BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, Lu T, Maroc L, Norman TM, Song B, Stanley G, Chen S, Garnett M, Li W, Moffat J, Qi LS, Shapiro RS, Shendure J, Weissman JS, Zhuang X. High-content CRISPR screening. Nat Rev Methods Primers 2022;2. [DOI: 10.1038/s43586-021-00093-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Jeong SH, Kim HJ, Lee SJ. New Target Gene Screening Using Shortened and Random sgRNA Libraries in Microbial CRISPR Interference. ACS Synth Biol 2023;12:800-8. [PMID: 36787424 DOI: 10.1021/acssynbio.2c00595] [Reference Citation Analysis]
2 Pons G, Gallo-oller G, Navarro N, Zarzosa P, Sansa-girona J, García-gilabert L, Magdaleno A, Segura MF, Sánchez de Toledo J, Gallego S, Moreno L, Roma J. Analysis of Cancer Genomic Amplifications Identifies Druggable Collateral Dependencies within the Amplicon. Cancers 2023;15:1636. [DOI: 10.3390/cancers15061636] [Reference Citation Analysis]
3 Wells MF, Nemesh J, Ghosh S, Mitchell JM, Salick MR, Mello CJ, Meyer D, Pietilainen O, Piccioni F, Guss EJ, Raghunathan K, Tegtmeyer M, Hawes D, Neumann A, Worringer KA, Ho D, Kommineni S, Chan K, Peterson BK, Raymond JJ, Gold JT, Siekmann MT, Zuccaro E, Nehme R, Kaykas A, Eggan K, McCarroll SA. Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages. Cell Stem Cell 2023;30:312-332.e13. [PMID: 36796362 DOI: 10.1016/j.stem.2023.01.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 2023;24:161-77. [PMID: 36344749 DOI: 10.1038/s41576-022-00541-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
5 Gundry M, Sankaran VG. Hacking hematopoiesis - emerging tools for examining variant effects. Dis Model Mech 2023;16. [PMID: 36826849 DOI: 10.1242/dmm.049857] [Reference Citation Analysis]
6 Coelho MA, Cooper S, Strauss ME, Karakoc E, Bhosle S, Gonçalves E, Picco G, Burgold T, Cattaneo CM, Veninga V, Consonni S, Dinçer C, Vieira SF, Gibson F, Barthorpe S, Hardy C, Rein J, Thomas M, Marioni J, Voest EE, Bassett A, Garnett MJ. Base editing screens map mutations affecting interferon-γ signaling in cancer. Cancer Cell 2023;41:288-303.e6. [PMID: 36669486 DOI: 10.1016/j.ccell.2022.12.009] [Reference Citation Analysis]
7 Fay MM, Kraus O, Victors M, Arumugam L, Vuggumudi K, Urbanik J, Hansen K, Celik S, Cernek N, Jagannathan G, Christensen J, Earnshaw BA, Haque IS, Mabey B. RxRx3: Phenomics Map of Biology.. [DOI: 10.1101/2023.02.07.527350] [Reference Citation Analysis]
8 Essletzbichler P, Sedlyarov V, Frommelt F, Soulat D, Heinz LX, Stefanovic A, Neumayer B, Superti-Furga G. A genome-wide CRISPR functional survey of the human phagocytosis molecular machinery. Life Sci Alliance 2023;6. [PMID: 36725334 DOI: 10.26508/lsa.202201715] [Reference Citation Analysis]
9 Cheng J, Lin G, Wang T, Wang Y, Guo W, Liao J, Yang P, Chen J, Shao X, Lu X, Zhu L, Wang Y, Fan X. Massively Parallel CRISPR-Based Genetic Perturbation Screening at Single-Cell Resolution. Adv Sci (Weinh) 2023;10:e2204484. [PMID: 36504444 DOI: 10.1002/advs.202204484] [Reference Citation Analysis]
10 Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 2023. [PMID: 36721024 DOI: 10.1038/s41571-023-00729-2] [Reference Citation Analysis]
11 Duran-Frigola M, Cigler M, Winter GE. Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. J Am Chem Soc 2023;145:2711-32. [PMID: 36706315 DOI: 10.1021/jacs.2c11098] [Reference Citation Analysis]
