Chen R, Zhang H, Bryers JD. Injectable Biodegradable Chitosan-Alginate 3D Porous Gel Scaffold for mRNA Vaccine Delivery. Macromol Biosci 2019;19:e1800242. [PMID: 30444317 DOI: 10.1002/mabi.201800242] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
237 Goh CY, Lim SS, Tshai KY, El Azab AWZZ, Loh H. Fabrication and in vitro biocompatibility of sodium tripolyphosphate-crosslinked chitosan–hydroxyapatite scaffolds for bone regeneration. J Mater Sci 2019;54:3403-20. [DOI: 10.1007/s10853-018-3087-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
238 Sumathra M, Sadasivuni KK, Kumar SS, Rajan M. Cisplatin-Loaded Graphene Oxide/Chitosan/Hydroxyapatite Composite as a Promising Tool for Osteosarcoma-Affected Bone Regeneration. ACS Omega 2018;3:14620-33. [DOI: 10.1021/acsomega.8b02090] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 14.0] [Reference Citation Analysis]
239 Kumari S, Tiyyagura HR, Douglas TE, Mohammed EA, Adriaens A, Fuchs-godec R, Mohan M, Skirtach AG. ANN prediction of corrosion behaviour of uncoated and biopolymers coated cp-Titanium substrates. Materials & Design 2018;157:35-51. [DOI: 10.1016/j.matdes.2018.07.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
240 Wang B, Huang C, Chen S, Xing X, Zhang M, Wu Q, Wang H. Hybrid scaffolds enhanced by nanofibers improve in vitro cell behavior for tissue regeneration. Cellulose 2018;25:7113-25. [DOI: 10.1007/s10570-018-2087-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
241 Tamburaci S, Tihminlioglu F. Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications. Materials Science and Engineering: C 2018;91:274-91. [DOI: 10.1016/j.msec.2018.05.040] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 8.5] [Reference Citation Analysis]
242 Lee D, Lee SJ, Moon J, Kim JH, Heo DN, Bang JB, Lim H, Kwon IK. Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. Journal of Industrial and Engineering Chemistry 2018;66:196-202. [DOI: 10.1016/j.jiec.2018.05.030] [Cited by in Crossref: 41] [Cited by in F6Publishing: 19] [Article Influence: 10.3] [Reference Citation Analysis]
243 Siddiqui HA, Pickering KL, Mucalo MR. A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes. Materials (Basel) 2018;11:E1813. [PMID: 30249999 DOI: 10.3390/ma11101813] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 13.0] [Reference Citation Analysis]
244 Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018;12:3117-45. [PMID: 30288019 DOI: 10.2147/DDDT.S165440] [Cited by in Crossref: 379] [Cited by in F6Publishing: 397] [Article Influence: 94.8] [Reference Citation Analysis]
245 Cheng X, Wan Q, Pei X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. Nanoscale Res Lett 2018;13:289. [PMID: 30229504 DOI: 10.1186/s11671-018-2694-z] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 13.0] [Reference Citation Analysis]
246 Lammi MJ, Piltti J, Prittinen J, Qu C. Challenges in Fabrication of Tissue-Engineered Cartilage with Correct Cellular Colonization and Extracellular Matrix Assembly. Int J Mol Sci 2018;19:E2700. [PMID: 30208585 DOI: 10.3390/ijms19092700] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
247 Anirudhan TS, Lekshmi GS, Shainy F. Synthesis and characterization of amidoxime modified chitosan/bentonite composite for the adsorptive removal and recovery of uranium from seawater. J Colloid Interface Sci 2019;534:248-61. [PMID: 30227381 DOI: 10.1016/j.jcis.2018.09.009] [Cited by in Crossref: 84] [Cited by in F6Publishing: 86] [Article Influence: 21.0] [Reference Citation Analysis]
248 Menon AH, Soundarya SP, Sanjay V, Chandran SV, Balagangadharan K, Selvamurugan N. Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohydrate Polymers 2018;195:356-67. [DOI: 10.1016/j.carbpol.2018.04.115] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 9.8] [Reference Citation Analysis]
249 Lin Y, Kang P, Xin W, Yen C, Hwang L, Chen C, Liu J, Chang SJ. Preparation and evaluation of chitosan biocompatible electronic skin. Computers in Industry 2018;100:1-6. [DOI: 10.1016/j.compind.2018.03.040] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
250 Sadhasivam B, Ravishankar K, Desingh R, Subramaniyam R, Dhamodharan R. Biocompatible Porous Scaffolds of Chitosan/Poly(EG-ran-PG) Blends with Tailored Pore Size and Nontoxic to Mesenchymal Stem Cells: Preparation by Controlled Evaporation from Aqueous Acetic Acid Solution. ACS Omega 2018;3:10286-95. [PMID: 31459159 DOI: 10.1021/acsomega.8b01101] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
251 Wibowo A, Mumtaziah, Asri LATW, Qulub F, Mahyuddin AI, Dirgantara T, Suratman R. Fabrication of Scaffold based on Chitosan – Poly-2-Acrylamido- 2-Methylpropane Sulfonic Acid (PAMPS) Polyelectrolyte Complexes. IOP Conf Ser : Mater Sci Eng 2018;395:012023. [DOI: 10.1088/1757-899x/395/1/012023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
