BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kang X, Guo X, Niu X, An W, Li S, Liu Z, Yang Y, Wang N, Jiang Q, Yan C, Wang H, Zhang Q. Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer. Sci Rep 2017;7:42069. [PMID: 28155894 DOI: 10.1038/srep42069] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 8.4] [Reference Citation Analysis]
Number Citing Articles
1 Asadi S, Bianchi L, De Landro M, Saccomandi P. Gold Nanoparticles-Mediated Photothermal Therapy of Pancreas Using GATE: A New Simulation Platform. Cancers 2022;14:5686. [DOI: 10.3390/cancers14225686] [Reference Citation Analysis]
2 Neidinger P, Davis J, Voll D, Jaatinen EA, Walden SL, Unterreiner AN, Barner‐kowollik C. Near Infrared Light Induced Radical Polymerization in Water. Angew Chem Int Ed 2022. [DOI: 10.1002/anie.202209177] [Reference Citation Analysis]
3 Park JH, Choe HS, Kim SW, Im GB, Um SH, Kim JH, Bhang SH. Silica-Capped and Gold-Decorated Silica Nanoparticles for Enhancing Effect of Gold Nanoparticle-Based Photothermal Therapy. Tissue Eng Regen Med 2022. [PMID: 36006602 DOI: 10.1007/s13770-022-00468-y] [Reference Citation Analysis]
4 Dharmatti R. Nano Trojan Horses for Delivery of Peptides and Protein Drugs. Nanoparticles for Therapeutic Applications 2022. [DOI: 10.1002/9781119764205.ch2] [Reference Citation Analysis]
5 Kadkhoda J, Tarighatnia A, Tohidkia MR, Nader ND, Aghanejad A. Photothermal therapy-mediated autophagy in breast cancer treatment: Progress and trends. Life Sciences 2022;298:120499. [DOI: 10.1016/j.lfs.2022.120499] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 White BE, White MK, Nima Alsudani ZA, Watanabe F, Biris AS, Ali N. Cellular Uptake of Gold Nanorods in Breast Cancer Cell Lines. Nanomaterials 2022;12:937. [DOI: 10.3390/nano12060937] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Kim GW, Han IS, Ha JW. Mesoporous silica shell-coated single gold nanorods as multifunctional orientation probes in dynamic biological environments. RSC Adv 2021;11:38632-7. [PMID: 35493222 DOI: 10.1039/d1ra06572f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021;121:13342-453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Cited by in Crossref: 50] [Cited by in F6Publishing: 63] [Article Influence: 50.0] [Reference Citation Analysis]
9 Tee SY, Ye E, Teng CP, Tanaka Y, Tang KY, Win KY, Han MY. Advances in photothermal nanomaterials for biomedical, environmental and energy applications. Nanoscale 2021;13:14268-86. [PMID: 34473186 DOI: 10.1039/d1nr04197e] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
10 Doan VHM, Nguyen VT, Mondal S, Vo TMT, Ly CD, Vu DD, Ataklti GY, Park S, Choi J, Oh J. Fluorescence/photoacoustic imaging-guided nanomaterials for highly efficient cancer theragnostic agent. Sci Rep 2021;11:15943. [PMID: 34354208 DOI: 10.1038/s41598-021-95660-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
11 Kim J, Ahn SY, Um SH. Light-Induced Heat Conversion of Gold Nanorods as a Local Temperature Probe for Chemical Species Transformation in Aqueous Solution. sci adv mater 2021;13:1437-1444. [DOI: 10.1166/sam.2021.4017] [Reference Citation Analysis]
12 Zubair Iqbal M, Ali I, Khan WS, Kong X, Dempsey E. Reversible self-assembly of gold nanoparticles in response to external stimuli. Materials & Design 2021;205:109694. [DOI: 10.1016/j.matdes.2021.109694] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
13 Asadi S, Bianchi L, De Landro M, Korganbayev S, Schena E, Saccomandi P. Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. J Biophotonics 2021;14:e202000161. [PMID: 32761778 DOI: 10.1002/jbio.202000161] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
14 Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. Nanomaterials (Basel) 2020;10:E2186. [PMID: 33147800 DOI: 10.3390/nano10112186] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