12 Woodcraft C, Chooi YH, Roux I. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Nat Prod Rep 2023;40:158-73. [PMID: 36205232 DOI: 10.1039/d2np00055e] [Reference Citation Analysis]
13 Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science 2023;379:eadd8643. [PMID: 36656942 DOI: 10.1126/science.add8643] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Romero JC, Berlinicke C, Chow S, Duan Y, Wang Y, Chamling X, Smirnova L. Oligodendrogenesis and myelination tracing in a CRISPR/Cas9-engineered brain microphysiological system. Front Cell Neurosci 2022;16:1094291. [PMID: 36744062 DOI: 10.3389/fncel.2022.1094291] [Reference Citation Analysis]
15 Geurts MH, Clevers H. CRISPR engineering in organoids for gene repair and disease modelling. Nat Rev Bioeng 2023;1:32-45. [DOI: 10.1038/s44222-022-00013-5] [Reference Citation Analysis]
16 Han JL, Entcheva E. Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Rev Rep 2023;:1-20. [PMID: 36656467 DOI: 10.1007/s12015-023-10506-4] [Reference Citation Analysis]
17 Tan WLW, Seow WQ, Zhang A, Rhee S, Wong WH, Greenleaf WJ, Wu JC. Current and future perspectives of single-cell multi-omics technologies in cardiovascular research. Nat Cardiovasc Res 2023;2:20-34. [DOI: 10.1038/s44161-022-00205-7] [Reference Citation Analysis]
18 Jeong SH, Lee HJ, Lee SJ. Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. J Microbiol 2023;61:13-36. [PMID: 36723794 DOI: 10.1007/s12275-022-00005-5] [Reference Citation Analysis]
19 Satapathy S, Wilson M. Roles of constitutively secreted extracellular chaperones in neuronal cell repair and regeneration. Neural Regen Res 2023;18:769. [DOI: 10.4103/1673-5374.353483] [Reference Citation Analysis]
20 Sreenivasan VK, Henck J, Spielmann M. Single-cell sequencing: promises and challenges for human genetics. Medizinische Genetik 2022;34:261-273. [DOI: 10.1515/medgen-2022-2156] [Reference Citation Analysis]
21 Kim SH, Shin S, Baek M, Xiong K, Karottki KJLC, Hefzi H, Grav LM, Pedersen LE, Kildegaard HF, Lewis NE, Lee JS, Lee GM. Identification of hyperosmotic stress-responsive genes in Chinese hamster ovary cells via genome-wide virus-free CRISPR/Cas9 screening.. [DOI: 10.1101/2022.12.13.520335] [Reference Citation Analysis]
22 Shi H, Doench JG, Chi H. CRISPR screens for functional interrogation of immunity. Nat Rev Immunol 2022. [DOI: 10.1038/s41577-022-00802-4] [Reference Citation Analysis]
23 Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (Bethesda) 2023;13. [PMID: 36450451 DOI: 10.1093/g3journal/jkac301] [Reference Citation Analysis]
24 Tan C, Xu P, Tao F. Carbon-negative synthetic biology: challenges and emerging trends of cyanobacterial technology. Trends Biotechnol 2022;40:1488-502. [PMID: 36253158 DOI: 10.1016/j.tibtech.2022.09.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Biederstädt A, Manzar GS, Daher M. Multiplexed engineering and precision gene editing in cellular immunotherapy. Front Immunol 2022;13:1063303. [PMID: 36483551 DOI: 10.3389/fimmu.2022.1063303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Ng A. A clustered regularly interspaced short palindromic repeats knockout method to reveal methyl-CpG binding domain 4 function.. [DOI: 10.21203/rs.3.rs-2266782/v1] [Reference Citation Analysis]