252 Liao HT, Tsai MJ, Brahmayya M, Chen JP. Bone Regeneration Using Adipose-Derived Stem Cells in Injectable Thermo-Gelling Hydrogel Scaffold Containing Platelet-Rich Plasma and Biphasic Calcium Phosphate. Int J Mol Sci 2018;19:E2537. [PMID: 30150580 DOI: 10.3390/ijms19092537] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
253 Patil S, Nune K, Misra R. Alginate/poly(amidoamine) injectable hybrid hydrogel for cell delivery. J Biomater Appl 2018;33:295-314. [DOI: 10.1177/0885328218790211] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
254 Zheng J, Zhao F, Zhang W, Mo Y, Zeng L, Li X, Chen X. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Materials Science and Engineering: C 2018;89:119-27. [DOI: 10.1016/j.msec.2018.03.029] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 11.5] [Reference Citation Analysis]
255 Zeng Z, Mo X. Rapid in situ cross-linking of hydrogel adhesives based on thiol-grafted bio-inspired catechol-conjugated chitosan. J Biomater Appl 2017;32:612-21. [PMID: 29113567 DOI: 10.1177/0885328217738403] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
256 Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater 2018;74:74-89. [PMID: 29702289 DOI: 10.1016/j.actbio.2018.04.044] [Cited by in Crossref: 164] [Cited by in F6Publishing: 170] [Article Influence: 41.0] [Reference Citation Analysis]
257 Luo Y, Li Y, Qin X, Wa Q. 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Materials & Design 2018;146:12-9. [DOI: 10.1016/j.matdes.2018.03.002] [Cited by in Crossref: 93] [Cited by in F6Publishing: 61] [Article Influence: 23.3] [Reference Citation Analysis]
258 Smets G, Rüdelsheim P. Biotechnologically produced chitosan for nanoscale products. A legal analysis. New Biotechnology 2018;42:42-7. [DOI: 10.1016/j.nbt.2018.02.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
259 Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. International Journal of Biological Macromolecules 2018;111:923-34. [DOI: 10.1016/j.ijbiomac.2018.01.089] [Cited by in Crossref: 138] [Cited by in F6Publishing: 143] [Article Influence: 34.5] [Reference Citation Analysis]
260 Jhala D, Rather H, Vasita R. Polycaprolactone-chitosan nanofibers influence cell morphology to induce early osteogenic differentiation. Biomater Sci 2016;4:1584-95. [PMID: 27709134 DOI: 10.1039/c6bm00492j] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
261 Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. International Journal of Biological Macromolecules 2018;110:97-109. [DOI: 10.1016/j.ijbiomac.2017.08.140] [Cited by in Crossref: 378] [Cited by in F6Publishing: 302] [Article Influence: 94.5] [Reference Citation Analysis]
262 Baranwal A, Kumar A, Priyadharshini A, Oggu GS, Bhatnagar I, Srivastava A, Chandra P. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. International Journal of Biological Macromolecules 2018;110:110-23. [DOI: 10.1016/j.ijbiomac.2018.01.006] [Cited by in Crossref: 107] [Cited by in F6Publishing: 107] [Article Influence: 26.8] [Reference Citation Analysis]
263 Ryl A, Owczarz P. Influence of fish collagen on viscoelastic properties and sol-gel phase transition of chitosan solutions. Acta Innovations 2018. [DOI: 10.32933/actainnovations.27.2] [Reference Citation Analysis]
264 Kolanthai E, Sindu PA, Khajuria DK, Veerla SC, Kuppuswamy D, Catalani LH, Mahapatra DR. Graphene Oxide—A Tool for the Preparation of Chemically Crosslinking Free Alginate–Chitosan–Collagen Scaffolds for Bone Tissue Engineering. ACS Appl Mater Interfaces 2018;10:12441-52. [DOI: 10.1021/acsami.8b00699] [Cited by in Crossref: 110] [Cited by in F6Publishing: 114] [Article Influence: 27.5] [Reference Citation Analysis]
265 Ren H, Cui Y, Li A, Qiu D. Bioactive glass sol as a dual function additive for chitosan-alginate hybrid scaffold. Chinese Chemical Letters 2018;29:395-8. [DOI: 10.1016/j.cclet.2018.01.023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
266 Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydrate Polymers 2018;184:243-59. [DOI: 10.1016/j.carbpol.2017.12.067] [Cited by in Crossref: 221] [Cited by in F6Publishing: 225] [Article Influence: 55.3] [Reference Citation Analysis]
267 Nguyen T, Tang D, D’acierno F, Michal CA, Maclachlan MJ. Biotemplated Lightweight γ-Alumina Aerogels. Chem Mater 2018;30:1602-9. [DOI: 10.1021/acs.chemmater.7b04800] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
268 Thomas D, O'Brien T, Pandit A. Toward Customized Extracellular Niche Engineering: Progress in Cell-Entrapment Technologies. Adv Mater 2018;30. [PMID: 29194781 DOI: 10.1002/adma.201703948] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 8.5] [Reference Citation Analysis]
269 Wahid F, Khan T, Hussain Z, Ullah H. Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. Applications of Nanocomposite Materials in Drug Delivery. Elsevier; 2018. pp. 701-35. [DOI: 10.1016/b978-0-12-813741-3.00031-5] [Cited by in Crossref: 15] [Article Influence: 3.8] [Reference Citation Analysis]
