BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ottaviani JI, Borges G, Momma TY, Spencer JP, Keen CL, Crozier A, Schroeter H. The metabolome of [2-(14)C](-)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Sci Rep 2016;6:29034. [PMID: 27363516 DOI: 10.1038/srep29034] [Cited by in Crossref: 117] [Cited by in F6Publishing: 118] [Article Influence: 19.5] [Reference Citation Analysis]
Number Citing Articles
1 Corral-Jara KF, Nuthikattu S, Rutledge J, Villablanca A, Fong R, Heiss C, Ottaviani JI, Milenkovic D. Structurally related (-)-epicatechin metabolites and gut microbiota derived metabolites exert genomic modifications via VEGF signaling pathways in brain microvascular endothelial cells under lipotoxic conditions: Integrated multi-omic study. J Proteomics 2022;:104603. [PMID: 35568144 DOI: 10.1016/j.jprot.2022.104603] [Reference Citation Analysis]
2 Ottaviani JI, Heiss C, Spencer JP, Kelm M, Schroeter H. Recommending flavanols and procyanidins for cardiovascular health: Revisited. Molecular Aspects of Medicine 2018;61:63-75. [DOI: 10.1016/j.mam.2018.02.001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 9.5] [Reference Citation Analysis]
3 Rodriguez-Mateos A, Weber T, Skene SS, Ottaviani JI, Crozier A, Kelm M, Schroeter H, Heiss C. Assessing the respective contributions of dietary flavanol monomers and procyanidins in mediating cardiovascular effects in humans: randomized, controlled, double-masked intervention trial. Am J Clin Nutr 2018;108:1229-37. [PMID: 30358831 DOI: 10.1093/ajcn/nqy229] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
4 Hole KL, Williams RJ. Flavonoids as an Intervention for Alzheimer's Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Brain Plast 2021;6:167-92. [PMID: 33782649 DOI: 10.3233/BPL-200098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Jaskiw GE, Obrenovich ME, Donskey CJ. The phenolic interactome and gut microbiota: opportunities and challenges in developing applications for schizophrenia and autism. Psychopharmacology (Berl) 2019;236:1471-89. [PMID: 31197432 DOI: 10.1007/s00213-019-05267-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Cremonini E, Fraga CG, Oteiza PI. (-)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radic Biol Med 2019;130:478-88. [PMID: 30447350 DOI: 10.1016/j.freeradbiomed.2018.11.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
7 Hügel HM, de Silva NH, Siddiqui A, Blanch E, Lingham A. Natural spirocyclic alkaloids and polyphenols as multi target dementia leads. Bioorg Med Chem 2021;43:116270. [PMID: 34153839 DOI: 10.1016/j.bmc.2021.116270] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang L, Yamashita Y, Komeda S, Saito A, Ashida H. Absorption, metabolism, distribution and faecal excretion of B-type procyanidin oligomers in mice after a single oral administration of black soybean seed coat extract. Food Funct. 2018;9:5362-5370. [PMID: 30264089 DOI: 10.1039/c8fo00852c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
9 Ruotolo R, Minato I, La Vitola P, Artioli L, Curti C, Franceschi V, Brindani N, Amidani D, Colombo L, Salmona M, Forloni G, Donofrio G, Balducci C, Del Rio D, Ottonello S. Flavonoid-Derived Human Phenyl-γ-Valerolactone Metabolites Selectively Detoxify Amyloid-β Oligomers and Prevent Memory Impairment in a Mouse Model of Alzheimer's Disease. Mol Nutr Food Res 2020;64:e1900890. [PMID: 31914208 DOI: 10.1002/mnfr.201900890] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Hollands WJ, Tapp H, Defernez M, Perez Moral N, Winterbone MS, Philo M, Lucey AJ, Kiely ME, Kroon PA. Lack of acute or chronic effects of epicatechin-rich and procyanidin-rich apple extracts on blood pressure and cardiometabolic biomarkers in adults with moderately elevated blood pressure: a randomized, placebo-controlled crossover trial. Am J Clin Nutr 2018;108:1006-14. [PMID: 30475960 DOI: 10.1093/ajcn/nqy139] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
11 Tang JS, Bozonet SM, McKenzie JL, Anderson RF, Melton LD, Vissers MCM. Physiological Concentrations of Blueberry-Derived Phenolic Acids Reduce Monocyte Adhesion to Human Endothelial Cells. Mol Nutr Food Res 2019;63:e1900478. [PMID: 31216087 DOI: 10.1002/mnfr.201900478] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
12 Kim E, Kang H, Choi I, Song J, Mok H, Jung W, Yeo W. Efficient Enrichment and Analysis of Vicinal-Diol-Containing Flavonoid Molecules Using Boronic-Acid-Functionalized Particles and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J Agric Food Chem 2018;66:4741-7. [DOI: 10.1021/acs.jafc.8b00832] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wang M, Li J, Hu T, Zhao H. Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. Food Science and Human Wellness 2022;11:455-66. [DOI: 10.1016/j.fshw.2021.12.003] [Reference Citation Analysis]
14 Sankaranarayanan R, Kumar DR, Patel J, Bhat GJ. Do Aspirin and Flavonoids Prevent Cancer through a Common Mechanism Involving Hydroxybenzoic Acids?-The Metabolite Hypothesis. Molecules 2020;25:E2243. [PMID: 32397626 DOI: 10.3390/molecules25092243] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Gui H, Sun L, Liu R, Si X, Li D, Wang Y, Shu C, Sun X, Jiang Q, Qiao Y, Li B, Tian J. Current knowledge of anthocyanin metabolism in the digestive tract: absorption, distribution, degradation, and interconversion. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2022.2026291] [Reference Citation Analysis]