15 White BE, White MK, Adhvaryu H, Makhoul I, Nima ZA, Biris AS, Ali N. Nanotechnology approaches to addressing HER2-positive breast cancer. Cancer Nano 2020;11. [DOI: 10.1186/s12645-020-00068-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Koo C, Hong H, Im PW, Kim H, Lee C, Jin X, Yan B, Lee W, Im HJ, Paek SH, Piao Y. Magnetic and near-infrared derived heating characteristics of dimercaptosuccinic acid coated uniform Fe@Fe3O4 core-shell nanoparticles. Nano Converg 2020;7:20. [PMID: 32514813 DOI: 10.1186/s40580-020-00229-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
17 Gong R, Zheng Z, An J, Maurice J, Azrak E, Nair V, Foti A, Moldovan S, Karam C, Duguay S, Pareige P, Tian B, Chen W, Roca i Cabarrocas P. Hydrogen Plasma-Assisted Growth of Gold Nanowires. Crystal Growth & Design 2020;20:4185-92. [DOI: 10.1021/acs.cgd.0c00480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Bera K, Mondal A, Pal U, Maiti NC. Porphyrin-Armored Gold Nanospheres Modulate the Secondary Structure of α-Synuclein and Arrest Its Fibrillation. J Phys Chem C 2020;124:6418-34. [DOI: 10.1021/acs.jpcc.9b11503] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Moraes DA, Souza Junior JB, Ferreira FF, Mogili NVV, Varanda LC. Gold nanowire growth through stacking fault mechanism by oleylamine-mediated synthesis. Nanoscale 2020;12:13316-29. [DOI: 10.1039/d0nr03669b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Shah SWA, Shoaib M, Ghias M, Ahmed MN, Hameed A, Shah I. Surface engineered gold nanorods: intelligent delivery system for cancer therapy. Metal Nanoparticles for Drug Delivery and Diagnostic Applications 2020. [DOI: 10.1016/b978-0-12-816960-5.00006-9] [Reference Citation Analysis]
21 Gutiérrez MV, Scarpettini AF. Kinetic and plasmonic properties of gold nanorods adsorbed on glass substrates. Colloid and Interface Science Communications 2019;33:100213. [DOI: 10.1016/j.colcom.2019.100213] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Del Solar V, Contel M. Metal-based antibody drug conjugates. Potential and challenges in their application as targeted therapies in cancer. J Inorg Biochem 2019;199:110780. [PMID: 31434020 DOI: 10.1016/j.jinorgbio.2019.110780] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
23 Simón M, Norregaard K, Jørgensen JT, Oddershede LB, Kjaer A. Fractionated photothermal therapy in a murine tumor model: comparison with single dose. Int J Nanomedicine 2019;14:5369-79. [PMID: 31409993 DOI: 10.2147/IJN.S205409] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
24 Nunes T, Pons T, Hou X, Van Do K, Caron B, Rigal M, Di Benedetto M, Palpant B, Leboeuf C, Janin A, Bousquet G. Pulsed-laser irradiation of multifunctional gold nanoshells to overcome trastuzumab resistance in HER2-overexpressing breast cancer. J Exp Clin Cancer Res 2019;38:306. [PMID: 31299997 DOI: 10.1186/s13046-019-1305-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
25 Onaciu A, Braicu C, Zimta AA, Moldovan A, Stiufiuc R, Buse M, Ciocan C, Buduru S, Berindan-Neagoe I. Gold nanorods: from anisotropy to opportunity. An evolution update. Nanomedicine (Lond) 2019;14:1203-26. [PMID: 31075049 DOI: 10.2217/nnm-2018-0409] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
26 Sharma N, Dhankhar SS, Nagaraja C. A Mn(II)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides. Microporous and Mesoporous Materials 2019;280:372-8. [DOI: 10.1016/j.micromeso.2019.02.026] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
27 Sandland J, Boyle RW. Photosensitizer Antibody–Drug Conjugates: Past, Present, and Future. Bioconjugate Chem 2019;30:975-93. [DOI: 10.1021/acs.bioconjchem.9b00055] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
28 Silva JM, Silva E, Reis RL. Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019;298:154-76. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 23.3] [Reference Citation Analysis]
29 Ramírez-García G, Panikar SS, López-Luke T, Piazza V, Honorato-Colin MA, Camacho-Villegas T, Hernández-Gutiérrez R, De la Rosa E. An immunoconjugated up-conversion nanocomplex for selective imaging and photodynamic therapy against HER2-positive breast cancer. Nanoscale 2018;10:10154-65. [PMID: 29785440 DOI: 10.1039/c8nr01512k] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
