BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Matsumoto S, Ishida S, Araki M, Kato T, Terayama K, Okuno Y. Extraction of protein dynamics information from cryo-EM maps using deep learning. Nat Mach Intell 2021;3:153-60. [DOI: 10.1038/s42256-020-00290-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu Z, Chen E, Zhang S, Ma Y, Mao Y. Visualizing Conformational Space of Functional Biomolecular Complexes by Deep Manifold Learning. IJMS 2022;23:8872. [DOI: 10.3390/ijms23168872] [Reference Citation Analysis]
2 Chiang Y, Hui W, Chang S. Encoding protein dynamic information in graph representation for functional residue identification. Cell Reports Physical Science 2022;3:100975. [DOI: 10.1016/j.xcrp.2022.100975] [Reference Citation Analysis]
3 Kadi RH, Altammar KA, Hassan MM, Shater AF, Saleh FM, Gattan H, Al-Ahmadi BM, AlGabbani Q, Mohammedsaleh ZM. Potential Therapeutic Candidates against Chlamydia pneumonia Discovered and Developed In Silico Using Core Proteomics and Molecular Docking and Simulation-Based Approaches. Int J Environ Res Public Health 2022;19:7306. [PMID: 35742569 DOI: 10.3390/ijerph19127306] [Reference Citation Analysis]
4 Thorn A. Artificial intelligence in the experimental determination and prediction of macromolecular structures. Current Opinion in Structural Biology 2022;74:102368. [DOI: 10.1016/j.sbi.2022.102368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Wang C, Anglès F, Balch WE. Triangulating variation in the population to define mechanisms for precision management of genetic disease. Structure 2022:S0969-2126(22)00185-X. [PMID: 35714602 DOI: 10.1016/j.str.2022.05.011] [Reference Citation Analysis]
6 Chen J, Shukla D. Integration of machine learning with computational structural biology of plants. Biochem J 2022;479:921-8. [PMID: 35484946 DOI: 10.1042/BCJ20200942] [Reference Citation Analysis]
7 Devore K, Chiu P. Probing Structural Perturbation of Biomolecules by Extracting Cryo-EM Data Heterogeneity. Biomolecules 2022;12:628. [DOI: 10.3390/biom12050628] [Reference Citation Analysis]
8 Pandey M, Fernandez M, Gentile F, Isayev O, Tropsha A, Stern AC, Cherkasov A. The transformational role of GPU computing and deep learning in drug discovery. Nat Mach Intell 2022;4:211-21. [DOI: 10.1038/s42256-022-00463-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Vant JW, Sarkar D, Nguyen J, Baker AT, Vermaas JV, Singharoy A. Exploring cryo-electron microscopy with molecular dynamics. Biochem Soc Trans 2022:BST20210485. [PMID: 35212361 DOI: 10.1042/BST20210485] [Reference Citation Analysis]
10 Treder KP, Huang C, Kim JS, Kirkland AI. Applications of deep learning in electron microscopy. Microscopy 2022;71:i100-15. [DOI: 10.1093/jmicro/dfab043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Gianti E, Percec S. Machine Learning at the Interface of Polymer Science and Biology: How Far Can We Go? Biomacromolecules 2022. [PMID: 35133143 DOI: 10.1021/acs.biomac.1c01436] [Reference Citation Analysis]
12 Nagayasu K. Serotonin transporter: Recent progress of in silico ligand prediction methods and structural biology towards structure-guided in silico design of therapeutic agents. Journal of Pharmacological Sciences 2022. [DOI: 10.1016/j.jphs.2022.01.004] [Reference Citation Analysis]
13 Chang W, Huang S, Lin H, Chung S, Tu I. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. Front Bioinform 2021;1:788308. [DOI: 10.3389/fbinf.2021.788308] [Reference Citation Analysis]
14 Pei Z, Rozman KA, Doğan ÖN, Wen Y, Gao N, Holm EA, Hawk JA, Alman DE, Gao MC. Machine-Learning Microstructure for Inverse Material Design. Adv Sci (Weinh) 2021;8:e2101207. [PMID: 34716677 DOI: 10.1002/advs.202101207] [Reference Citation Analysis]
15 Lander GC, Glaeser RM. Conquer by cryo-EM without physically dividing. Biochem Soc Trans 2021;49:2287-98. [PMID: 34709401 DOI: 10.1042/BST20210360] [Reference Citation Analysis]
16 Morgunov AS, Saar KL, Vendruscolo M, Knowles TPJ. New Frontiers for Machine Learning in Protein Science. J Mol Biol 2021;433:167232. [PMID: 34499920 DOI: 10.1016/j.jmb.2021.167232] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Amamoto Y, Kikutake H, Kojio K, Takahara A, Terayama K. Visualization of judgment regions in convolutional neural networks for X-ray diffraction and scattering images of aliphatic polyesters. Polym J 2021;53:1269-79. [DOI: 10.1038/s41428-021-00531-w] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Jiang X, Balsara NP. High-Resolution Imaging of Unstained Polymer Materials. ACS Appl Polym Mater 2021;3:2849-64. [DOI: 10.1021/acsapm.1c00217] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]