16 Domínguez-fernández M, Xu Y, Young Tie Yang P, Alotaibi W, Gibson R, Hall WL, Barron L, Ludwig IA, Cid C, Rodriguez-mateos A. Quantitative Assessment of Dietary (Poly)phenol Intake: A High-Throughput Targeted Metabolomics Method for Blood and Urine Samples. J Agric Food Chem 2021;69:537-54. [DOI: 10.1021/acs.jafc.0c07055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Al-Dashti YA, Holt RR, Stebbins CL, Keen CL, Hackman RM. Dietary Flavanols: A Review of Select Effects on Vascular Function, Blood Pressure, and Exercise Performance. J Am Coll Nutr 2018;37:553-67. [PMID: 29718795 DOI: 10.1080/07315724.2018.1451788] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
18 Li Q, Van Herreweghen F, Onyango SO, De Mey M, Van de Wiele T. In Vitro Microbial Metabolism of (+)-Catechin Reveals Fast and Slow Converters with Individual-Specific Microbial and Metabolite Markers. J Agric Food Chem 2022. [PMID: 35420423 DOI: 10.1021/acs.jafc.2c00551] [Reference Citation Analysis]
19 Mele L, Carobbio S, Brindani N, Curti C, Rodriguez-Cuenca S, Bidault G, Mena P, Zanotti I, Vacca M, Vidal-Puig A, Del Rio D. Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function. Mol Nutr Food Res 2017;61. [PMID: 28276197 DOI: 10.1002/mnfr.201700074] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
20 Márquez Campos E, Jakobs L, Simon MC. Antidiabetic Effects of Flavan-3-ols and Their Microbial Metabolites. Nutrients 2020;12:E1592. [PMID: 32485837 DOI: 10.3390/nu12061592] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
21 Feng S, Yi J, Li X, Wu X, Zhao Y, Ma Y, Bi J. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. J Agric Food Chem 2021;69:7-27. [PMID: 33397106 DOI: 10.1021/acs.jafc.0c05481] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Bondonno NP, Bondonno CP, Ward NC, Hodgson JM, Croft KD. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends in Food Science & Technology 2017;69:243-56. [DOI: 10.1016/j.tifs.2017.04.012] [Cited by in Crossref: 64] [Cited by in F6Publishing: 28] [Article Influence: 12.8] [Reference Citation Analysis]
23 Philip P, Sagaspe P, Taillard J, Mandon C, Constans J, Pourtau L, Pouchieu C, Angelino D, Mena P, Martini D, Del Rio D, Vauzour D. Acute Intake of a Grape and Blueberry Polyphenol-Rich Extract Ameliorates Cognitive Performance in Healthy Young Adults During a Sustained Cognitive Effort. Antioxidants (Basel) 2019;8:E650. [PMID: 31861125 DOI: 10.3390/antiox8120650] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
24 Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021;65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Bettaieb A, Cremonini E, Kang H, Kang J, Haj FG, Oteiza PI. Anti-inflammatory actions of (-)-epicatechin in the adipose tissue of obese mice. Int J Biochem Cell Biol 2016;81:383-92. [PMID: 27592457 DOI: 10.1016/j.biocel.2016.08.044] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
26 Calabró V, Litterio MC, Fraga CG, Galleano M, Piotrkowski B. Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats. Arch Biochem Biophys 2018;647:47-53. [PMID: 29621523 DOI: 10.1016/j.abb.2018.03.041] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
27 Sun Y, Zimmermann D, De Castro CA, Actis-Goretta L. Dose-response relationship between cocoa flavanols and human endothelial function: a systematic review and meta-analysis of randomized trials. Food Funct 2019;10:6322-30. [PMID: 31524216 DOI: 10.1039/c9fo01747j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, Greiner R, Manach C, Wishart DS. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform 2019;11:2. [PMID: 30612223 DOI: 10.1186/s13321-018-0324-5] [Cited by in Crossref: 104] [Cited by in F6Publishing: 83] [Article Influence: 34.7] [Reference Citation Analysis]
29 Kluknavsky M, Balis P, Skratek M, Manka J, Bernatova I. (-)-Epicatechin Reduces the Blood Pressure of Young Borderline Hypertensive Rats During the Post-Treatment Period. Antioxidants (Basel) 2020;9:E96. [PMID: 31979210 DOI: 10.3390/antiox9020096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
30 Sinegre T, Teissandier D, Milenkovic D, Morand C, Lebreton A. Epicatechin influences primary hemostasis, coagulation and fibrinolysis. Food Funct 2019;10:7291-8. [PMID: 31621731 DOI: 10.1039/c9fo00816k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
31 Milenkovic D, Declerck K, Guttman Y, Kerem Z, Claude S, Weseler AR, Bast A, Schroeter H, Morand C, Vanden Berghe W. (-)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochem Pharmacol 2020;173:113699. [PMID: 31756325 DOI: 10.1016/j.bcp.2019.113699] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
32 Schär MY, Corona G, Soycan G, Dine C, Kristek A, Alsharif SNS, Behrends V, Lovegrove A, Shewry PR, Spencer JPE. Excretion of Avenanthramides, Phenolic Acids and their Major Metabolites Following Intake of Oat Bran. Mol Nutr Food Res 2018;62. [PMID: 29024323 DOI: 10.1002/mnfr.201700499] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
33 Almanza-Aguilera E, Ceballos-Sánchez D, Achaintre D, Rothwell JA, Laouali N, Severi G, Katzke V, Johnson T, Schulze MB, Palli D, Gargano G, de Magistris MS, Tumino R, Sacerdote C, Scalbert A, Zamora-Ros R. Urinary Concentrations of (+)-Catechin and (-)-Epicatechin as Biomarkers of Dietary Intake of Flavan-3-ols in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021;13:4157. [PMID: 34836412 DOI: 10.3390/nu13114157] [Reference Citation Analysis]