270 Shakir M, Mirza S, Jolly R, Rauf A, Owais M. Synthesis, characterization and in vitro screening of a nano-hydroxyapatite/chitosan/ Euryale ferox nanoensemble – an inimitable approach for bone tissue engineering. New J Chem 2018;42:363-71. [DOI: 10.1039/c7nj02953e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
271 Shu Y, Yu Y, Zhang S, Wang J, Xiao Y, Liu C. The immunomodulatory role of sulfated chitosan in BMP-2-mediated bone regeneration. Biomater Sci 2018;6:2496-507. [DOI: 10.1039/c8bm00701b] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
272 Zhang S, Ma B, Wang S, Duan J, Qiu J, Li D, Sang Y, Ge S, Liu H. Mass-production of fluorescent chitosan/graphene oxide hybrid microspheres for in vitro 3D expansion of human umbilical cord mesenchymal stem cells. Chemical Engineering Journal 2018;331:675-84. [DOI: 10.1016/j.cej.2017.09.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
273 Arfin T, Tarannum A. Engineered Nanomaterials for Industrial Application. Handbook of Nanomaterials for Industrial Applications 2018. [DOI: 10.1016/b978-0-12-813351-4.00006-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
274 Benameur L, Baudequin T, Mekhail M, Tabrizian M. The bioconjugation mechanism of purine cross-linkers affects microstructure and cell response to ultra rapidly gelling purine–chitosan sponges. J Mater Chem B 2018;6:602-13. [DOI: 10.1039/c7tb02968c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
275 Xu Y, Han J, Chai Y, Yuan S, Lin H, Zhang X. Development of porous chitosan/tripolyphosphate scaffolds with tunable uncross-linking primary amine content for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2018;85:182-90. [PMID: 29407147 DOI: 10.1016/j.msec.2017.12.032] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
276 Nazeer MA, Yilgor E, Yagci MB, Unal U, Yilgor I. Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process. R Soc Open Sci 2017;4:171098. [PMID: 29308248 DOI: 10.1098/rsos.171098] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
277 Cheng Y, Chen F. Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application. Materials Science and Engineering: C 2017;81:66-73. [DOI: 10.1016/j.msec.2017.07.025] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 11.2] [Reference Citation Analysis]
278 Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018;3:278-314. [PMID: 29744467 DOI: 10.1016/j.bioactmat.2017.10.001] [Cited by in Crossref: 590] [Cited by in F6Publishing: 617] [Article Influence: 118.0] [Reference Citation Analysis]
279 Jing X, Mi H, Napiwocki BN, Peng X, Turng L. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 2017;125:557-70. [DOI: 10.1016/j.carbon.2017.09.071] [Cited by in Crossref: 191] [Cited by in F6Publishing: 195] [Article Influence: 38.2] [Reference Citation Analysis]
280 Iijima K, Tsuji Y, Kuriki I, Kakimoto A, Nikaido Y, Ninomiya R, Iyoda T, Fukai F, Hashizume M. Control of cell adhesion and proliferation utilizing polysaccharide composite film scaffolds. Colloids and Surfaces B: Biointerfaces 2017;160:228-37. [DOI: 10.1016/j.colsurfb.2017.09.025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
281 Hermenean A, Codreanu A, Herman H, Balta C, Rosu M, Mihali CV, Ivan A, Dinescu S, Ionita M, Costache M. Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects. Sci Rep 2017;7:16641. [PMID: 29192253 DOI: 10.1038/s41598-017-16599-5] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 15.4] [Reference Citation Analysis]
282 Gaihre B, Uswatta S, Jayasuriya AC. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J Funct Biomater 2017;8:E49. [PMID: 29156629 DOI: 10.3390/jfb8040049] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
283 Xu Y, Yuan S, Han J, Lin H, Zhang X. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process. Carbohydrate Polymers 2017;176:195-202. [DOI: 10.1016/j.carbpol.2017.08.032] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
284 Oryan A, Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. International Journal of Biological Macromolecules 2017;104:1003-11. [DOI: 10.1016/j.ijbiomac.2017.06.124] [Cited by in Crossref: 115] [Cited by in F6Publishing: 119] [Article Influence: 23.0] [Reference Citation Analysis]
285 Dechojarassri D, Asaina S, Omote S, Nishida K, Furuike T, Tamura H. Adsorption and desorption behaviors of cesium on rayon fibers coated with chitosan immobilized with Prussian blue. International Journal of Biological Macromolecules 2017;104:1509-16. [DOI: 10.1016/j.ijbiomac.2017.03.056] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
286 Shakir M, Jolly R, Khan AA, Ahmed SS, Alam S, Rauf MA, Owais M, Farooqi MA. Resol based chitosan/nano-hydroxyapatite nanoensemble for effective bone tissue engineering. Carbohydr Polym 2018;179:317-27. [PMID: 29111057 DOI: 10.1016/j.carbpol.2017.09.103] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 6.2] [Reference Citation Analysis]
287 Salehi S, Kharaziha M, Masoumi N, Masoumi N, Masoumi N, Fallahi A, Tamayol A. Medical Textiles as Substrates for Tissue Engineering. Textile Finishing 2017. [DOI: 10.1002/9781119426790.ch11] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