30 Mohebbi S, Tohidi Moghadam T, Nikkhah M, Behmanesh M. RGD-HK Peptide-Functionalized Gold Nanorods Emerge as Targeted Biocompatible Nanocarriers for Biomedical Applications. Nanoscale Res Lett 2019;14:13. [PMID: 30623264 DOI: 10.1186/s11671-018-2828-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
31 Nafiujjaman M, Nurunnabi M. Graphene and 2D Materials for Phototherapy. Biomedical Applications of Graphene and 2D Nanomaterials 2019. [DOI: 10.1016/b978-0-12-815889-0.00005-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Sousa D, Ferreira D, Rodrigues JL, Rodrigues LR. Nanotechnology in Targeted Drug Delivery and Therapeutics. Applications of Targeted Nano Drugs and Delivery Systems 2019. [DOI: 10.1016/b978-0-12-814029-1.00014-4] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
33 Povolotskiy A, Evdokimova M, Konev A, Kolesnikov I, Povolotckaia A, Kalinichev A. Molecular-Plasmon Nanostructures for Biomedical Application. Springer Series in Chemical Physics 2019. [DOI: 10.1007/978-3-030-05974-3_9] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
34 Xu W, Qian J, Hou G, Wang Y, Wang J, Sun T, Ji L, Suo A, Yao Y. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer. Acta Biomater 2019;83:400-13. [PMID: 30465921 DOI: 10.1016/j.actbio.2018.11.026] [Cited by in Crossref: 81] [Cited by in F6Publishing: 73] [Article Influence: 27.0] [Reference Citation Analysis]
35 Lee J, Lee YH, Jeong CB, Choi JS, Chang KS, Yoon M. Gold nanorods-conjugated TiO2 nanoclusters for the synergistic combination of phototherapeutic treatments of cancer cells. J Nanobiotechnology 2018;16:104. [PMID: 30572896 DOI: 10.1186/s12951-018-0432-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
36 Ng CW, Li J, Pu K. Recent Progresses in Phototherapy-Synergized Cancer Immunotherapy. Adv Funct Mater 2018;28:1804688. [DOI: 10.1002/adfm.201804688] [Cited by in Crossref: 175] [Cited by in F6Publishing: 181] [Article Influence: 43.8] [Reference Citation Analysis]
37 Phan TTV, Bui NQ, Cho SW, Bharathiraja S, Manivasagan P, Moorthy MS, Mondal S, Kim CS, Oh J. Photoacoustic Imaging-Guided Photothermal Therapy with Tumor-Targeting HA-FeOOH@PPy Nanorods. Sci Rep 2018;8:8809. [PMID: 29891947 DOI: 10.1038/s41598-018-27204-8] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 9.8] [Reference Citation Analysis]
38 Larionov AA. Current Therapies for Human Epidermal Growth Factor Receptor 2-Positive Metastatic Breast Cancer Patients. Front Oncol 2018;8:89. [PMID: 29670855 DOI: 10.3389/fonc.2018.00089] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 12.3] [Reference Citation Analysis]
39 Mesicek J, Kuca K. Summary of numerical analyses for therapeutic uses of laser-activated gold nanoparticles. International Journal of Hyperthermia 2018;34:1255-64. [DOI: 10.1080/02656736.2018.1440016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
40 An L, Wang Y, Tian Q, Yang S. Small Gold Nanorods: Recent Advances in Synthesis, Biological Imaging, and Cancer Therapy. Materials (Basel) 2017;10:E1372. [PMID: 29189739 DOI: 10.3390/ma10121372] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 13.2] [Reference Citation Analysis]
41 Velasco-Aguirre C, Morales-Zavala F, Salas-Huenuleo E, Gallardo-Toledo E, Andonie O, Muñoz L, Rojas X, Acosta G, Sánchez-Navarro M, Giralt E, Araya E, Albericio F, Kogan MJ. Improving gold nanorod delivery to the central nervous system by conjugation to the shuttle Angiopep-2. Nanomedicine (Lond) 2017;12:2503-17. [PMID: 28882086 DOI: 10.2217/nnm-2017-0181] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
42 Baah D, Tiimob B, Cousin K, Abdela W, Samuel T, Fermin C. Nanoparticles for Detection, Diagnostics, and Targeting using Hyperspectral Imaging. Microsc Microanal 2017;23:1350-1351. [DOI: 10.1017/s1431927617007413] [Reference Citation Analysis]