34 Ottaviani JI, Fong RY, Borges G, Schroeter H, Crozier A. Use of LC-MS for the quantitative analysis of (poly)phenol metabolites does not necessarily yield accurate results: Implications for assessing existing data and conducting future research. Free Radical Biology and Medicine 2018;124:97-103. [DOI: 10.1016/j.freeradbiomed.2018.05.092] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
35 Mena P, Bresciani L, Tassotti M, Rosi A, Martini D, Antonini M, Cas AD, Bonadonna R, Brighenti F, Del Rio D. Effect of different patterns of consumption of coffee and a cocoa-based product containing coffee on the nutrikinetics and urinary excretion of phenolic compounds. Am J Clin Nutr 2021:nqab299. [PMID: 34582552 DOI: 10.1093/ajcn/nqab299] [Reference Citation Analysis]
36 Anesi A, Mena P, Bub A, Ulaszewska M, Del Rio D, Kulling SE, Mattivi F. Quantification of Urinary Phenyl-γ-Valerolactones and Related Valeric Acids in Human Urine on Consumption of Apples. Metabolites 2019;9:E254. [PMID: 31671768 DOI: 10.3390/metabo9110254] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
37 Jaeger BN, Parylak SL, Gage FH. Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med 2018;61:50-62. [PMID: 29117513 DOI: 10.1016/j.mam.2017.11.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
38 Stevens JF, Revel JS, Maier CS. Mitochondria-Centric Review of Polyphenol Bioactivity in Cancer Models. Antioxid Redox Signal 2018;29:1589-611. [PMID: 29084444 DOI: 10.1089/ars.2017.7404] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
39 Milenkovic D, Berghe WV, Morand C, Claude S, van de Sandt A, Gorressen S, Monfoulet LE, Chirumamilla CS, Declerck K, Szic KSV, Lahtela-Kakkonen M, Gerhauser C, Merx MW, Kelm M. A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Sci Rep 2018;8:15487. [PMID: 30341379 DOI: 10.1038/s41598-018-33959-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
40 Kawabata K, Yoshioka Y, Terao J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules. 2019;24. [PMID: 30669635 DOI: 10.3390/molecules24020370] [Cited by in Crossref: 167] [Cited by in F6Publishing: 155] [Article Influence: 55.7] [Reference Citation Analysis]
41 Yan F, Zhao Q, Gao H, Wang X, Xu K, Wang Y, Han F, Liu Q, Shi Y. Exploring the mechanism of (-)-Epicatechin on premature ovarian insufficiency based on network pharmacology and experimental evaluation. Biosci Rep 2021;41:BSR20203955. [PMID: 33521822 DOI: 10.1042/BSR20203955] [Reference Citation Analysis]
42 Kardum N, Glibetic M. Polyphenols and Their Interactions With Other Dietary Compounds: Implications for Human Health. Adv Food Nutr Res 2018;84:103-44. [PMID: 29555067 DOI: 10.1016/bs.afnr.2017.12.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
43 Tabone M, García-Merino JA, Bressa C, Rocha Guzman NE, Herrera Rocha K, Chu Van E, Castelli FA, Fenaille F, Larrosa M. Chronic Consumption of Cocoa Rich in Procyanidins Has a Marginal Impact on Gut Microbiota and on Serum and Fecal Metabolomes in Male Endurance Athletes. J Agric Food Chem 2022. [PMID: 35112856 DOI: 10.1021/acs.jafc.1c07547] [Reference Citation Analysis]
44 Qu Z, Liu A, Li P, Liu C, Xiao W, Huang J, Liu Z, Zhang S. Advances in physiological functions and mechanisms of (-)-epicatechin. Crit Rev Food Sci Nutr 2021;61:211-33. [PMID: 32090598 DOI: 10.1080/10408398.2020.1723057] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
45 Michielsen CCJR, Almanza-Aguilera E, Brouwer-Brolsma EM, Urpi-Sarda M, Afman LA. Biomarkers of food intake for cocoa and liquorice (products): a systematic review. Genes Nutr 2018;13:22. [PMID: 30065791 DOI: 10.1186/s12263-018-0610-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
46 Liu C, Vervoort J, van den Elzen J, Beekmann K, Baccaro M, de Haan L, Rietjens IMCM. Interindividual Differences in Human In Vitro Intestinal Microbial Conversion of Green Tea (‐)‐Epigallocatechin‐3‐ O ‐Gallate and Consequences for Activation of Nrf2 Mediated Gene Expression. Mol Nutr Food Res 2021;65:2000934. [DOI: 10.1002/mnfr.202000934] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Williamson G. The role of polyphenols in modern nutrition. Nutr Bull 2017;42:226-35. [PMID: 28983192 DOI: 10.1111/nbu.12278] [Cited by in Crossref: 179] [Cited by in F6Publishing: 132] [Article Influence: 35.8] [Reference Citation Analysis]
48 Bussy U, Ottaviani JI, Kwik-Uribe C. Evolution of cocoa flavanol analytics: impact on reporting and cross-study comparison. Food Funct 2021;12:3433-42. [PMID: 33900344 DOI: 10.1039/d1fo00215e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Li Q, Van de Wiele T. Gut microbiota as a driver of the interindividual variability of cardiometabolic effects from tea polyphenols. Crit Rev Food Sci Nutr 2021;:1-27. [PMID: 34515591 DOI: 10.1080/10408398.2021.1965536] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Márquez Campos E, Stehle P, Simon MC. Microbial Metabolites of Flavan-3-Ols and Their Biological Activity. Nutrients 2019;11:E2260. [PMID: 31546992 DOI: 10.3390/nu11102260] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
51 Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021;10:467. [PMID: 33809620 DOI: 10.3390/antiox10030467] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Chen W, Zhu X, Lu Q, Zhang L, Wang X, Liu R. C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota. Food Res Int 2020;135:109271. [PMID: 32527491 DOI: 10.1016/j.foodres.2020.109271] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