288 Cortizo MS, Belluzo MS. Biodegradable Polymers for Bone Tissue Engineering. In: Goyanes SN, D’accorso NB, editors. Industrial Applications of Renewable Biomass Products. Cham: Springer International Publishing; 2017. pp. 47-74. [DOI: 10.1007/978-3-319-61288-1_2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
289 Gonçalves RC, da Silva DP, Signini R, Naves PLF. Inhibition of bacterial biofilms by carboxymethyl chitosan combined with silver, zinc and copper salts. Int J Biol Macromol 2017;105:385-92. [PMID: 28756196 DOI: 10.1016/j.ijbiomac.2017.07.048] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
290 Akmammedov R, Huysal M, Isik S, Senel M. Preparation and characterization of novel chitosan/zeolite scaffolds for bone tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials 2017;67:110-8. [DOI: 10.1080/00914037.2017.1309539] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
291 Pandey AR, Singh US, Momin M, Bhavsar C. Chitosan: Application in tissue engineering and skin grafting. J Polym Res 2017;24. [DOI: 10.1007/s10965-017-1286-4] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 11.6] [Reference Citation Analysis]
292 Kruppke B, Farack J, Sommer F, Weil S, Aflalo ED, Wiesmann H, Sagi A, Hanke T. In Situ Crosslinking of Highly Porous Chitosan Scaffolds for Bone Regeneration: Production Parameters and In Vitro Characterization. Macromol Mater Eng 2017;302:1700147. [DOI: 10.1002/mame.201700147] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
293 Wang Y, Qian J, Zhao N, Liu T, Xu W, Suo A. Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Carbohydrate Polymers 2017;167:44-51. [DOI: 10.1016/j.carbpol.2017.03.030] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 9.6] [Reference Citation Analysis]
294 Oryan A, Alidadi S, Bigham-sadegh A, Moshiri A. Effectiveness of tissue engineered based platelet gel embedded chitosan scaffold on experimentally induced critical sized segmental bone defect model in rat. Injury 2017;48:1466-74. [DOI: 10.1016/j.injury.2017.04.044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
295 Tonndorf R, Gossla E, Kocaman RT, Kirsten M, Hund R, Hoffmann G, Aibibu D, Gelinsky M, Cherif C. Factors affecting the mechanical and geometrical properties of electrostatically flocked pure chitosan fiber scaffolds. Textile Research Journal 2018;88:1965-78. [DOI: 10.1177/0040517517715083] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
296 Venkatesan J, Lowe B, Anil S, Ealla K, Kim S. Marine Biopolymers in Bone Tissue Repair and Regeneration. Industrial Applications of Marine Biopolymers 2017. [DOI: 10.1201/9781315313535-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
297 Keller L, Regiel-Futyra A, Gimeno M, Eap S, Mendoza G, Andreu V, Wagner Q, Kyzioł A, Sebastian V, Stochel G, Arruebo M, Benkirane-Jessel N. Chitosan-based nanocomposites for the repair of bone defects. Nanomedicine 2017;13:2231-40. [PMID: 28647591 DOI: 10.1016/j.nano.2017.06.007] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
298 Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng 2017;8:2041731417712073. [PMID: 28634532 DOI: 10.1177/2041731417712073] [Cited by in Crossref: 53] [Cited by in F6Publishing: 59] [Article Influence: 10.6] [Reference Citation Analysis]
299 Mesgar AS, Mohammadi Z, Rasouli-disfani F. Bioactive monetite-containing whisker-like fibers reinforced chitosan scaffolds. J Am Ceram Soc 2017;100:4719-33. [DOI: 10.1111/jace.14981] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
300 Alidadi S, Oryan A, Bigham-sadegh A, Moshiri A. Comparative study on the healing potential of chitosan, polymethylmethacrylate, and demineralized bone matrix in radial bone defects of rat. Carbohydrate Polymers 2017;166:236-48. [DOI: 10.1016/j.carbpol.2017.02.087] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
301 Ruphuy G, Souto‐lopes M, Paiva D, Costa P, Rodrigues AE, Monteiro FJ, Salgado CL, Fernandes MH, Lopes JC, Dias MM, Barreiro MF. Supercritical CO 2 assisted process for the production of high‐purity and sterile nano‐hydroxyapatite/chitosan hybrid scaffolds. J Biomed Mater Res 2018;106:965-75. [DOI: 10.1002/jbm.b.33903] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
302 Hadavi M, Hasannia S, Faghihi S, Mashayekhi F, Zadeh HH, Mostofi SB. Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration. Biochem Biophys Res Commun 2017;488:671-8. [PMID: 28302485 DOI: 10.1016/j.bbrc.2017.03.046] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
303 Levengood SL, Erickson AE, Chang FC, Zhang M. Chitosan-Poly(caprolactone) Nanofibers for Skin Repair. J Mater Chem B 2017;5:1822-33. [PMID: 28529754 DOI: 10.1039/C6TB03223K] [Cited by in Crossref: 71] [Cited by in F6Publishing: 70] [Article Influence: 14.2] [Reference Citation Analysis]