27 Stevenson ZC, Moerdyk-schauwecker MJ, Banse SA, Patel DS, Lu H, Phillips PC. High-Throughput Library Transgenesis inCaenorhabditis elegansvia Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS).. [DOI: 10.1101/2022.10.30.514301] [Reference Citation Analysis]
28 Ling X, Liu T. Innovative CRISPR Screening Promotes Drug Target Identification. ACS Cent Sci 2022. [DOI: 10.1021/acscentsci.2c01142] [Reference Citation Analysis]
29 Huang S, Baskin JM. Adding a Chemical Biology Twist to CRISPR Screening. Israel Journal of Chemistry. [DOI: 10.1002/ijch.202200056] [Reference Citation Analysis]
30 Vanderwaeren L, Dok R, Voordeckers K, Nuyts S, Verstrepen KJ. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int J Mol Sci 2022;23:11665. [PMID: 36232965 DOI: 10.3390/ijms231911665] [Reference Citation Analysis]
31 Shang S, Cai XS, Qi LS. Computation empowers CRISPR discovery and technology. Nat Comput Sci 2022;2:533-535. [DOI: 10.1038/s43588-022-00321-1] [Reference Citation Analysis]
32 Essletzbichler P, Sedlyarov V, Frommelt F, Soulat D, Heinz LX, Stefanovic A, Neumayer B, Superti-furga G. A genome-wide CRISPR functional survey of the human phagocytosis molecular machinery.. [DOI: 10.1101/2022.09.08.507072] [Reference Citation Analysis]
33 Barragán-álvarez CP, Flores-fernandez JM, Hernández-pérez OR, Ávila-gónzalez D, Díaz NF, Padilla-camberos E, Dublan-garcía O, Gómez-oliván LM, Diaz-martinez NE. Recent advances in the use of CRISPR/Cas for understanding the early development of molecular gaps in glial cells. Front Cell Dev Biol 2022;10:947769. [DOI: 10.3389/fcell.2022.947769] [Reference Citation Analysis]
34 Malekos E, Carpenter S. Short open reading frame genes in innate immunity: from discovery to characterization. Trends Immunol 2022;43:741-56. [PMID: 35965152 DOI: 10.1016/j.it.2022.07.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
35 Cisneros WJ, Cornish D, Hultquist JF. Application of CRISPR-Cas9 Gene Editing for HIV Host Factor Discovery and Validation. Pathogens 2022;11. [PMID: 36015010 DOI: 10.3390/pathogens11080891] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Park JJ, Lee KAV, Lam SZ, Tang K, Chen S. Genome Engineering for Next-Generation Cellular Immunotherapies. Biochemistry 2022. [PMID: 35930700 DOI: 10.1021/acs.biochem.2c00340] [Reference Citation Analysis]
37 Replogle JM, Bonnar JL, Pogson AN, Liem CR, Maier NK, Ding Y, Russell BJ, Wang X, Leng K, Guna A, Norman TM, Pak RA, Ramos DM, Ward ME, Gilbert LA, Kampmann M, Weissman JS, Jost M. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors.. [DOI: 10.1101/2022.07.13.499814] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Karagyaur M, Dyikanov D, Tyurin-kuzmin P, Dzhauari S, Skryabina M, Vigovskiy M, Primak A, Kalinina N, Tkachuk V. A Novel Cre/lox71-Based System for Inducible Expression of Recombinant Proteins and Genome Editing. Cells 2022;11:2141. [DOI: 10.3390/cells11142141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Wang B, Wong ASL. CRISPR screening in cancer stem cells. Essays Biochem 2022:EBC20220009. [PMID: 35713228 DOI: 10.1042/EBC20220009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Replogle JM, Bonnar JL, Pogson AN, Liem CR, Maier NK, Ding Y, Russell BJ, Wang X, Leng K, Guna A, Norman TM, Pak RA, Ramos DM, Ward ME, Gilbert LA, Kampmann M, Weissman JS, Jost M. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. Elife 2022;11. [PMID: 36576240 DOI: 10.7554/eLife.81856] [Reference Citation Analysis]