53 Liu C, Vervoort J, Beekmann K, Baccaro M, Kamelia L, Wesseling S, Rietjens IMCM. Interindividual Differences in Human Intestinal Microbial Conversion of (-)-Epicatechin to Bioactive Phenolic Compounds. J Agric Food Chem 2020. [PMID: 33216536 DOI: 10.1021/acs.jafc.0c05890] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
54 Sloan RP, Wall M, Yeung LK, Feng T, Feng X, Provenzano F, Schroeter H, Lauriola V, Brickman AM, Small SA. Insights into the role of diet and dietary flavanols in cognitive aging: results of a randomized controlled trial. Sci Rep 2021;11:3837. [PMID: 33589674 DOI: 10.1038/s41598-021-83370-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
55 Kirch N, Berk L, Liegl Y, Adelsbach M, Zimmermann BF, Stehle P, Stoffel-Wagner B, Ludwig N, Schieber A, Helfrich HP, Ellinger S. A nutritive dose of pure (-)-epicatechin does not beneficially affect increased cardiometabolic risk factors in overweight-to-obese adults-a randomized, placebo-controlled, double-blind crossover study. Am J Clin Nutr 2018;107:948-56. [PMID: 29868915 DOI: 10.1093/ajcn/nqy066] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
56 Pereira-caro G, Ordóñez JL, Ludwig I, Gaillet S, Mena P, Del Rio D, Rouanet J, Bindon KA, Moreno-rojas JM, Crozier A. Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract. Food Chemistry 2018;252:49-60. [DOI: 10.1016/j.foodchem.2018.01.083] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
57 Ottaviani JI, Fong R, Kimball J, Ensunsa JL, Gray N, Vogiatzoglou A, Britten A, Lucarelli D, Luben R, Grace PB, Mawson DH, Tym A, Wierzbicki A, Smith AD, Wareham NJ, Forouhi NG, Khaw KT, Schroeter H, Kuhnle GGC. Evaluation of (-)-epicatechin metabolites as recovery biomarker of dietary flavan-3-ol intake. Sci Rep 2019;9:13108. [PMID: 31511603 DOI: 10.1038/s41598-019-49702-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
58 Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, Llorach R, Calani L, Brighenti F, Clifford MN, Gill CIR, Crozier A, Curti C, Del Rio D. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 2019;36:714-52. [PMID: 30468210 DOI: 10.1039/c8np00062j] [Cited by in Crossref: 85] [Cited by in F6Publishing: 44] [Article Influence: 28.3] [Reference Citation Analysis]
59 Monfoulet L, Buffière C, Istas G, Dufour C, Le Bourvellec C, Mercier S, Bayle D, Boby C, Remond D, Borel P, Rodriguez-mateos A, Milenkovic D, Morand C. Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic response of apple polyphenols in minipigs challenged with a high fat meal. Food Funct 2020;11:5077-90. [DOI: 10.1039/d0fo00346h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
60 Reis A, Rocha S, de Freitas V. Going "Green" in the Prevention and Management of Atherothrombotic Diseases: The Role of Dietary Polyphenols. J Clin Med 2021;10:1490. [PMID: 33916712 DOI: 10.3390/jcm10071490] [Reference Citation Analysis]
61 Bernatova I. Biological activities of (-)-epicatechin and (-)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol Adv 2018;36:666-81. [PMID: 29355598 DOI: 10.1016/j.biotechadv.2018.01.009] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 9.5] [Reference Citation Analysis]
62 Mena P, Del Rio D. Gold Standards for Realistic (Poly)phenol Research. J Agric Food Chem 2018;66:8221-3. [DOI: 10.1021/acs.jafc.8b03249] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
63 Gratton G, Weaver SR, Burley CV, Low KA, Maclin EL, Johns PW, Pham QS, Lucas SJE, Fabiani M, Rendeiro C. Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adults. Sci Rep 2020;10:19409. [PMID: 33235219 DOI: 10.1038/s41598-020-76160-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
64 Daussin FN, Cuillerier A, Touron J, Bensaid S, Melo B, Al Rewashdy A, Vasam G, Menzies KJ, Harper ME, Heyman E, Burelle Y. Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body Metabolism in Healthy Mice. Nutrients 2021;13:3466. [PMID: 34684467 DOI: 10.3390/nu13103466] [Reference Citation Analysis]
65 Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signaling: (-)-Epicatechin as a paradigm. Mol Aspects Med 2018;61:31-40. [PMID: 29421170 DOI: 10.1016/j.mam.2018.01.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 8.3] [Reference Citation Analysis]
66 Tang JS, Vissers MCM, Anderson RF, Sreebhavan S, Bozonet SM, Scheepens A, Melton LD. Bioavailable Blueberry-Derived Phenolic Acids at Physiological Concentrations Enhance Nrf2-Regulated Antioxidant Responses in Human Vascular Endothelial Cells. Mol Nutr Food Res 2018;62. [PMID: 29278300 DOI: 10.1002/mnfr.201700647] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
67 Shortt C, Hasselwander O, Meynier A, Nauta A, Fernández EN, Putz P, Rowland I, Swann J, Türk J, Vermeiren J, Antoine JM. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr 2018;57:25-49. [PMID: 29086061 DOI: 10.1007/s00394-017-1546-4] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 12.4] [Reference Citation Analysis]
68 Weaver SR, Rendeiro C, McGettrick HM, Philp A, Lucas SJE. Fine wine or sour grapes? A systematic review and meta-analysis of the impact of red wine polyphenols on vascular health. Eur J Nutr 2021;60:1-28. [PMID: 32303823 DOI: 10.1007/s00394-020-02247-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