304 Yu W, Sun TW, Ding Z, Qi C, Zhao H, Chen F, Shi Z, Zhu YJ, Chen D, He Y. Copper-doped mesoporous hydroxyapatite microspheres synthesized by a microwave-hydrothermal method using creatine phosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration. J Mater Chem B 2017;5:1039-52. [PMID: 32263882 DOI: 10.1039/c6tb02747d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 9.0] [Reference Citation Analysis]
305 Gholizadeh S, Moztarzadeh F, Haghighipour N, Ghazizadeh L, Baghbani F, Shokrgozar MA, Allahyari Z. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering. Int J Biol Macromol 2017;97:365-72. [PMID: 28064056 DOI: 10.1016/j.ijbiomac.2016.12.086] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 14.4] [Reference Citation Analysis]
306 Dang NTT, Chau TTL, Duong HV, Le HT, Tran TTV, Le TQ, Vu TP, Nguyen CD, Nguyen LV, Nguyen T. Water-soluble chitosan-derived sustainable materials: towards filaments, aerogels, microspheres, and plastics. Soft Matter 2017;13:7292-9. [DOI: 10.1039/c7sm01292f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
307 Shokuhfar T, Firlar E, Shirdar MR, Taheri MM. Orthopedic Nanomaterials. Orthopedic Biomaterials 2017. [DOI: 10.1007/978-3-319-73664-8_1] [Reference Citation Analysis]
308 Pickenhahn VD, Grange M, De Crescenzo G, Lavertu M, Buschmann MD. Regioselective chitosan end-group activation: the triskelion approach. RSC Adv 2017;7:18628-38. [DOI: 10.1039/c7ra01348e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
309 Niu X, Fan R, Guo X, Du T, Yang Z, Feng Q, Fan Y. Shear-mediated orientational mineralization of bone apatite on collagen fibrils. J Mater Chem B 2017;5:9141-7. [DOI: 10.1039/c7tb02223a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
310 Li D, Guo L, Yang N, Zhang Y, Jin Z, Xu X. Evaluation of the degree of chitosan deacetylation via induced-electrical properties. RSC Adv 2017;7:26211-9. [DOI: 10.1039/c7ra03545d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
311 Errea MI, Rossi E, Goyanes SN, D’accorso NB. Chitosan: From Organic Pollutants to High-Value Polymeric Materials. Industrial Applications of Renewable Biomass Products 2017. [DOI: 10.1007/978-3-319-61288-1_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
312 Prasad A, Sankar M, Katiyar V. State of Art on Solvent Casting Particulate Leaching Method for Orthopedic ScaffoldsFabrication. Materials Today: Proceedings 2017;4:898-907. [DOI: 10.1016/j.matpr.2017.01.101] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 12.2] [Reference Citation Analysis]
313 Gomes J, Belinha J, Dinis L, Jorge RN. The structural analysis of chitosan tubes using meshless methods. 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG) 2017. [DOI: 10.1109/enbeng.2017.7889434] [Reference Citation Analysis]
314 Pramanik A, Jones S, Gao Y, Sweet C, Begum S, Shukla MK, Buchanan JP, Moser RD, Ray PC. A bio-conjugated chitosan wrapped CNT based 3D nanoporous architecture for separation and inactivation of Rotavirus and Shigella waterborne pathogens. J Mater Chem B 2017;5:9522-31. [DOI: 10.1039/c7tb02815f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
315 Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 2017;46:6024-45. [DOI: 10.1039/c7cs00219j] [Cited by in Crossref: 296] [Cited by in F6Publishing: 312] [Article Influence: 59.2] [Reference Citation Analysis]
316 Aminabhavi T, Dharupaneedi S, More U. The role of nanotechnology and chitosan-based biomaterials for tissue engineering and therapeutic delivery. Chitosan Based Biomaterials Volume 2. Elsevier; 2017. pp. 1-29. [DOI: 10.1016/b978-0-08-100228-5.00001-8] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
317 Ekwueme E, Patel J, Freeman J, Danti S. Applications of bioresorbable polymers in the skeletal systems (cartilages, tendons, bones). Bioresorbable Polymers for Biomedical Applications 2017. [DOI: 10.1016/b978-0-08-100262-9.00017-3] [Reference Citation Analysis]
318 Sivashankari P, Prabaharan M. Chitosan/carbon-based nanomaterials as scaffolds for tissue engineering. Biopolymer-Based Composites 2017. [DOI: 10.1016/b978-0-08-101914-6.00012-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
319 Griffin MF, Kalaskar DM, Seifalian A, Butler PE. An update on the Application of Nanotechnology in Bone Tissue Engineering. Open Orthop J 2016;10:836-48. [PMID: 28217209 DOI: 10.2174/1874325001610010836] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
320 Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 2017;104:1372-82. [PMID: 27993655 DOI: 10.1016/j.ijbiomac.2016.12.046] [Cited by in Crossref: 155] [Cited by in F6Publishing: 126] [Article Influence: 25.8] [Reference Citation Analysis]
321 Silva ARPD, Macedo TL, Coletta DJ, Feldman S, Pereira MDM. Synthesis, characterization and cytotoxicity of Chitosan/Polyvinyl Alcohol/Bioactive Glass hybrid scaffolds obtained by lyophilization. Matéria (Rio J ) 2016;21:964-73. [DOI: 10.1590/s1517-707620160004.0089] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
