BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zieba M, Hueso JL, Arruebo M, Martínez G, Santamaría J. Gold-coated halloysite nanotubes as tunable plasmonic platforms. New J Chem 2014;38:2037. [DOI: 10.1039/c3nj01127e] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
Number Citing Articles
1 Stavitskaya A, Khusnetdenova E, Vinokurov V, Lvov Y, Fakhrullin R. Prokaryotic and eukaryotic toxicity of halloysite decorated with photoactive nanoparticles. Chem Commun (Camb) 2022;58:7719-29. [PMID: 35781299 DOI: 10.1039/d2cc02439j] [Reference Citation Analysis]
2 Park S, Ryu J, Cho H, Sohn D. Halloysite nanotubes loaded with HKUST-1 for CO2 adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.129750] [Reference Citation Analysis]
3 Deng Y, Song G, Zhang T, Xia L, Zhao Y, Zheng D. The controlled in-situ growth of silver-halloysite nanostructure via interaction bonds to reinforce a novel polybenzoxazine composite resin and improve its antifouling and anticorrosion properties. Composites Science and Technology 2022;221:109312. [DOI: 10.1016/j.compscitech.2022.109312] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Massaro M, Noto R, Riela S. Halloysite Nanotubes: Smart Nanomaterials in Catalysis. Catalysts 2022;12:149. [DOI: 10.3390/catal12020149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 Kornilova A, Kuralbayeva G, Stavitskaya A, Gorbachevskii M, Karpukhina O, Lysenko I, Pryadun V, Novikov A, Vasiliev A, Timoshenko V. Gold nanoparticles immobilized on halloysite nanotubes for spatially-temporally localized photohyperthermia. Applied Surface Science 2021;566:150671. [DOI: 10.1016/j.apsusc.2021.150671] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Nayak SP, Srinivasan V, Badiya PK, Kiran Kumar JK, Ramamurthy SS. Engineering metal-dielectric nanostructures involving silver decorated Halloysite for augmented surface plasmon-coupled directional emission. Physica E: Low-dimensional Systems and Nanostructures 2021;131:114718. [DOI: 10.1016/j.physe.2021.114718] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yu J, Niedenthal W, Smarsly BM, Natile MM, Huang Y, Carraro M. Au nanoparticles supported on piranha etched halloysite nanotubes for highly efficient heterogeneous catalysis. Applied Surface Science 2021;546:149100. [DOI: 10.1016/j.apsusc.2021.149100] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
8 Zhang M, Su X, Ma L, Khan A, Wang L, Wang J, Maloletnev A, Yang C. Promotion effects of halloysite nanotubes on catalytic activity of Co3O4 nanoparticles toward reduction of 4-nitrophenol and organic dyes. Journal of Hazardous Materials 2021;403:123870. [DOI: 10.1016/j.jhazmat.2020.123870] [Cited by in Crossref: 15] [Cited by in F6Publishing: 37] [Article Influence: 15.0] [Reference Citation Analysis]
9 Bueno-alejo CJ, Graus J, Arenal R, Lafuente M, Bottega-pergher B, Hueso JL. Anisotropic Au-ZnO photocatalyst for the visible-light expanded oxidation of n-hexane. Catalysis Today 2021;362:97-103. [DOI: 10.1016/j.cattod.2020.03.063] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
10 Ortega-liebana MC, Bonet-aleta J, Hueso JL, Santamaria J. Gold-Based Nanoparticles on Amino-Functionalized Mesoporous Silica Supports as Nanozymes for Glucose Oxidation. Catalysts 2020;10:333. [DOI: 10.3390/catal10030333] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
11 Mansour A, Sayyed MI, Mahmoud KA, Şakar E, Kovaleva EG. Modified halloysite minerals for radiation shielding purposes. Journal of Radiation Research and Applied Sciences 2020;13:94-101. [DOI: 10.1080/16878507.2019.1699680] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
12 Abu El-Soad AM, Sayyed MI, Mahmoud KA, Şakar E, Kovaleva EG. Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code. Appl Radiat Isot 2019;154:108882. [PMID: 31546100 DOI: 10.1016/j.apradiso.2019.108882] [Cited by in Crossref: 18] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
13 Bottega-pergher B, Graus J, Bueno-alejo CJ, Hueso JL. Triangular and Prism-Shaped Gold-Zinc Oxide Plasmonic Nanostructures: In situ Reduction, Assembly, and Full-Range Photocatalytic Performance: Triangular and Prism-Shaped Gold-Zinc Oxide Plasmonic Nanostructures: In situ Reduction, Assembly, and Full-Range Photocatalytic Performance. Eur J Inorg Chem 2019;2019:3228-34. [DOI: 10.1002/ejic.201900213] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
14 Lvov Y, Panchal A, Fu Y, Fakhrullin R, Kryuchkova M, Batasheva S, Stavitskaya A, Glotov A, Vinokurov V. Interfacial Self-Assembly in Halloysite Nanotube Composites. Langmuir 2019;35:8646-57. [DOI: 10.1021/acs.langmuir.8b04313] [Cited by in Crossref: 43] [Cited by in F6Publishing: 54] [Article Influence: 14.3] [Reference Citation Analysis]
15 Zhang J, Luo X, Wu YP, Wu F, Li YF, He RR, Liu M. Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-Photothermal Combination Therapy toward Breast Cancer. ACS Appl Mater Interfaces 2019;11:3690-703. [PMID: 30618237 DOI: 10.1021/acsami.8b17533] [Cited by in Crossref: 28] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