69 Tang JS, Cait A, Li Y, Abolins-Thompson H, Gell K, Herst PM, O'Sullivan D, Gasser O. Practical Approach To Explore the Effects of Polyphenols on Aryl Hydrocarbon Receptor Regulated Immune Function. J Agric Food Chem 2021;69:8625-33. [PMID: 34338516 DOI: 10.1021/acs.jafc.1c02095] [Reference Citation Analysis]
70 Obrenovich ME, Jaskiw GE, Mana TSC, Bennett CP, Cadnum J, Donskey CJ. Urinary Metabolites of Green Tea as Potential Markers of Colonization Resistance to Pathogenic Gut Bacteria in Mice. Pathog Immun 2019;4:271-93. [PMID: 31773068 DOI: 10.20411/pai.v4i2.335] [Reference Citation Analysis]
71 Boronat A, Rodriguez-Morató J, Serreli G, Fitó M, Tyndale RF, Deiana M, de la Torre R. Contribution of Biotransformations Carried Out by the Microbiota, Drug-Metabolizing Enzymes, and Transport Proteins to the Biological Activities of Phytochemicals Found in the Diet. Adv Nutr 2021:nmab085. [PMID: 34388248 DOI: 10.1093/advances/nmab085] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Reis A, Perez-Gregorio R, Mateus N, de Freitas V. Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Crit Rev Food Sci Nutr 2020;:1-24. [PMID: 32654502 DOI: 10.1080/10408398.2020.1791794] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Joyner PM. Protein Adducts and Protein Oxidation as Molecular Mechanisms of Flavonoid Bioactivity. Molecules 2021;26:5102. [PMID: 34443698 DOI: 10.3390/molecules26165102] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Faggian M, Bernabè G, Valente M, Francescato S, Baratto G, Brun P, Castagliuolo I, Dall'Acqua S, Peron G. Characterization of PACs profile and bioactivity of a novel nutraceutical combining cranberry extracts with different PAC-A oligomers, D-mannose and ascorbic acid: An in vivo/ex vivo evaluation of dual mechanism of action on intestinal barrier and urinary epithelium. Food Res Int 2021;149:110649. [PMID: 34600651 DOI: 10.1016/j.foodres.2021.110649] [Reference Citation Analysis]
75 Corral-Jara KF, Nuthikattu S, Rutledge J, Villablanca A, Morand C, Schroeter H, Milenkovic D. Integrated Multi-Omic Analyses of the Genomic Modifications by Gut Microbiome-Derived Metabolites of Epicatechin, 5-(4'-Hydroxyphenyl)-γ-Valerolactone, in TNFalpha-Stimulated Primary Human Brain Microvascular Endothelial Cells. Front Neurosci 2021;15:622640. [PMID: 33841078 DOI: 10.3389/fnins.2021.622640] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Dinda B, Dinda M, Roy A, Dinda S. Dietary plant flavonoids in prevention of obesity and diabetes. Adv Protein Chem Struct Biol 2020;120:159-235. [PMID: 32085882 DOI: 10.1016/bs.apcsb.2019.08.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
77 Oracz J, Nebesny E, Zyzelewicz D, Budryn G, Luzak B. Bioavailability and metabolism of selected cocoa bioactive compounds: A comprehensive review. Crit Rev Food Sci Nutr 2020;60:1947-85. [PMID: 31124371 DOI: 10.1080/10408398.2019.1619160] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
78 Davinelli S, Scapagnini G. Interactions between dietary polyphenols and aging gut microbiota: A review. Biofactors 2021. [PMID: 34559427 DOI: 10.1002/biof.1785] [Reference Citation Analysis]
79 Lee CC, Kim JH, Kim JS, Oh YS, Han SM, Park JHY, Lee KW, Lee CY. 5-(3',4'-Dihydroxyphenyl-γ-valerolactone), a Major Microbial Metabolite of Proanthocyanidin, Attenuates THP-1 Monocyte-Endothelial Adhesion. Int J Mol Sci 2017;18:E1363. [PMID: 28672844 DOI: 10.3390/ijms18071363] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 7.2] [Reference Citation Analysis]
80 Pereira-Caro G, Gaillet S, Ordóñez JL, Mena P, Bresciani L, Bindon KA, Del Rio D, Rouanet JM, Moreno-Rojas JM, Crozier A. Bioavailability of red wine and grape seed proanthocyanidins in rats. Food Funct 2020;11:3986-4001. [PMID: 32347279 DOI: 10.1039/d0fo00350f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
81 Castello F, Costabile G, Bresciani L, Tassotti M, Naviglio D, Luongo D, Ciciola P, Vitale M, Vetrani C, Galaverna G, Brighenti F, Giacco R, Del Rio D, Mena P. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Archives of Biochemistry and Biophysics 2018;646:1-9. [DOI: 10.1016/j.abb.2018.03.021] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 12.8] [Reference Citation Analysis]
82 McDermott MM, Criqui MH, Domanchuk K, Ferrucci L, Guralnik JM, Kibbe MR, Kosmac K, Kramer CM, Leeuwenburgh C, Li L, Lloyd-Jones D, Peterson CA, Polonsky TS, Stein JH, Sufit R, Van Horn L, Villarreal F, Zhang D, Zhao L, Tian L. Cocoa to Improve Walking Performance in Older People With Peripheral Artery Disease: The COCOA-PAD Pilot Randomized Clinical Trial. Circ Res 2020;126:589-99. [PMID: 32078436 DOI: 10.1161/CIRCRESAHA.119.315600] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 8.5] [Reference Citation Analysis]
83 Álvarez-cilleros D, Ramos S, Goya L, Martín MÁ. Colonic metabolites from flavanols stimulate nitric oxide production in human endothelial cells and protect against oxidative stress-induced toxicity and endothelial dysfunction. Food and Chemical Toxicology 2018;115:88-97. [DOI: 10.1016/j.fct.2018.03.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
84 Ellinger S, Reusch A, Henckes L, Ritter C, Zimmermann BF, Ellinger J, Galensa R, Stehle P, Helfrich HP. Low Plasma Appearance of (+)-Catechin and (-)-Catechin Compared with Epicatechin after Consumption of Beverages Prepared from Nonalkalized or Alkalized Cocoa-A Randomized, Double-Blind Trial. Nutrients 2020;12:E231. [PMID: 31963163 DOI: 10.3390/nu12010231] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