322 Adhikari U, Rijal NP, Khanal S, Pai D, Sankar J, Bhattarai N. Magnesium incorporated chitosan based scaffolds for tissue engineering applications. Bioact Mater 2016;1:132-9. [PMID: 29744402 DOI: 10.1016/j.bioactmat.2016.11.003] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 6.5] [Reference Citation Analysis]
323 Manakhov A, Landová M, Medalová J, Michlíček M, Polčák J, Nečas D, Zajíčková L. Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Process Polym 2017;14:1600123. [DOI: 10.1002/ppap.201600123] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
324 Hogrebe NJ, Reinhardt JW, Gooch KJ. Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. J Biomed Mater Res 2017;105:640-61. [DOI: 10.1002/jbm.a.35914] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 6.8] [Reference Citation Analysis]
325 Gossla E, Tonndorf R, Bernhardt A, Kirsten M, Hund RD, Aibibu D, Cherif C, Gelinsky M. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds. Acta Biomater 2016;44:267-76. [PMID: 27544815 DOI: 10.1016/j.actbio.2016.08.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
326 He G, Zhu C, Ye S, Cai W, Yin Y, Zheng H, Yi Y. Preparation and properties of novel hydrogel based on chitosan modified by poly(amidoamine) dendrimer. International Journal of Biological Macromolecules 2016;91:828-37. [DOI: 10.1016/j.ijbiomac.2016.05.091] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
327 Erothu H, Kumar AC. Hydrophilic Polymers. In: Francis R, Sakthi Kumar D, editors. Biomedical Applications of Polymeric Materials and Composites. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. pp. 163-85. [DOI: 10.1002/9783527690916.ch7] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
328 Kovach I, Rumschöttel J, Friberg SE, Koetz J. Janus emulsion mediated porous scaffold bio-fabrication. Colloids and Surfaces B: Biointerfaces 2016;145:347-52. [DOI: 10.1016/j.colsurfb.2016.05.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
329 Toledo L, Urbano BF. Poly(2-hydroxyethyl methacrylate)-based porous hydrogel: Influence of surfactant and SiO 2 nanoparticles on the morphology, swelling and thermal properties. European Polymer Journal 2016;81:316-26. [DOI: 10.1016/j.eurpolymj.2016.06.021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
330 Kamal T, Khan SB, Asiri AM. Nickel nanoparticles-chitosan composite coated cellulose filter paper: An efficient and easily recoverable dip-catalyst for pollutants degradation. Environ Pollut 2016;218:625-33. [PMID: 27481647 DOI: 10.1016/j.envpol.2016.07.046] [Cited by in Crossref: 117] [Cited by in F6Publishing: 119] [Article Influence: 19.5] [Reference Citation Analysis]
331 Matsumoto M, Udomsinprasert W, Laengee P, Honsawek S, Patarakul K, Chirachanchai S. A Water-Based Chitosan-Maleimide Precursor for Bioconjugation: An Example of a Rapid Pathway for an In Situ Injectable Adhesive Gel. Macromol Rapid Commun 2016;37:1618-22. [DOI: 10.1002/marc.201600257] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
332 Uswatta SP, Okeke IU, Jayasuriya AC. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Mater Sci Eng C Mater Biol Appl 2016;69:505-12. [PMID: 27612741 DOI: 10.1016/j.msec.2016.06.089] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 8.5] [Reference Citation Analysis]
333 Bibliography. Nanofibers of Conjugated Polymers 2016. [DOI: 10.1201/b19844-10] [Reference Citation Analysis]
334 Mooyen S, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Suntornsaratoon P, Krishnamra N, Tang I, Pon-on W. Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds: Physico-Chemical and In Vitro Cellular Properties of Chitosan-Collagen. J Biomed Mater Res 2017;105:1758-66. [DOI: 10.1002/jbm.b.33652] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
335 Ravindranathan S, Koppolu BP, Smith SG, Zaharoff DA. Effect of Chitosan Properties on Immunoreactivity. Mar Drugs 2016;14:E91. [PMID: 27187416 DOI: 10.3390/md14050091] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
336 Song K, Yang Y, Xu L, Tian J, Fan J, Jiao Z, Feng S, Wang H, Wang Y, Wang L, Liu T. Fabrication and detection of tissue engineered bone aggregates based on encapsulated human ADSCs within hybrid calcium alginate/bone powder gel-beads in a spinner flask. Materials Science and Engineering: C 2016;62:787-94. [DOI: 10.1016/j.msec.2016.02.036] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
337 Saber-samandari S, Saber-samandari S, Kiyazar S, Aghazadeh J, Sadeghi A. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules 2016;86:434-42. [DOI: 10.1016/j.ijbiomac.2016.01.102] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
338 Mahmoudzadeh A, Mohsenifar A, Rahmani-Cherati T. Collagen-chitosan 3-D nano-scaffolds effects on macrophage phagocytosis and pro-inflammatory cytokine release. J Immunotoxicol 2016;13:526-34. [PMID: 27042873 DOI: 10.3109/1547691X.2016.1139642] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