16 Massaro M, Colletti CG, Fiore B, La Parola V, Lazzara G, Guernelli S, Zaccheroni N, Riela S. Gold nanoparticles stabilized by modified halloysite nanotubes for catalytic applications: A flow system based on Au supported on HNT for catalytic applications. Appl Organometal Chem 2019;33:e4665. [DOI: 10.1002/aoc.4665] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
17 Graus J, Bueno-alejo C, Hueso J. In-Situ Deposition of Plasmonic Gold Nanotriangles and Nanoprisms onto Layered Hydroxides for Full-Range Photocatalytic Response towards the Selective Reduction of p-Nitrophenol. Catalysts 2018;8:354. [DOI: 10.3390/catal8090354] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
18 Philip A, Ankudze B, Pakkanen TT. Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies. Applied Surface Science 2018;444:243-52. [DOI: 10.1016/j.apsusc.2018.03.042] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
19 Lazzara G, Cavallaro G, Panchal A, Fakhrullin R, Stavitskaya A, Vinokurov V, Lvov Y. An assembly of organic-inorganic composites using halloysite clay nanotubes. Current Opinion in Colloid & Interface Science 2018;35:42-50. [DOI: 10.1016/j.cocis.2018.01.002] [Cited by in Crossref: 212] [Cited by in F6Publishing: 193] [Article Influence: 53.0] [Reference Citation Analysis]
20 Yang M, Xiong X, He R, Luo Y, Tang J, Dong J, Lu H, Yu J, Guan H, Zhang J, Chen Z, Liu M. Halloysite Nanotube-Modified Plasmonic Interface for Highly Sensitive Refractive Index Sensing. ACS Appl Mater Interfaces 2018;10:5933-40. [DOI: 10.1021/acsami.7b16511] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
21 Vinokurov VA, Stavitskaya AV, Chudakov YA, Glotov AP, Ivanov EV, Gushchin PA, Lvov YM, Maximov AL, Muradov AV, Karakhanov EA. Core-shell nanoarchitecture: Schiff-base assisted synthesis of ruthenium in clay nanotubes. Pure and Applied Chemistry 2018;90:825-32. [DOI: 10.1515/pac-2017-0913] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
22 Cavallaro G, Lazzara G, Milioto S, Parisi F. Halloysite Nanotubes for Cleaning, Consolidation and Protection. Chem Rec 2018;18:940-9. [PMID: 29320613 DOI: 10.1002/tcr.201700099] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]
23 Li S, Tang F, Wang H, Feng J, Jin Z. Au–Ag and Pt–Ag bimetallic nanoparticles@halloysite nanotubes: morphological modulation, improvement of thermal stability and catalytic performance. RSC Adv 2018;8:10237-45. [DOI: 10.1039/c8ra00423d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
24 Sengel SB, Sahiner M, Aktas N, Sahiner N. Halloysite-carboxymethyl cellulose cryogel composite from natural sources. Applied Clay Science 2017;140:66-74. [DOI: 10.1016/j.clay.2017.01.031] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
25 Jana S, Kondakova AV, Shevchenko SN, Sheval EV, Gonchar KA, Timoshenko VY, Vasiliev AN. Halloysite nanotubes with immobilized silver nanoparticles for anti-bacterial application. Colloids and Surfaces B: Biointerfaces 2017;151:249-54. [DOI: 10.1016/j.colsurfb.2016.12.017] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 9.0] [Reference Citation Analysis]
26 Massaro M, Colletti CG, Lazzara G, Milioto S, Noto R, Riela S. Halloysite nanotubes as support for metal-based catalysts. J Mater Chem A 2017;5:13276-93. [DOI: 10.1039/c7ta02996a] [Cited by in Crossref: 143] [Cited by in F6Publishing: 140] [Article Influence: 28.6] [Reference Citation Analysis]
27 Gonchar KA, Kondakova AV, Jana S, Timoshenko VY, Vasiliev AN. Investigation of halloysite nanotubes with deposited silver nanoparticles by methods of optical spectroscopy. Phys Solid State 2016;58:601-5. [DOI: 10.1134/s1063783416030112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
28 Massaro M, Schembri V, Campisciano V, Cavallaro G, Lazzara G, Milioto S, Noto R, Parisi F, Riela S. Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts. RSC Adv 2016;6:55312-8. [DOI: 10.1039/c6ra06337c] [Cited by in Crossref: 68] [Cited by in F6Publishing: 58] [Article Influence: 11.3] [Reference Citation Analysis]
29 Sun Y, Chen J, Li Y, Li H, Zhu X, Hu Y, Huang S, Li J, Zhong S. Bio-inspired magnetic molecularly imprinted polymers based on Pickering emulsions for selective protein recognition. New J Chem 2016;40:8745-52. [DOI: 10.1039/c6nj01846g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
30 Zhang Y, Tang A, Yang H, Ouyang J. Applications and interfaces of halloysite nanocomposites. Applied Clay Science 2016;119:8-17. [DOI: 10.1016/j.clay.2015.06.034] [Cited by in Crossref: 172] [Cited by in F6Publishing: 154] [Article Influence: 28.7] [Reference Citation Analysis]
31 Vinokurov VA, Kopitsyn DS, Kotelev MS, Ivanov EV, Lvov YM, Novikov AA. Natural Ceramic Nanotube Substrates for Surface-Enhanced Raman Spectroscopy. JOM 2015;67:2877-80. [DOI: 10.1007/s11837-015-1494-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
32 Xiong W, Sikdar D, Yap LW, Premaratne M, Li X, Cheng W. Multilayered core-satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale 2015;7:3445-52. [PMID: 25644681 DOI: 10.1039/c4nr06756h] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]