85 Xiao J, Zhang R, Zhou Q, Liu L, Huang F, Deng Y, Ma Y, Wei Z, Tang X, Zhang M. Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation. J Agric Food Chem 2017;65:9675-84. [PMID: 29041775 DOI: 10.1021/acs.jafc.7b03791] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
86 Carecho R, Carregosa D, Dos Santos CN. Low Molecular Weight (poly)Phenol Metabolites Across the Blood-Brain Barrier: The Underexplored Journey. Brain Plast 2021;6:193-214. [PMID: 33782650 DOI: 10.3233/BPL-200099] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
87 Ai Z, Liu S, Qu F, Zhang H, Chen Y, Ni D. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers. Molecules 2019;24:E1185. [PMID: 30917581 DOI: 10.3390/molecules24061185] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
88 Stefania S, Clodoveo ML, Cariello M, D'Amato G, Franchini C, Faienza MF, Corbo F. Polyphenols and obesity prevention: critical insights on molecular regulation, bioavailability and dose in preclinical and clinical settings. Crit Rev Food Sci Nutr. 2020;1-23. [PMID: 32436425 DOI: 10.1080/10408398.2020.1765736] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
89 Barrera-Reyes PK, de Lara JC, González-Soto M, Tejero ME. Effects of Cocoa-Derived Polyphenols on Cognitive Function in Humans. Systematic Review and Analysis of Methodological Aspects. Plant Foods Hum Nutr 2020;75:1-11. [PMID: 31933112 DOI: 10.1007/s11130-019-00779-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
90 Rocha S, Oskolkova O, de Freitas V, Reis A. (Poly)phenol-Rich Diets in the Management of Endothelial Dysfunction in Diabetes Mellitus: Biological Properties in Cultured Endothelial Cells. Mol Nutr Food Res 2021;65:e2001130. [PMID: 34050718 DOI: 10.1002/mnfr.202001130] [Reference Citation Analysis]
91 Schwarz NA, Blahnik ZJ, Prahadeeswaran S, McKinley-Barnard SK, Holden SL, Waldhelm A. (-)-Epicatechin Supplementation Inhibits Aerobic Adaptations to Cycling Exercise in Humans. Front Nutr 2018;5:132. [PMID: 30622947 DOI: 10.3389/fnut.2018.00132] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
92 Cassels BK, Fuentes-barros G, Castro-saavedra S. Boldo, Its Secondary Metabolites and their Derivatives. CTM 2019;5:31-65. [DOI: 10.2174/2215083804666181113112928] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
93 Borges G, van der Hooft JJ, Crozier A. A comprehensive evaluation of the [2- 14 C](–)-epicatechin metabolome in rats. Free Radical Biology and Medicine 2016;99:128-38. [DOI: 10.1016/j.freeradbiomed.2016.08.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
94 Daussin FN, Heyman E, Burelle Y. Effects of (-)-epicatechin on mitochondria. Nutr Rev 2021;79:25-41. [PMID: 32989466 DOI: 10.1093/nutrit/nuaa094] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Sinegre T, Milenkovic D, Teissandier D, Fully P, Bourdin J, Morand C, Lebreton A. Impact of epicatechin on fibrin clot structure. Eur J Pharmacol 2021;893:173830. [PMID: 33347819 DOI: 10.1016/j.ejphar.2020.173830] [Reference Citation Analysis]
96 Fong RY, Kuhnle GGC, Crozier A, Schroeter H, Ottaviani JI. Validation of a high-throughput method for the quantification of flavanol and procyanidin biomarkers and methylxanthines in plasma by UPLC-MS. Food Funct 2021;12:7762-72. [PMID: 34231610 DOI: 10.1039/d1fo01228b] [Reference Citation Analysis]
97 Ottaviani JI, Fong R, Kimball J, Ensunsa JL, Britten A, Lucarelli D, Luben R, Grace PB, Mawson DH, Tym A, Wierzbicki A, Khaw KT, Schroeter H, Kuhnle GGC. Evaluation at scale of microbiome-derived metabolites as biomarker of flavan-3-ol intake in epidemiological studies. Sci Rep 2018;8:9859. [PMID: 29959422 DOI: 10.1038/s41598-018-28333-w] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
98 Brindani N, Mena P, Calani L, Benzie I, Choi S, Brighenti F, Zanardi F, Curti C, Del Rio D. Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine. Mol Nutr Food Res 2017;61:1700077. [DOI: 10.1002/mnfr.201700077] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
99 Baron G, Altomare A, Regazzoni L, Fumagalli L, Artasensi A, Borghi E, Ottaviano E, Del Bo C, Riso P, Allegrini P, Petrangolini G, Morazzoni P, Riva A, Arnoldi L, Carini M, Aldini G. Profiling Vaccinium macrocarpon components and metabolites in human urine and the urine ex-vivo effect on Candida albicans adhesion and biofilm-formation. Biochemical Pharmacology 2020;173:113726. [DOI: 10.1016/j.bcp.2019.113726] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
100 Ruskovska T, Massaro M, Carluccio MA, Arola-Arnal A, Muguerza B, Vanden Berghe W, Declerck K, Bravo FI, Calabriso N, Combet E, Gibney ER, Gomes A, Gonthier MP, Kistanova E, Krga I, Mena P, Morand C, Nunes Dos Santos C, de Pascual-Teresa S, Rodriguez-Mateos A, Scoditti E, Suárez M, Milenkovic D. Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct 2020;11:5040-64. [PMID: 32537624 DOI: 10.1039/d0fo00701c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
101 Borges G, Fong RY, Ensunsa JL, Kimball J, Medici V, Ottaviani JI, Crozier A. Absorption, distribution, metabolism and excretion of apigenin and its glycosides in healthy male adults. Free Radic Biol Med 2022:S0891-5849(22)00153-8. [PMID: 35452808 DOI: 10.1016/j.freeradbiomed.2022.04.007] [Reference Citation Analysis]
