BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bai J, Fang H, Zhang Y, Wang Z. Studies on crystallization kinetics of bimodal long chain branched polylactides. CrystEngComm 2014;16:2452. [DOI: 10.1039/c3ce42319k] [Cited by in Crossref: 40] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Seyed Khabbaz H, Garmabi H. Modification of polylactide by reactive blending with polyhydroxybutyrate oligomers formed by thermal recycling through E1cB-elimination pathway. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111043] [Reference Citation Analysis]
2 Wang L, Lee RE, Wang G, Chu RK, Zhao J, Park CB. Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging. Chemical Engineering Journal 2017;327:1151-62. [DOI: 10.1016/j.cej.2017.07.024] [Cited by in Crossref: 58] [Cited by in F6Publishing: 30] [Article Influence: 11.6] [Reference Citation Analysis]
3 Gao T, Zhang Z, Li L, Bao R, Liu Z, Xie B, Yang M, Yang W. Tailoring Crystalline Morphology by High-Efficiency Nucleating Fiber: Toward High-Performance Poly( l -lactide) Biocomposites. ACS Appl Mater Interfaces 2018;10:20044-54. [DOI: 10.1021/acsami.8b04907] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
4 Monika, Mehmood K, Katiyar V. Effect of dicumyl peroxide on biodegradable poly(lactic acid)/functionalized gum arabic based films. J Appl Polym Sci 2021;138:51341. [DOI: 10.1002/app.51341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Shen S, Bao R, Liu Z, Yang W, Xie B, Yang M. Supercooling-dependent morphology evolution of an organic nucleating agent in poly( l -lactide)/poly( d -lactide) blends. CrystEngComm 2017;19:1648-57. [DOI: 10.1039/c7ce00093f] [Cited by in Crossref: 16] [Article Influence: 3.2] [Reference Citation Analysis]
6 Li J, Ye W, Fan Z, Lu Z. Stereocomplex poly (lactic acid) vascular stents by 3D ‐printing with long chain branching structures: Toward desirable crystallization properties and mechanical performance. Polym Adv Technol 2021;32:97-110. [DOI: 10.1002/pat.5064] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ding S, Fang C, Wang X, Wang Z. Crystallization-driven microstructure changes during microphase separation for environment-friendly thermoplastic triblock copolymer elastomers. Polymer 2020;186:121993. [DOI: 10.1016/j.polymer.2019.121993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Li P, Zhang W, Kong M, Lv Y, Huang Y, Yang Q, Li G. Ultrahigh performance polylactide achieved by the design of molecular structure. Materials & Design 2021;206:109779. [DOI: 10.1016/j.matdes.2021.109779] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang H, Zhen W. Performance, rheological behavior and enzymatic degradation of poly(lactic acid)/modified fulvic acid composites. International Journal of Biological Macromolecules 2019;139:181-90. [DOI: 10.1016/j.ijbiomac.2019.07.192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
10 Bao R, Yang W, Liu Z, Xie B, Yang M. Polymorphism of a high-molecular-weight racemic poly( l -lactide)/poly( d -lactide) blend: effect of melt blending with poly(methyl methacrylate). RSC Adv 2015;5:19058-66. [DOI: 10.1039/c5ra00691k] [Cited by in Crossref: 24] [Cited by in F6Publishing: 1] [Article Influence: 3.4] [Reference Citation Analysis]
11 Wen-dong T, Guang-jian H, Wei-tao H, Xin-liang Z, Xian-wu C, Xiao-chun Y. The reactive compatibilization of PLA/PP blends and improvement of PLA crystallization properties induced by in situ UV irradiation. CrystEngComm 2021;23:864-75. [DOI: 10.1039/d0ce01445a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Zou G, Jiao Q, Zhang X, Zhao C, Li J. Crystallization behavior and morphology of poly(lactic acid) with a novel nucleating agent. J Appl Polym Sci 2015;132:n/a-n/a. [DOI: 10.1002/app.41367] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
13 Hu Y, Xu P, Gui H, Yang S, Ding Y. Effect of graphene modified by a long alkyl chain ionic liquid on crystallization kinetics behavior of poly(vinylidene fluoride). RSC Adv 2015;5:92418-27. [DOI: 10.1039/c5ra17169e] [Cited by in Crossref: 13] [Article Influence: 1.9] [Reference Citation Analysis]
14 Wang W, Tang M, Wang X, Xu C, Wang Z. Making a Rapid Completion of Crystallization for Bisphenol A Polycarbonate by a Double-Layer Film Method. Ind Eng Chem Res 2018;57:6797-803. [DOI: 10.1021/acs.iecr.8b01295] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
15 Zhang Y, Jiang F, Wang W, Wang Z. Speeding of spherulitic growth rate at the late stage of isothermal crystallization due to interfacial diffusion for double-layer semicrystalline polymer films. J Phys Chem B 2014;118:9112-7. [PMID: 25052564 DOI: 10.1021/jp506044y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
16 Zhang H, Huang X, Wang C, Peng Z, Xu Y, He X, Zhang C, Lu J. Nanocellulose-assisted construction of hydrophilic 3D hierarchical stereocomplex meshworks in enantiomeric polylactides: towards thermotolerant biocomposites with enhanced environmental degradation. CrystEngComm 2019;21:6405-13. [DOI: 10.1039/c9ce01412h] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Fang C, Wang X, Chen X, Wang Z. Mild synthesis of environment-friendly thermoplastic triblock copolymer elastomers through combination of ring-opening and RAFT polymerization. Polym Chem 2019;10:3610-20. [DOI: 10.1039/c9py00654k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
