BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hara S, Tamano M, Yamashita S, Kato T, Saito T, Sakuma T, Yamamoto T, Inui M, Takada S. Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9. Sci Rep 2015;5:11221. [PMID: 26057433 DOI: 10.1038/srep11221] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Fujii W. Generation of Knock-In Mouse by Genome Editing. Methods Mol Biol 2023;2637:99-109. [PMID: 36773141 DOI: 10.1007/978-1-0716-3016-7_8] [Reference Citation Analysis]
2 Huang X, Yang D, Zhang J, Xu J, Chen YE. Recent Advances in Improving Gene-Editing Specificity through CRISPR–Cas9 Nuclease Engineering. Cells 2022;11:2186. [DOI: 10.3390/cells11142186] [Reference Citation Analysis]
3 Chin YW, Shin SC, Han S, Jang HW, Kim HJ. CRISPR/Cas9-mediated Inactivation of arginase in a yeast strain isolated from Nuruk and its impact on the whole genome. J Biotechnol 2021;341:163-7. [PMID: 34601018 DOI: 10.1016/j.jbiotec.2021.09.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Ansari I, Chaturvedi A, Chitkara D, Singh S. CRISPR/Cas mediated epigenome editing for cancer therapy. Semin Cancer Biol 2021:S1044-579X(20)30278-9. [PMID: 33421620 DOI: 10.1016/j.semcancer.2020.12.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Saifaldeen M, Al-Ansari DE, Ramotar D, Aouida M. CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering. Cells 2020;9:E2518. [PMID: 33233344 DOI: 10.3390/cells9112518] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
6 Liu Z, Liao Z, Chen Y, Han L, Yin Q, Xiao H. Application of Various Delivery Methods for CRISPR/dCas9. Mol Biotechnol 2020;62:355-63. [PMID: 32583364 DOI: 10.1007/s12033-020-00258-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
7 Chen SH, Hsieh YY, Tzeng HE, Lin CY, Hsu KW, Chiang YS, Lin SM, Su MJ, Hsieh WS, Lee CH. ABL Genomic Editing Sufficiently Abolishes Oncogenesis of Human Chronic Myeloid Leukemia Cells In Vitro and In Vivo. Cancers (Basel) 2020;12:E1399. [PMID: 32485885 DOI: 10.3390/cancers12061399] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
8 Chen SH, Hsieh YY, Tzeng HE, Lin CY, Hsu KW, Chiang YS, Lin SM, Su MJ, Hsieh WS, Lee CH. ABL Genomic Editing Sufficiently Abolishes Oncogenesis of Human Chronic Myeloid Leukemia Cells In Vitro and In Vivo. Cancers (Basel) 2020;12:E1399. [PMID: 32485885 DOI: 10.3390/cancers12061399] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Lopes SM, Pereira de Almeida L. Gene editing and central nervous system regeneration. Handbook of Innovations in Central Nervous System Regenerative Medicine 2020. [DOI: 10.1016/b978-0-12-818084-6.00011-8] [Reference Citation Analysis]
10 Hara S, Terao M, Muramatsu A, Takada S. Efficient production and transmission of CRISPR/Cas9-mediated mutant alleles at the IG-DMR via generation of mosaic mice using a modified 2CC method. Sci Rep 2019;9:20202. [PMID: 31882978 DOI: 10.1038/s41598-019-56676-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
11 Ikeda A, Fujii W, Sugiura K, Naito K. High-fidelity endonuclease variant HypaCas9 facilitates accurate allele-specific gene modification in mouse zygotes. Commun Biol 2019;2:371. [PMID: 31633062 DOI: 10.1038/s42003-019-0627-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
12 Volobueva AS, Orekhov AN, Deykin AV. An update on the tools for creating transgenic animal models of human diseases - focus on atherosclerosis. Braz J Med Biol Res 2019;52:e8108. [PMID: 31038578 DOI: 10.1590/1414-431X20198108] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
13 Ogawa Y, Terao M, Hara S, Tamano M, Okayasu H, Kato T, Takada S. Mapping of a responsible region for sex reversal upstream of Sox9 by production of mice with serial deletion in a genomic locus. Sci Rep 2018;8:17514. [PMID: 30504911 DOI: 10.1038/s41598-018-35746-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
14 Lee MY, Kang JS, Go RE, Byun YS, Wi YJ, Hwang KA, Choi JH, Kim HC, Choi KC, Nam KH. Collagen-Induced Arthritis Analysis in Rhbdf2 Knockout Mouse. Biomol Ther (Seoul) 2018;26:298-305. [PMID: 29223140 DOI: 10.4062/biomolther.2017.103] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
15 Fujii W. Generation of Knock-in Mouse by Genome Editing. Methods Mol Biol 2017;1630:91-100. [PMID: 28643252 DOI: 10.1007/978-1-4939-7128-2_8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
16 de la Fuente-Núñez C, Lu TK. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr Biol (Camb) 2017;9:109-22. [PMID: 28045163 DOI: 10.1039/c6ib00140h] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 6.0] [Reference Citation Analysis]