102 Sinegre T, Milenkovic D, Bourgne C, Teissandier D, Nasri Y, Dannus LT, Morand C, Lebreton A. Impact of Epicatechin on the Procoagulant Activities of Microparticles. Nutrients 2020;12:E2935. [PMID: 32992756 DOI: 10.3390/nu12102935] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
103 Sankaranarayanan R, Valiveti CK, Kumar DR, Van Slambrouck S, Kesharwani SS, Seefeldt T, Scaria J, Tummala H, Bhat GJ. The Flavonoid Metabolite 2,4,6-Trihydroxybenzoic Acid Is a CDK Inhibitor and an Anti-Proliferative Agent: A Potential Role in Cancer Prevention. Cancers (Basel) 2019;11:E427. [PMID: 30917530 DOI: 10.3390/cancers11030427] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
104 Van Rymenant E, Grootaert C, Beerens K, Needs PW, Kroon PA, Kerimi A, Williamson G, García-villalba R, González-sarrías A, Tomas-barberan F, Van Camp J, Van de Voorde J. Vasorelaxant activity of twenty-one physiologically relevant (poly)phenolic metabolites on isolated mouse arteries. Food Funct 2017;8:4331-5. [DOI: 10.1039/c7fo01273j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 3.2] [Reference Citation Analysis]
105 Kuhnle GGC. Nutrition epidemiology of flavan-3-ols: The known unknowns. Mol Aspects Med 2018;61:2-11. [PMID: 29146101 DOI: 10.1016/j.mam.2017.10.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
106 Koudoufio M, Desjardins Y, Feldman F, Spahis S, Delvin E, Levy E. Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders? Antioxidants (Basel) 2020;9:E982. [PMID: 33066106 DOI: 10.3390/antiox9100982] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
107 Anhê F, Choi B, Dyck J, Schertzer J, Marette A. Host–Microbe Interplay in the Cardiometabolic Benefits of Dietary Polyphenols. Trends in Endocrinology & Metabolism 2019;30:384-95. [DOI: 10.1016/j.tem.2019.04.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
108 Mukai R, Fukuda T, Ohnishi A, Nikawa T, Furusawa M, Terao J. Chocolate as a food matrix reduces the bioavailability of galloylated catechins from green tea in healthy women. Food Funct 2021;12:408-16. [PMID: 33393957 DOI: 10.1039/d0fo02485f] [Reference Citation Analysis]
109 Hole KL, Staniaszek LE, Menon Balan G, Mason JM, Brown JT, Williams RJ. Oral (-)-Epicatechin Inhibits Progressive Tau Pathology in rTg4510 Mice Independent of Direct Actions at GSK3β. Front Neurosci 2021;15:697319. [PMID: 34220446 DOI: 10.3389/fnins.2021.697319] [Reference Citation Analysis]
110 Rodriguez Lanzi C, Perdicaro DJ, Antoniolli A, Piccoli P, Vazquez Prieto MA, Fontana A. Phenolic metabolites in plasma and tissues of rats fed with a grape pomace extract as assessed by liquid chromatography-tandem mass spectrometry. Archives of Biochemistry and Biophysics 2018;651:28-33. [DOI: 10.1016/j.abb.2018.05.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
111 Álvarez-cilleros D, Martín MÁ, Goya L, Ramos S. (−)-Epicatechin and the colonic metabolite 3,4-dihydroxyphenylacetic acid protect renal proximal tubular cell against high glucose-induced oxidative stress by modulating NOX-4/SIRT-1 signalling. Journal of Functional Foods 2018;46:19-28. [DOI: 10.1016/j.jff.2018.04.051] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
112 Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean MEJ, Hara Y, Crozier A. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism. J Agric Food Chem 2017;65:5365-74. [PMID: 28595385 DOI: 10.1021/acs.jafc.7b01707] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 10.8] [Reference Citation Analysis]
113 Hummel JM, Madeen EP, Siddens LK, Uesugi SL, McQuistan T, Anderson KA, Turteltaub KW, Ognibene TJ, Bench G, Krueger SK, Harris S, Smith J, Tilton SC, Baird WM, Williams DE. Pharmacokinetics of [14C]-Benzo[a]pyrene (BaP) in humans: Impact of Co-Administration of smoked salmon and BaP dietary restriction. Food Chem Toxicol 2018;115:136-47. [PMID: 29518434 DOI: 10.1016/j.fct.2018.03.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
114 Álvarez-Cilleros D, López-Oliva ME, Ramos S, Martín MÁ. Preventive effect of cocoa flavanols against glucotoxicity-induced vascular inflammation in the arteria of diabetic rats and on the inflammatory process in TNF-α-stimulated endothelial cells. Food Chem Toxicol 2020;146:111824. [PMID: 33096196 DOI: 10.1016/j.fct.2020.111824] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
115 Gómez-Juaristi M, Sarria B, Martínez-López S, Bravo Clemente L, Mateos R. Flavanol Bioavailability in Two Cocoa Products with Different Phenolic Content. A Comparative Study in Humans. Nutrients 2019;11:E1441. [PMID: 31247980 DOI: 10.3390/nu11071441] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
116 Czubaszek A, Czaja A, Sokół-Łętowska A, Kolniak-Ostek J, Kucharska AZ. Changes in Antioxidant Properties and Amounts of Bioactive Compounds during Simulated In Vitro Digestion of Wheat Bread Enriched with Plant Extracts. Molecules 2021;26:6292. [PMID: 34684873 DOI: 10.3390/molecules26206292] [Reference Citation Analysis]
117 Barrera-Reyes PK, Hernández-Ramírez N, Cortés J, Poquet L, Redeuil K, Rangel-Escareño C, Kussmann M, Silva-Zolezzi I, Tejero ME. Gene expression changes by high-polyphenols cocoa powder intake: a randomized crossover clinical study. Eur J Nutr 2019;58:1887-98. [PMID: 29948216 DOI: 10.1007/s00394-018-1736-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