18 Han X, Hu Y, Tang M, Fang H, Wu Q, Wang Z. Preparation and characterization of long chain branched polycarbonates with significantly enhanced environmental stress cracking behavior through gamma radiation with addition of difunctional monomer. Polym Chem 2016;7:3551-61. [DOI: 10.1039/c6py00289g] [Cited by in Crossref: 11] [Article Influence: 1.8] [Reference Citation Analysis]
19 Alturkestany MT, Panchal V, Thompson MR. Improved part strength for the fused deposition 3D printing technique by chemical modification of polylactic acid: Improved part strength by 3D printing. Polym Eng Sci 2019;59:E59-64. [DOI: 10.1002/pen.24955] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
20 Li P, Zhu X, Kong M, Lv Y, Huang Y, Yang Q, Li G. Fully biodegradable polylactide foams with ultrahigh expansion ratio and heat resistance for green packaging. Int J Biol Macromol 2021;183:222-34. [PMID: 33930441 DOI: 10.1016/j.ijbiomac.2021.04.146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Wu F, Misra M, Mohanty AK. Studies on why the heat deflection temperature of polylactide bioplastic cannot be improved by overcrosslinking. Polymer Crystallization 2019;2. [DOI: 10.1002/pcr2.10088] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
22 Bai J, Wang J, Wang W, Fang H, Xu Z, Chen X, Wang Z. Stereocomplex Crystallite-Assisted Shear-Induced Crystallization Kinetics at a High Temperature for Asymmetric Biodegradable PLLA/PDLA Blends. ACS Sustainable Chem Eng 2016;4:273-83. [DOI: 10.1021/acssuschemeng.5b01110] [Cited by in Crossref: 50] [Cited by in F6Publishing: 27] [Article Influence: 7.1] [Reference Citation Analysis]
23 Fang H, Xie Q, Wei H, Xu P, Ding Y. Physical gelation and macromolecular mobility of sustainable polylactide during isothermal crystallization. J Polym Sci Part B: Polym Phys 2017;55:1235-44. [DOI: 10.1002/polb.24381] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
24 Xu C, Zhang J, Bai J, Ding S, Wang X, Wang Z. Two-Stage Crystallization Kinetics and Morphological Evolution with Stereocomplex Crystallite-Induced Enhancement for Long-Chain Branched Polylactide/Poly(D-lactic acid) Blends. Ind Eng Chem Res 2021;60:5319-29. [DOI: 10.1021/acs.iecr.1c00377] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Ma P, Yu Q, Shen T, Dong W, Chen M. Strong synergetic effect of fibril-like nucleator and shear flow on the melt crystallization of poly( l -lactide). European Polymer Journal 2017;87:221-30. [DOI: 10.1016/j.eurpolymj.2016.12.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
26 Gao T, Zhao S, Bao R, Zhong G, Li Z, Yang M, Yang W. Constructing Sandwich-Architectured Poly( l -lactide)/High-Melting-Point Poly( l -lactide) Nonwoven Fabrics: Toward Heat-Resistant Poly( l -lactide) Barrier Biocomposites with Full Biodegradability. ACS Appl Bio Mater 2019;2:1357-67. [DOI: 10.1021/acsabm.9b00056] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Zhao Z, Yang Q, Coates P, Whiteside B, Kelly A, Huang Y, Wu P. Structure and Property of Microinjection Molded Poly(lactic acid) with High Degree of Long Chain Branching. Ind Eng Chem Res 2018;57:11312-22. [DOI: 10.1021/acs.iecr.8b01597] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
28 Martínez-mercado E, Ruiz-treviño FA, González-montiel A, Lugo-uribe LE, Flores-santos L. Long chain branched structures of polylactic acid through reactive extrusion with styrene-acrylic copolymers bearing epoxy functional groups. J Polym Res 2019;26. [DOI: 10.1007/s10965-019-1938-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
29 Fang H, Yang K, Xie Q, Chen X, Wu S, Ding Y. Influence of Interfacial Enantiomeric Grafting on Melt Rheology and Crystallization of Polylactide/Cellulose Nanocrystals Composites. Chin J Polym Sci 2022;40:93-106. [DOI: 10.1007/s10118-021-2635-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Li P, Zhu X, Kong M, Lv Y, Yang Q, Huang Y, Li G. High performance branched poly(lactide) induced by reactive extrusion with low-content cyclic organic peroxide and multifunctional acrylate coagents. Polymer 2020;205:122867. [DOI: 10.1016/j.polymer.2020.122867] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Singh S, Maspoch ML, Oksman K. Crystallization of triethyl‐citrate‐plasticized poly(lactic acid) induced by chitin nanocrystals. J Appl Polym Sci 2019;136:47936. [DOI: 10.1002/app.47936] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 4.7] [Reference Citation Analysis]
32 Michalski A, Brzezinski M, Lapienis G, Biela T. Star-shaped and branched polylactides: Synthesis, characterization, and properties. Progress in Polymer Science 2019;89:159-212. [DOI: 10.1016/j.progpolymsci.2018.10.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 15] [Article Influence: 18.3] [Reference Citation Analysis]
33 Chen C, Ke D, Zheng T, He G, Cao X, Liao X. An Ultraviolet-Induced Reactive Extrusion To Control Chain Scission and Long-Chain Branching Reactions of Polylactide. Ind Eng Chem Res 2016;55:597-605. [DOI: 10.1021/acs.iecr.5b04094] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]