339 Lou T, Wang X, Yan X, Miao Y, Long YZ, Yin HL, Sun B, Song G. Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures. Mater Sci Eng C Mater Biol Appl 2016;64:341-5. [PMID: 27127062 DOI: 10.1016/j.msec.2016.03.107] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
340 Chahal S, Hussain FSJ, Kumar A, Rasad MSBA, Yusoff MM. Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chemical Engineering Science 2016;144:17-29. [DOI: 10.1016/j.ces.2015.12.030] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 10.3] [Reference Citation Analysis]
341 Bukzem AL, Signini R, dos Santos DM, Lião LM, Ascheri DPR. Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. International Journal of Biological Macromolecules 2016;85:615-24. [DOI: 10.1016/j.ijbiomac.2016.01.017] [Cited by in Crossref: 119] [Cited by in F6Publishing: 123] [Article Influence: 19.8] [Reference Citation Analysis]
342 Gulati K, Johnson L, Karunagaran R, Findlay D, Losic D. In Situ Transformation of Chitosan Films into Microtubular Structures on the Surface of Nanoengineered Titanium Implants. Biomacromolecules 2016;17:1261-71. [DOI: 10.1021/acs.biomac.5b01037] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
343 Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U, Intasanta V. Multicarboxylic acids as environment-friendly solvents and in situ crosslinkers for chitosan/PVA nanofibers with tunable physicochemical properties and biocompatibility. Carbohydrate Polymers 2016;138:156-65. [DOI: 10.1016/j.carbpol.2015.11.039] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
344 Ruphuy G, Saralegi A, Lopes J, Dias M, Barreiro M. Spray drying as a viable process to produce nano-hydroxyapatite/chitosan (n-HAp/CS) hybrid microparticles mimicking bone composition. Advanced Powder Technology 2016;27:575-83. [DOI: 10.1016/j.apt.2016.02.010] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
345 Liao HT, Shalumon KT, Chang KH, Sheu C, Chen JP. Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering. J Mater Chem B 2016;4:1827-41. [PMID: 32263060 DOI: 10.1039/c5tb02496j] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 4.8] [Reference Citation Analysis]
346 Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering. Int J Biomater 2016;2016:9825659. [PMID: 26884764 DOI: 10.1155/2016/9825659] [Cited by in Crossref: 122] [Cited by in F6Publishing: 125] [Article Influence: 20.3] [Reference Citation Analysis]
347 Cui N, Qian J, Wang J, Ji C, Xu W, Wang H. Preparation and characterization of foamy poly(γ-benzyl- l -glutamate-co- l -phenylalanine)/bioglass composite scaffolds for bone tissue engineering. RSC Adv 2016;6:73699-708. [DOI: 10.1039/c6ra04356a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
348 Sheikh I, Dahman Y. Applications of nanobiomaterials in hard tissue engineering. Nanobiomaterials in Hard Tissue Engineering 2016. [DOI: 10.1016/b978-0-323-42862-0.00002-x] [Reference Citation Analysis]
349 Yang L, Lu W, Pang Y, Huang X, Wang Z, Qin A, Hu Q. Fabrication of a novel chitosan scaffold with asymmetric structure for guided tissue regeneration. RSC Adv 2016;6:71567-73. [DOI: 10.1039/c6ra12370h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
350 Pan P, Chen J, Fan T, Hu Y, Wu T, Zhang Q. Facile preparation of biphasic-induced magnetic icariin-loaded composite microcapsules by automated in situ click technology. Colloids Surf B Biointerfaces 2016;140:50-9. [PMID: 26735894 DOI: 10.1016/j.colsurfb.2015.12.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
351 Maji K, Dasgupta S. Bioactive Glass and Biopolymer Based Composite Scaffold for Bone Regeneration. Transactions of the Indian Ceramic Society 2016;74:195-201. [DOI: 10.1080/0371750x.2015.1092396] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
352 Mighri N, Mao J, Mighri F, Ajji A, Rouabhia M. Chitosan-Coated Collagen Membranes Promote Chondrocyte Adhesion, Growth, and Interleukin-6 Secretion. Materials (Basel) 2015;8:7673-89. [PMID: 28793669 DOI: 10.3390/ma8115413] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
353 Sergeeva A, Feoktistova N, Prokopovic V, Gorin D, Volodkin D. Design of Porous Alginate Hydrogels by Sacrificial CaCO 3 Templates: Pore Formation Mechanism. Adv Mater Interfaces 2015;2:1500386. [DOI: 10.1002/admi.201500386] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
354 Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A. Nanomedicine applications in orthopedic medicine: state of the art. Int J Nanomedicine 2015;10:6039-53. [PMID: 26451110 DOI: 10.2147/IJN.S73737] [Cited by in Crossref: 10] [Cited by in F6Publishing: 20] [Article Influence: 1.4] [Reference Citation Analysis]
355 Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 2016;133:n/a-n/a. [DOI: 10.1002/app.42883] [Cited by in Crossref: 102] [Cited by in F6Publishing: 103] [Article Influence: 14.6] [Reference Citation Analysis]
356 Radhakrishnan A, Jose GM, Kurup M. PEG-penetrated chitosan-alginate co-polysaccharide-based partially and fully cross-linked hydrogels as ECM mimic for tissue engineering applications. Prog Biomater 2015;4:101-12. [PMID: 26566468 DOI: 10.1007/s40204-015-0041-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