118 Williamson G, Kay CD, Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Comprehensive Reviews in Food Science and Food Safety 2018;17:1054-112. [DOI: 10.1111/1541-4337.12351] [Cited by in Crossref: 164] [Cited by in F6Publishing: 106] [Article Influence: 41.0] [Reference Citation Analysis]
119 Borges G, Ottaviani JI, van der Hooft JJ, Schroeter H, Crozier A. Absorption, metabolism, distribution and excretion of (−)-epicatechin: A review of recent findings. Molecular Aspects of Medicine 2018;61:18-30. [DOI: 10.1016/j.mam.2017.11.002] [Cited by in Crossref: 62] [Cited by in F6Publishing: 49] [Article Influence: 15.5] [Reference Citation Analysis]
120 Vong CI, Rathinasabapathy T, Moncada M, Komarnytsky S. All Polyphenols Are Not Created Equal: Exploring the Diversity of Phenolic Metabolites. J Agric Food Chem 2022. [PMID: 35147422 DOI: 10.1021/acs.jafc.1c07179] [Reference Citation Analysis]
121 Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020;33:166-90. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
122 Liu Z, Bruins ME, Ni L, Vincken JP. Green and Black Tea Phenolics: Bioavailability, Transformation by Colonic Microbiota, and Modulation of Colonic Microbiota. J Agric Food Chem 2018;66:8469-77. [PMID: 30020786 DOI: 10.1021/acs.jafc.8b02233] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
123 Barrera-Reyes PK, Cortés-Fernández de Lara J, Poquet L, Redeuil K, Kussmann M, Silva-Zolezzi I, Tejero EM. Circulating Structurally Related (-)-Epicatechin Metabolite Species and Levels after Sustained Intake of a Cocoa Powder High in Polyphenols Are Comparable to Those Achieved after a Single Dose. Nutrients 2021;13:3829. [PMID: 34836088 DOI: 10.3390/nu13113829] [Reference Citation Analysis]
124 Angelino D, Caffrey A, Moore K, Laird E, Moore AJ, Gill CIR, Mena P, Westley K, Pucci B, Boyd K, Mullen B, Mccarroll K, Ward M, Strain JJ, Cunningham C, Molloy AM, Mcnulty H, Del Rio D. Phenyl‐γ‐valerolactones and healthy ageing: Linking dietary factors, nutrient biomarkers, metabolic status and inflammation with cognition in older adults (the VALID project). Nutr Bull 2020;45:415-23. [DOI: 10.1111/nbu.12444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
125 Baynham R, Veldhuijzen van Zanten JJCS, Johns PW, Pham QS, Rendeiro C. Cocoa Flavanols Improve Vascular Responses to Acute Mental Stress in Young Healthy Adults. Nutrients 2021;13:1103. [PMID: 33801767 DOI: 10.3390/nu13041103] [Reference Citation Analysis]
126 Oteiza PI, Fraga CG, Galleano M. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biol 2021;42:101914. [PMID: 33750648 DOI: 10.1016/j.redox.2021.101914] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
127 Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, Santos CND. Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients 2021;13:2940. [PMID: 34578818 DOI: 10.3390/nu13092940] [Reference Citation Analysis]
128 Dicks L, Kirch N, Gronwald D, Wernken K, Zimmermann BF, Helfrich HP, Ellinger S. Regular Intake of a Usual Serving Size of Flavanol-Rich Cocoa Powder Does Not Affect Cardiometabolic Parameters in Stably Treated Patients with Type 2 Diabetes and Hypertension-A Double-Blinded, Randomized, Placebo-Controlled Trial. Nutrients 2018;10:E1435. [PMID: 30301127 DOI: 10.3390/nu10101435] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
129 Mele L, Bidault G, Mena P, Crozier A, Brighenti F, Vidal-Puig A, Del Rio D. Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. Adv Nutr 2017;8:694-704. [PMID: 28916570 DOI: 10.3945/an.117.015792] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
130 Ye JH, Augustin MA. Nano- and micro-particles for delivery of catechins: Physical and biological performance. Crit Rev Food Sci Nutr 2019;59:1563-79. [PMID: 29345975 DOI: 10.1080/10408398.2017.1422110] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
131 Mocciaro G, Bresciani L, Tsiountsioura M, Martini D, Mena P, Charron M, Brighenti F, Bentley S, Harvey M, Collins D, Del Rio D, Ray S. Dietary absorption profile, bioavailability of (poly)phenolic compounds, and acute modulation of vascular/endothelial function by hazelnut skin drink. Journal of Functional Foods 2019;63:103576. [DOI: 10.1016/j.jff.2019.103576] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Agrawal K, Melliou E, Li X, Pedersen TL, Wang SC, Magiatis P, Newman JW, Holt RR. Oleocanthal-rich extra virgin olive oil demonstrates acute anti-platelet effects in healthy men in a randomized trial. J Funct Foods 2017;36:84-93. [PMID: 29904393 DOI: 10.1016/j.jff.2017.06.046] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 5.6] [Reference Citation Analysis]
133 Zeng YX, Wang S, Wei L, Cui YY, Chen YH. Proanthocyanidins: Components, Pharmacokinetics and Biomedical Properties. Am J Chin Med 2020;48:813-69. [PMID: 32536248 DOI: 10.1142/S0192415X2050041X] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
134 Martel J, Ojcius DM, Ko Y, Young JD. Phytochemicals as Prebiotics and Biological Stress Inducers. Trends in Biochemical Sciences 2020;45:462-71. [DOI: 10.1016/j.tibs.2020.02.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
135 Méndez L, Muñoz S, Miralles-Pérez B, Nogués MR, Ramos-Romero S, Torres JL, Medina I. Modulation of the Liver Protein Carbonylome by the Combined Effect of Marine Omega-3 PUFAs and Grape Polyphenols Supplementation in Rats Fed an Obesogenic High Fat and High Sucrose Diet. Mar Drugs 2019;18:E34. [PMID: 31906027 DOI: 10.3390/md18010034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]