17 Nottle MB, Salvaris EJ, Fisicaro N, McIlfatrick S, Vassiliev I, Hawthorne WJ, O'Connell PJ, Brady JL, Lew AM, Cowan PJ. Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9. Sci Rep 2017;7:8383. [PMID: 28814758 DOI: 10.1038/s41598-017-09030-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
18 Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 2017;28:247-61. [PMID: 28634692 DOI: 10.1007/s00335-017-9697-4] [Cited by in Crossref: 78] [Cited by in F6Publishing: 83] [Article Influence: 13.0] [Reference Citation Analysis]
19 Liu X, Xie C, Si H, Yang J. CRISPR/Cas9-mediated genome editing in plants. Methods 2017;121-122:94-102. [DOI: 10.1016/j.ymeth.2017.03.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
20 Wefers B, Bashir S, Rossius J, Wurst W, Kühn R. Gene editing in mouse zygotes using the CRISPR/Cas9 system. Methods 2017;121-122:55-67. [PMID: 28263886 DOI: 10.1016/j.ymeth.2017.02.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 5.2] [Reference Citation Analysis]
21 Inui M, Tamano M, Kato T, Takada S. CRISPR/Cas9-mediated simultaneous knockout of Dmrt1 and Dmrt3 does not recapitulate the 46,XY gonadal dysgenesis observed in 9p24.3 deletion patients. Biochem Biophys Rep 2017;9:238-44. [PMID: 28956011 DOI: 10.1016/j.bbrep.2017.01.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
22 Singh V, Braddick D, Dhar PK. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 2017;599:1-18. [DOI: 10.1016/j.gene.2016.11.008] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 15.5] [Reference Citation Analysis]
23 Hara S, Terao M, Takada S. A Protocol for Production of Mutant Mice Using Chemically Synthesized crRNA/tracrRNA with Cas9 Nickase and FokI-dCas9. BIO-PROTOCOL 2017;7. [DOI: 10.21769/bioprotoc.2340] [Reference Citation Analysis]
24 Sakuma T, Sakamoto T, Yamamoto T. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells. Methods Mol Biol 2017;1498:41-56. [PMID: 27709568 DOI: 10.1007/978-1-4939-6472-7_4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
25 Pan Y, Shen N, Jung-Klawitter S, Betzen C, Hoffmann GF, Hoheisel JD, Blau N. CRISPR RNA-guided FokI nucleases repair a PAH variant in a phenylketonuria model. Sci Rep 2016;6:35794. [PMID: 27786189 DOI: 10.1038/srep35794] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
26 Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 2016;17:300-12. [PMID: 27087594 DOI: 10.1038/nrg.2016.28] [Cited by in Crossref: 307] [Cited by in F6Publishing: 317] [Article Influence: 43.9] [Reference Citation Analysis]
27 Chin YW, Kang WK, Jang HW, Turner TL, Kim HJ. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2016;43:1517-25. [PMID: 27573438 DOI: 10.1007/s10295-016-1831-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
28 Kato T, Takada S. In vivo and in vitro disease modeling with CRISPR/Cas9. Briefings in Functional Genomics 2017;16:13-24. [DOI: 10.1093/bfgp/elw031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
29 Markossian S, Flamant F. CRISPR/Cas9: a breakthrough in generating mouse models for endocrinologists. Journal of Molecular Endocrinology 2016;57:R81-92. [DOI: 10.1530/jme-15-0305] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
30 Hara S, Kato T, Goto Y, Kubota S, Tamano M, Terao M, Takada S. Microinjection-based generation of mutant mice with a double mutation and a 0.5 Mb deletion in their genome by the CRISPR/Cas9 system. J Reprod Dev 2016;62:531-6. [PMID: 27396308 DOI: 10.1262/jrd.2016-058] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
31 Singh AM, Perry DW, Steffey VVA, Miller K, Allison DW. Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing. Methods Mol Biol 2016;1516:153-69. [PMID: 27075976 DOI: 10.1007/7651_2016_324] [Reference Citation Analysis]
32 Terao M, Tamano M, Hara S, Kato T, Kinoshita M, Takada S. Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9. Exp Anim 2016;65:275-83. [PMID: 26972821 DOI: 10.1538/expanim.15-0116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
33 Krentz NAJ, Lynn FC. Using CRISPR-Cas9 Genome Editing to Enhance Cell Based Therapies for the Treatment of Diabetes Mellitus. Genome Editing 2016. [DOI: 10.1007/978-3-319-34148-4_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
34 Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J 2016;283:1218-31. [DOI: 10.1111/febs.13586] [Cited by in Crossref: 160] [Cited by in F6Publishing: 165] [Article Influence: 20.0] [Reference Citation Analysis]