357 Nivedhitha Sundaram M, Deepthi S, Jayakumar R. Chitosan-Gelatin Composite Scaffolds in Bone Tissue Engineering. In: Dutta PK, editor. Chitin and Chitosan for Regenerative Medicine. New Delhi: Springer India; 2016. pp. 99-121. [DOI: 10.1007/978-81-322-2511-9_5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
358 Huan Z, Chu HK, Yang J, Sun D. 3D cell manipulation with honeycomb-patterned scaffold for regeneration of bone-like tissues. 2015 IEEE International Conference on Information and Automation 2015. [DOI: 10.1109/icinfa.2015.7279556] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
359 Trujillo S, Pérez-román E, Kyritsis A, Gómez Ribelles JL, Pandis C. Organic-inorganic bonding in chitosan-silica hybrid networks: Physical properties. J Polym Sci Part B: Polym Phys 2015;53:1391-400. [DOI: 10.1002/polb.23774] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
360 Daneshmandi S, Dibazar SP, Fateh S. Effects of 3-dimensional culture conditions (collagen-chitosan nano-scaffolds) on maturation of dendritic cells and their capacity to interact with T-lymphocytes. J Immunotoxicol 2016;13:235-42. [PMID: 25990599 DOI: 10.3109/1547691X.2015.1045636] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
361 Sehgal RR, Roohani-Esfahani SI, Zreiqat H, Banerjee R. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. J Tissue Eng Regen Med 2017;11:1195-211. [PMID: 25846217 DOI: 10.1002/term.2023] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
362 Cui N, Qian J, Liu T, Zhao N, Wang H. Hyaluronic acid hydrogel scaffolds with a triple degradation behavior for bone tissue engineering. Carbohydr Polym 2015;126:192-8. [PMID: 25933539 DOI: 10.1016/j.carbpol.2015.03.013] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 7.6] [Reference Citation Analysis]
363 Jing X, Mi H, Peng J, Peng X, Turng L. Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydrate Polymers 2015;117:941-9. [DOI: 10.1016/j.carbpol.2014.10.025] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 9.4] [Reference Citation Analysis]
364 Vasquez ES, Cunningham JL, Mcmahan JB, Simpson CL, Walters KB. Fetuin-A adsorption and stabilization of calcium carbonate nanoparticles in a simulated body fluid. J Mater Chem B 2015;3:6411-9. [DOI: 10.1039/c5tb00565e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
365 Xie D, Guo J, Mehdizadeh M, Tran RT, Chen R, Sun D, Qian G, Jin D, Bai X, Yang J. Development of Injectable Citrate-Based Bioadhesive Bone Implants. J Mater Chem B 2015;3:387-98. [PMID: 25580247 DOI: 10.1039/C4TB01498G] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 6.4] [Reference Citation Analysis]
366 Xu Z, Shi L, Yang M, Zhang H, Zhu L. Fabrication of a novel blended membrane with chitosan and silk microfibers for wound healing: characterization, in vitro and in vivo studies. J Mater Chem B 2015;3:3634-42. [DOI: 10.1039/c5tb00226e] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 7.3] [Reference Citation Analysis]
367 Zhang G, Li J, Shen A, Hu J. Synthesis of size-tunable chitosan encapsulated gold–silver nanoflowers and their application in SERS imaging of living cells. Phys Chem Chem Phys 2015;17:21261-7. [DOI: 10.1039/c4cp05343e] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
368 Li X, Han B, Wang X, Gao X, Liang F, Qu X, Yang Z. Chitosan-decorated calcium hydroxide microcapsules with pH-triggered release for endodontic applications. J Mater Chem B 2015;3:8884-91. [DOI: 10.1039/c5tb01643f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
369 Cassani DAD, Altomare L, De Nardo L, Variola F. Physicochemical and nanomechanical investigation of electrodeposited chitosan:PEO blends. J Mater Chem B 2015;3:2641-50. [DOI: 10.1039/c4tb02044h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
370 Höhne S, Breier A, Jäger M, Hanke T, Worch H, Simon F. Heterogeneous Cross-Linking and Sulphation of Chitosan. Macromol Symp 2014;346:66-72. [DOI: 10.1002/masy.201400067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
371 Peng Y, Munoz-pinto DJ, Chen M, Decatur J, Hahn M, Gross RA. Poly(sophorolipid) Structural Variation: Effects on Biomaterial Physical and Biological Properties. Biomacromolecules 2014;15:4214-27. [DOI: 10.1021/bm501255j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
372 Ding F, Deng H, Du Y, Shi X, Wang Q. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 2014;6:9477-93. [DOI: 10.1039/c4nr02814g] [Cited by in Crossref: 256] [Cited by in F6Publishing: 262] [Article Influence: 32.0] [Reference Citation Analysis]
373 Yang J, Long T, He N, Guo Y, Zhu Z, Ke Q. Fabrication of a chitosan/bioglass three-dimensional porous scaffold for bone tissue engineering applications. J Mater Chem B 2014;2:6611-8. [DOI: 10.1039/c4tb00940a] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 5.5] [Reference Citation Analysis]